

D4.3 - Software for delivering intelligence

at the edge final release

Deliverable No. D4.3 Due Date 28-FEB-2025*

Type Other Dissemination Level Public

Version 1.0 WP WP4

Description Intermediate release of design and implementation of building blocks and

their relationship with the rest of the architecture. *The due date has been

requested to be shifted to M31(31-MAR-2025) in the on-going amendment to the Grant Agreement.

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement No.

101069732

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 2 of 94

Copyright
Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA ES

NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL

ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES

TTCONTROL GMBH AT

TTTECH COMPUTERTECHNIK AG (Linked third party) AT

SIEMENS AKTIENGESELLSCHAFT DE

FIWARE FOUNDATION EV DE

TELEFONICA INVESTIGACION Y DESARROLLO SA ES

UNIVERSIDAD POLITÉCNICA DE MADRID ES

ORGANISMOS TILEPIKOINONION TIS ELLADOS OTE AE - HELLENIC TELECOMMUNICATIONS

ORGANIZATION SA
EL

EIGHT BELLS LTD CY

INQBIT INNOVATIONS SRL RO

FOGUS INNOVATIONS & SERVICES P.C. EL

L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL

ICTFICIAL OY FI

INFOLYSIS P.C. EL

PRODEVELOP SL ES

EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY

TECHNOLOGIKO PANEPISTIMIO KYPROU CY

DS TECH SRL IT

GRUPO S 21SEC GESTION SA ES

JOHN DEERE GMBH & CO. KG*JD DE

CLOUDFERRO SP ZOO PL

ELECTRUM SP ZOO PL

POLITECNICO DI MILANO IT

MADE SCARL IT

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES

SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer
This document contains material, which is the copyright of certain aerOS consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation, or both.

The information contained in this document is the proprietary confidential information of the aerOS Consortium

(including the Commission Services) and may not be disclosed except in accordance with the Consortium

Agreement. The commercial use of any information contained in this document may require a license from the

proprietor of that information. Neither the Project Consortium as a whole nor a certain party of the Consortium

warrant that the information contained in this document is capable of use, nor that use of the information is free

from risk and accepts no liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 3 of 94

Authors
Name Partner e-mail

Rafael Vaño P01 UPV ravagar2@upv.es

Salvador Cuñat P01 UPV salcuane@upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

Fernando Boronat P01 UPV fboronat@dcom.upv.es

Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

Andreas Sakellaropoulos P02 NCSRD asakellaropoulos@iit.demokritos.gr

Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr

Ignacio Domínguez P07 TID ignacio.dominguezmartinez@telefonica.com

Lucía Cabanillas P07 TID lucia.cabanillasrodriguez@telefonica.com

Luis Bellido Triana P07a UPM luis.bellido@upm.es

David Martínez García P07a UPM david.martinezgarci@upm.es

Ioannis Chouchoulis P10 IQB giannis.chouchoulis@inqbit.io

Vasiliki Maria Sampazioti P10 IQB vasiliki.maria.sampazioti@inqbit.io

Aristeidis Farao P10 IQB aris.farao@inqbit.io

Joseph McNamara P12 LMI joseph.mcnamara@ericsson.com

Zofia Wrona P13 SRIPAS zofia.wrona@ibspan.waw.pl

Przemysław Hołda P13 SRIPAS Przemyslaw.Holda@ibspan.waw.pl

Wiesław Pawłowski P13 SRIPAS Wieslaw.Pawlowski@ibspan.waw.pl

Paweł Szmeja P13 SRIPAS Pawel.Szmeja@ibspan.waw.pl

Katarzyna Wasielewska-Michniewska P13 SRIPAS Katarzyna.wasielewska@ibspan.waw.pl

Yan Chen P14 ICTFI yan.chen@ictficial.com

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Pantelis Papachronis P15 INF ppapachronis@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Eduardo Garro Crevillén P16 PRO egarro@prodevelop.es

Adrián Ramos Ureña P16 PRO aramos@prodevelop.es

Álvaro Martínez Romero P16 PRO amromero@proistevelop.es

Riccario Leoni P19 DS TECH r.leoni@dstech.it

Federico Corazza P19 DS TECH f.corazza@dstech.it

mailto:ravagar2@upv.es
mailto:salcuane@upv.es
mailto:iglaub@upv.es
mailto:fboronat@dcom.upv.es
mailto:vpitsilis@iit.demokritos.gr
mailto:asakellaropoulos@iit.demokritos.gr
mailto:koumaras@iit.demokritos.gr
mailto:ignacio.dominguezmartinez@telefonica.com
mailto:lucia.cabanillasrodriguez@telefonica.com
mailto:luis.bellido@upm.es
mailto:david.martinezgarci@upm.es
mailto:giannis.chouchoulis@inqbit.io
mailto:vasiliki.maria.sampazioti@inqbit.io
mailto:aris.farao@inqbit.io
mailto:joseph.mcnamara@ericsson.com
mailto:zofia.wrona@ibspan.waw.pl
mailto:Przemyslaw.Holda@ibspan.waw.pl
mailto:Wieslaw.Pawlowski@ibspan.waw.pl
mailto:Pawel.Szmeja@ibspan.waw.pl
mailto:Katarzyna.wasielewska@ibspan.waw.pl
mailto:yan.chen@ictficial.com
mailto:tarik.taleb@ictficial.com
mailto:amine.taleb@ictficial.com
mailto:ppapachronis@infolysis.gr
mailto:evergis@infolysis.gr
mailto:egarro@prodevelop.es
mailto:aramos@prodevelop.es
mailto:amromero@prodevelop.es
mailto:r.leoni@dstech.it
mailto:f.corazza@dstech.it

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 4 of 94

History

Date Version Change

10-01-2025 0.1 Final table of contents

09-01-2025 0.2 Start first round of contributions

17-01-2025 0.5 Finalized first round. Merging document with first round

contributions.

18-02-2025 0.6 End second round of contributions

26-02-2025 0.8 Version ready for round of internal reviews

17-03-2025 0.9 Version ready for PIC review

20-03-2025 1.0 Final submitted version

Key Data

Keywords Semantics, data fabric, data governance, AI, explainability, analytics,

trustworthiness, management, federation, portal

Lead Editor P13 SRIPAS – Katarzyna Wasielewska-Michniewska

Internal Reviewer(s) SIEMENS

CF

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 5 of 94

Executive Summary

The present deliverable D4.3 “Software for delivering intelligence at the edge final release” is the last of the

three deliverables outlining the final outcomes of the aerOS Work Package 4 tasks. It encompasses and updates

outcomes from the preliminary release (D4.1) and intermediate release (D4.2).

The document continues with the concept of aerOS Minimum Viable Product (MVP) that was further

developed into its second version (MVPv2) and addresses it from the standpoint of WP4. The aerOS MVPv2

brings together the technologies provided by the WP3 and WP4 activities under the WP2 architecture design

specifications, to deliver a functional, stable prototype of the aerOS stack. Specifically, WP4 tasks contribute

to the MVPv2 by enabling the sharing of data, for a trusted and decentralized AI-based orchestration of the

resources in the aerOS continuum as well as implemented use case, and providing enhanced functionalities of

aerOS Management Portal and management services.

IMPORTANT: This deliverable is of type OTHER. This means that D4.3 is mostly a software deliverable.

While this document reports the advances of tasks T4.1-T4.6 in the period M19-M30, it must be understood

together with the software release that is uploaded alongside it.

D4.3 presents the final design of the building blocks involved in the WP4 tasks, along with their respective

implementations. Building upon the outcomes summarized in D4.1 and D4.2, the document is structured around

the WP4 tasks to report on their results and detail their impact on the realization of the aerOS MVPv2. These

can be summarised as follows:

• Data homogenization task T4.1, brings two main building blocks for semantic data processing: the Semantic

Annotator and the Semantic Translator. Both components, which are essential for ensuring the semantic

interoperability of data, have been integrated into the aerOS ecosystem. In this regard, the Linked Open

Terms (LOT) methodology for ontology development has been continued and applied for creating an

ontology that enables the orchestration of the continuum. The semantic tools are integrated with the Data

Fabric and can be used to build data pipelines.

• Data governance task T4.2, has consolidated the definition of a (semantic) data product. Building upon this

definition, the architecture of the aerOS Data Fabric was specified and the building blocks that compose it

have been integrated. Among these blocks, the Data Product Pipeline and the Data Product Manager have

been implemented to facilitate the creation of the data products by their owners.

• Decentralized frugal AI task T4.3 is realized using the AI Local Executor and AI Task Controller services

that can be deployed on the aerOS infrastructure. Explainability for an aerOS use case based on

reinforcement learning has been implemented and an approach to include explainability as a service has been

proposed. Frugal techniques have been studied for their applicability in aerOS-like scenarios.

• The Embedded Multiplane Analytics task T4.4 has finalized an implementation of an engine that includes

templates for creating user-defined functions, in addition to a set of pre-packaged functions based on popular

data science libraries.

• In the Trustworthiness and decentralized trust management task T4.5 trust score calculation algorithm

has been enhanced to include new sub-scores, as well as adjust the overall calculation process. With respect

to secure communication, a deployment of a private IOTA Tangle network has been done, and test were

performed.

• Finally, the management service es and the aerOS management portal includes the final release of the

aerOS management portal, allowing for registration of new aerOS domains. Regarding management

services, the aerOS Federator has been implemented, which combined with the extended capabilities of the

Orion-LD Context Broker, have enabled data sharing across aerOS domains.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 6 of 94

Table of contents
Table of contents ... 6

List of tables .. 8

List of figures .. 8

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 13

1.3. Outcomes of the deliverable... 13

1.4. Version-specific notes .. 13

2. MVP 2 Overview ... 15

3. Final implementation ... 18

3.1. Data autonomy for homogenization ... 18

3.1.1. Semantic annotation ... 18

3.1.1.1. Technologies and standards ... 19

3.1.2. Semantic translation ... 20

3.1.2.1. Technologies and standards ... 21

3.1.3. Ontology development ... 21

3.1.3.1. Linked Open Terms (LOT) methodology ... 21

3.1.3.1.1. First activity: Ontology requirements specification ... 22

3.1.3.1.2. Second activity: Ontology implementation .. 24

3.1.3.1.3. Third activity: Ontology publication .. 24

3.1.3.1.4. Fourth activity: Ontology maintenance .. 25

3.1.3.2. aerOS continuum ontology .. 25

3.1.3.3. aerOS data catalog ontology .. 26

3.2. Data governance, traceability, provenance, and lineage .. 27

3.2.1. Context Broker ... 28

3.2.2. Data Product Pipeline .. 28

3.2.2.1. Ingestion and Preprocessing .. 29

3.2.2.1.1. Morph-KGC ... 29

3.2.2.2. Serving ... 29

3.2.2.2.1. RDF to NGSI-LD translator ... 29

3.2.3. Data Product Manager ... 31

3.2.3.1. Data Product Creation ... 31

3.2.3.2. Data Product Retrieval .. 37

3.2.3.3. Data Product Deletion ... 37

3.2.3.4. Technologies and standards ... 38

3.2.4. Data catalogue.. 38

3.2.4.1. LDAP Collector ... 38

3.2.4.2. Technologies and standards ... 42

3.2.5. Data security .. 43

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 7 of 94

3.2.5.1. Data Security Service .. 45

3.2.5.2. Technologies and standards ... 46

3.3. Decentralized frugal AI .. 46

3.3.1. Decentralized AI workflows .. 46

3.3.1.1. Technologies and standards ... 48

3.3.2. Frugal AI – AI Model Reduction ... 51

3.3.2.1. Experimental results .. 52

3.3.2.2. Technologies and standards ... 53

3.3.3. Explainability support - AI Explainability Service .. 54

3.3.3.1. Technologies and standards ... 55

3.4. Embedded multiplane analytics ... 56

3.4.1. Architecture ... 56

3.4.2. Template .. 57

3.4.3. Functions Implementation ... 58

3.4.4. Technologies and standards ... 59

3.5. Trustworthiness and decentralized trust management ... 59

3.5.1. Trustworthiness of IEs in the continuum ... 59

3.5.1.1. Technologies and standards ... 62

3.5.2. Trustful decentralized exchange: IOTA ... 63

3.5.2.1. Technologies and standards ... 64

3.6. Management services and aerOS management portal .. 64

3.6.1. aerOS Management Portal ... 64

3.6.1.1. Frontend ... 65

3.6.1.2. Backend ... 74

3.6.1.3. Entrypoint balancer ... 75

3.6.1.4. Benchmarking tool .. 76

3.6.1.5. Technologies and standards ... 78

3.6.2. aerOS Federator ... 79

3.6.2.1. Enhanced capabilities of Orion-LD context broker ... 80

3.6.2.2. aerOS Federator custom component .. 81

3.6.2.3. Technologies and standards ... 85

4. Conclusions ... 86

References ... 87

A. Supplementary research .. 89

A.1. Decentralized AI service deployment ... 89

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 8 of 94

List of tables
Table 1. Technologies for Semantic Annotator implementation. .. 19
Table 2. Technologies for Semantic Translator implementation. .. 21
Table 3. Data Product Manager – REST API method definition – onboard data product. 36
Table 4. Data Product Manager - REST API method definition - retrieve all data products. 37
Table 5. Data Product Manager - REST API method definition - retrieve specific data product. 37
Table 6. Data Product Manager - REST API method definition - delete all data products. 37
Table 7. Data Product Manager - REST API method definition - delete specific data product. 37
Table 8. Data Product Pipeline technologies. .. 38
Table 9. Data Catalog technologies. .. 42
Table 10. Data Security technologies. ... 46
Table 11. Components of AI Task Controller. .. 47
Table 12. Components of AI Local Execution. ... 47
Table 13. AI workflows technologies.. 49
Table 14. Extract from AI model reduction experiment. ... 53
Table 15. Technologies considered for AI Model Reduction. ... 53
Table 16. Technologies for AI Explainability Service. ... 55
Table 17. Components for Embedded Analytics Tool. ... 57
Table 18. Technologies for Embedded Analytics Tool. .. 59
Table 19. Technologies for trustworthiness. ... 62
Table 20. Technologies for trustful decentralized exchange. .. 64
Table 21. Technologies and standards for aerOS Management Portal. ... 78
Table 22. Technologies and standards for aerOS Federator. ... 85

List of figures
Figure 1. Software release of D4.3. ... 14
Figure 1. Technical components of WP4. ... 16
Figure 2. Semantic Annotator – data processing workflow. ... 19
Figure 3. Semantic Annotator components overview.. 19
Figure 4. Semantic Translator – data processing workflow. ... 20
Figure 5. Semantic Translator component architecture. .. 21
Figure 6. High-level workflow of the LOT methodology. Source [D1].. 22
Figure 7. Sample of catalogued SQL dataset. ... 23
Figure 8. Sample "Concepts" table of ontology requirements. ... 23
Figure 9. Sample "Attributes" table of ontology requirements. .. 24
Figure 10. Sample "Relations" table of ontology requirements. ... 24
Figure 11. Conceptual model for the aerOS continuum ontology. .. 26
Figure 12. Conceptual model for the aerOS data catalog ontology. .. 27
Figure 13. High level architecture of the aerOS Data Fabric. ... 28
Figure 14. Low-level architecture of the Data Product Pipeline. .. 29
Figure 15. RDF to NGSI-LD Translator. .. 30
Figure 16. Data Product Life Cycle. .. 31
Figure 17. Data product onboarding REST API - Batch type - Files. ... 32
Figure 18. Data product onboarding REST API - Batch type - Relational databases. 33
Figure 19. Data product onboarding REST API - Streaming type - Kafka sources. ... 34
Figure 20. Data product onboarding REST API - Streaming type - MQTT sources. 35
Figure 21. Data product onboarding REST API - Successful JSON response. ... 36
Figure 22. Data catalog connector for LDAP. ... 38
Figure 23. Data Product Pipeline for LDAP. ... 39
Figure 24. Sequence diagram - Data Product Pipeline for LDAP. .. 39
Figure 25. Mappings for LDAP users. .. 40
Figure 26. Mappings for LDAP roles. ... 40

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 9 of 94

Figure 27. Mappings for LDAP groups (organizations). ... 40
Figure 28. Mappings for memberships (link between users, roles and organizations/groups). 41
Figure 29. Architecture of Data Catalog Service. ... 42
Figure 30. Documentation of Register Data Product API. .. 42
Figure 31. Policy written in Rego. ... 43
Figure 32. Analysing the signature of the access token in OPA. .. 44
Figure 33. Authorization workflow for data consumers of the Context Broker. ... 44
Figure 34. Authorization workflow for data product owners in the Data Product Manager. 45
Figure 35. Internal components of AI Task Controller and AI Local Executor services. 47
Figure 36. Workflow of FL training execution. .. 48
Figure 37. aerOS decentralized AI workflow deployment. ... 49
Figure 38. FL GUI home page in which a new decentralized AI workflow can be set up on top of the AI Task

Controller. .. 50
Figure 39. FL GUI configuration for the decentralized AI workflows. .. 50
Figure 40. ML models resulted from aerOS decentralized AI workflows, stored in the FL Repository. 51
Figure 41. Example of the output for explanation of a single decision made by the HLO, accessible in

Embedded Analytics Tool. .. 55
Figure 42. The Embedded Analytics Tool Architecture. ... 56
Figure 43. aerOS Template Structure. ... 58
Figure 44. faas-cli application operations. ... 58
Figure 45. Trust Manager architecture and overall workflow for trust score calculation. 62
Figure 46. aerOS testing IOTA Tangle. .. 63
Figure 47. aerOS Management Portal architecture.. 64
Figure 48. aerOS Management Portal welcome page and navigation menu. .. 65
Figure 49. aerOS Management Portal domain view. ... 66
Figure 50. aerOS Management Portal deployment view. .. 67
Figure 51. aerOS Management Portal deployment form. .. 68
Figure 52. aerOS Management Portal continuum view... 69
Figure 53. aerOS Management Portal CPU benchmarking view. ... 69
Figure 54. aerOS Management Portal CPU benchmarking comparison view. ... 70
Figure 55. aerOS Management Portal network benchmarking view. .. 70
Figure 56. aerOS Management Portal Data Catalog section. .. 71
Figure 57. aerOS Management Portal Data Product creation. ... 71
Figure 58. aerOS Management Portal users view. .. 72
Figure 59. aerOS Management Portal user creation modal. .. 72
Figure 60. aerOS Management Portal notification view. .. 73
Figure 61. aerOS Management Portal settings menu. ... 73
Figure 62. OpenAPI definition of the aerOS Management Portal Backend .. 75
Figure 63. Benchmarking tool architectural diagram. ... 77
Figure 64. aerOS Federator architecture in a single domain. .. 80
Figure 65. Orion-LD Entity Map example. ... 81
Figure 66. Example of a Context Source Registration created by the aerOS Federator. 82
Figure 67. Endpoints of the aerOS Federator API. .. 83
Figure 68. Sequence diagram for the process of adding a new domain to the continuum. 84
Figure 69. The attention-based distributed AI task representation [A1]. .. 89
Figure 70. The attention-aided deployment strategy. .. 90
Figure 71. Comparisons of average system reward [A1]. ... 91
Figure 72. Illustration of (a) edge-user collaborative diffusion-based AIGC framework, and (b) workflow of

edge-user diffusion model collaborative inferring [A2]. ... 92
Figure 73. Visualization of image quality generated by different baselines, (a) mean square error (MSE), (b)

Structural Similarity Index (SSI), and (c) peak signal-to-noise ratio (PSNR) [A2]. ... 92
Figure 74. Visualization of image quality generated by different ablation studies, (a) mean square error (MSE)

(b) Structural Similarity Index (SSI), and (c) peak signal-to-noise ratio (PSNR) [A2]. 92
Figure 75. The architecture of meta-RL-enabled dynamic AI service adaptation [A3]. 94
Figure 76. Average system latency comparison in different testing environments [A3]. 94

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 10 of 94

List of acronyms
Acronym Explanation

AAA Authentication, Authorisation & Accounting

AI Artificial Intelligence

AIGC AI-Generated Content

API Application Programming Interface

CNN Convolutional Neural Network

CORS Cross-Origin Resource Sharing

CQ Competency Question

CRUD Create, Read, Update, Delete

CSR Context Source Registration

DCAT Data Catalog Vocabulary

DevPrivSecOps Development, Privacy, Security and Operations

EAT Embedded Analytics Tool

EB Entrypoint Balancer

FaaS Function-as-a-Service

FAIR Findable, Accessible, Interoperable, Reusable

FOAF Friend of a Friend

FL Federated Learning

GUI Graphic User Interface

HLO High-Level Orchestrator

IdM Identity Manager

IE Infrastructure Element

IPSM Inter-Platform Semantic Mediator

LB Load Balancing

LBMM Load Balanced Min-Min

LC Least Connection

LDAP Lightweight Directory Access Protocol

LLO Low-Level Orchestrator

LOT Linked Open Terms

LOV Linked Open Vocabularies

LSTM Long Short Term Memory

MCDM Multi-Criteria Decision-Making

ML Machine Learning

MQTT Message Queuing Telemetry Transport

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 11 of 94

MVP Minimum Viable Product

NAS Neural Architecture Search

NGSI-LD Next Generation Service Interface Linked Data

NNI Neural Network Intelligence

OPA Open Policy Agent

OWL Web Ontology Language

PKCE Proof Key for Code Exchange

Protobuf Protocol Buffers

RDF Resource Description Framework

RML RDF Mapping Language

RNN Recurrent Neural Network

RR Round Robin

TS Trust Score

URL/URN Uniform Resource Locator/Name

YAML YAML Ain't Markup Language

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 12 of 94

1. About this document
This document details the final release of the WP4 building blocks to deliver applications intelligence at the

edge. Following the preliminary design provided in D4.1, extended by the intermediate version in D4.2, this

deliverable proceeds in describing the final design of the components and provides the results from their

implementation. Furthermore, it discusses the integration activities towards delivering the aerOS stack,

including integrations with components developed by WP3.

1.1. Deliverable context

Item Description

Objectives O3 (Definition and implementation of decentralized security, privacy, and trust): Design

and implementation of mechanisms for data access control, trustworthiness, and

decentralized trust management.

O4 (Definition and implementation of distributed AI components with explainability):

Design and implementation of mechanisms to enable distributed AI with support for

frugality and explainability.

O5 (Specification and implementation of a Data Autonomy strategy for the IoT edge-cloud

continuum). Design, implementation, and integration of mechanisms for semantic

annotation, data integration, and data governance.

Work plan The contributions to D4.3 take input from the following tasks:

• T2.2 (Formalization of use cases and requirements elicitation): Components design

in WP4 are aligned with the requirements identified in the use cases.

• T2.4 (DevPrivSecOps methodology specification): The implementation of

components in WP4 follow the best practices defined by the DevPrivSecOps

methodology.

• T2.5 (aerOS architectural design, functional and technical specification): Design

and integration of WP4 components align with the proposed architecture for aerOS.

The outcomes of D4.3 influence the following work packages:

• WP5 (integration, use case deployment, validation, evaluation, assessment): To

later materialize solutions in pilot deployments.

The contributions of D4.3 are coordinated with:

• WP3 (infrastructure components): To define functional boundaries (e.g.,

networking, cybersecurity, orchestration) and interactions.

Milestones This deliverable is the final step from WP3 towards the achievement of the milestone MS7

– Final software components release (M30).

Deliverables This deliverable builds upon the baseline architecture defined by D2.6 and 2.7 (aerOS

architecture). D4.3 continues from the results produced in D4.1 (Software for delivering

intelligence at the edge preliminary release), which included an initial design of the WP4

building blocks and D4.2 (Software for delivering intelligence at the edge intermediate

release). Additionally, this deliverable is coordinated with deliverable D3.3, which is

delivered at the same time.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 13 of 94

1.2. The rationale behind the structure
This deliverable is structured into three sections. Section 2 provides an overview of the aerOS MVPv2 from the

perspective of the WP4. Section 3 includes subsections dedicated to each of the tasks within WP4 presenting

the final outcomes. Finally, the document concludes with Section 4, drawing conclusions for WP4.

1.3. Outcomes of the deliverable
A set of task-specific approaches and respective technical components have been formalized in this deliverable.

Formalization includes: functionality provided, components that conform each solution and used technologies

and standards.

Briefly, data autonomy for homogenization addresses functionalities such as semantic data annotation and

semantic translation. Data governance, provenance, traceability, and lineage covers the Data Fabric building

blocks.

Decentralized frugal AI provides services to enable execution of AI tasks, proposed how to implement an

explainability service and studies frugality techniques in the context of aerOS. Embedded analytics components

allow to deploy functions on aerOS infrastructure according to Function-as-a-Service approach and provide

output for analytics or building blocks for applications or workflows deployed on aerOS.

The main objective of the trustworthiness and decentralized trust management is to provide a high level of

security in the whole aerOS ecosystem guaranteeing that malicious actions will be avoided at the highest-level

degree possible.

Management services and aerOS Management Portal provide entrypoint to the aerOS Meta-OS and continuum

in terms of administration, service deployment, benchmarking, user notifications.

1.4. Version-specific notes
As mentioned above, this deliverable is of type OTHER. This means that D4.3 is mostly a software deliverable.

While this document reports the advances of tasks T4.1-T4.6 in the period M19-M30, it must be understood

together with the software release that is uploaded alongside it.

In the compressed file that is downloaded when accessing this deliverable, the reader will be able to find two

main artefacts: (i) this very document, that reflects in a narrative way the progresses achieved, and (ii) a

compressed file that is, in turn, composed of several compressed GitLab repositories corresponding to the code

development progress by M30.

In particular, and in order to facilitate the readability of the technical delivery, here below there is an indication

of the repositories that have been included in the submission. They are structured following the task reporting

that is used in this document (D4.3). This schema is also used in the submitted file. The directories contain the

current advances, alongside an explanatory README.MD in each of them in order to describe their purpose

and content.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 14 of 94

Figure 1. Software release of D4.3.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 15 of 94

2. MVP 2 Overview
Over the course of its realization, aerOS has carefully designed an architecture aimed at providing IoT

developers with a coherent environment to leverage distributed capabilities across the entire continuum. This

architecture delivers a unified execution environment to support the deployment and reuse of IoT services

seamlessly. With a vision to functionally unify a diverse range of computing and network resources -from cloud

to edge and even IoT devices- the project has employed and integrated numerous state-of-the-art concepts and

technologies.

Building upon the foundational architecture, significant advancements beyond the state of the art have been

achieved by M30 through research, development, and implementation in key technical domains. These include

advancements in compute and network fabric, service fabric, and data fabric, which collectively underpinned

the development of new components and additional functionalities. Extending the initial MVP, which was

delivered by M18, MVPv2 consolidated recent project advancements and addressed various development and

integration complexities, providing an enhanced platform which can validate and demonstrate the final

technological achievements of aerOS.

aerOS Meta-OS encompassed a wide area of technologies in the field of programmable networks for enhanced

connectivity, resources and service management and orchestration, resilient and self-adapting runtime layers

that need to be employed in order to provide the minimum for the execution environment that aerOS requires.

Additionally, Cybersecurity tools and trust management are essential to ensure private and secure

communications and access to services over all the aerOS continuum. All IEs and aerOS domains seamlessly

expose APIs for fully defined communication among components and services. Respectively, Data Fabric

technologies and integrated components are designed to support the transition from heterogeneous IoT data to

a unified data fabric, and while monitoring capabilities should extract all information produced and needed for

the self-adaptation of the ecosystem, analytics are foreseen to support events recognition and healing processes’

triggering. Even more, AI tasks are designed to run over different Infrastructure Elements (IEs) in the continuum

with optional use of frugality techniques and inclusion of explainability and interpretability.

Above mentioned technologies represent the primary aerOS technologies and tools employed to realize the

continuum and all these are implemented encompassing assimilable cloud native practices to enable

stakeholders to design, deploy, and operate scalable and resilient applications over the aerOS Meta-OS. The

goal is to encompass cloud-native techniques naturally in continuum deployments, where infrastructure

(physical and virtualized) ranges from IoT devices all the way up to cloud data centers (and not only the latter,

which is the usual cloud-native case). The complex nature of the above tasks and the integration of so many

diverse technologies and implementing components introduced the requirement for an iterative development

which would consider and integrate early implementation evaluations, and which should optimize

functionalities based on feedback emerging both from development teams and from targeted audience, i.e. IoT

developers.

It is worth mentioning that addressing all the complexities and successfully achieving the project’s goals could

not be accomplished in a single stage. Thus, following the agile methodology of the project, a clear, staged

strategy was defined and implemented. Initially, the aerOS team developed a Minimum Viable Product (MVP)

by M18 to integrate the aforementioned technologies and tools into a functional prototype. By month 30, this

approach has evolved further, leading to the completion of MVPv2. Building upon the insights gained from the

initial MVP, the aerOS team refined the architecture concepts and expanded the platform’s capabilities,

addressing new use cases and challenges. MVPv2 not only realizes all the core functionalities of a Meta-OS for

continuum, as designed by aerOS, but also introduces additional components and features that enhance the

overall system’s performance and scalability. Throughout this process, aerOS has maintained a focus on

resource efficiency, validating with MVPv2 that aerOS remains a lightweight implementation while preserving

the platform's core functionalities. MVPv2 also includes advanced safeguards and mitigations, enabling

seamless deployment to pilot locations and allowing the team to validate and fine-tune real-world scenarios.

This iterative development approach has proven invaluable in demonstrating the feasibility, viability, and

effectiveness of aerOS’s architecture in real and diverse environments.

While initial MVP encompassed the most compelling aerOS functionalities, MVPv2 integrates all components

of architecture building blocks and is thus a valuable ecosystem for demonstrating core concepts of aerOS

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 16 of 94

architecture for a continuum Meta-OS. MVPv2 integrates two aerOS domains, which are deployed in two

distinct locations, in geographic and administration terms, to demonstrate its functionality over the public cloud.

Additionally, a mobile domain, although it is not a part of the continuous development and deployment process,

is ad-hoc integrated when needed to exhibit the process (and its simplicity) of integrating new infrastructure and

extending the continuum.

One of the core two domains, is designed to be the entrypoint domain, while the other a plain aerOS domain,

which could be deployed anywhere across the continuum. The entrypoint domain is located in the common

development and integration infrastructure of the project (a space provided by the partner, cloud provider,

CloudFerro), while the plain one resides in the premises of the Technical Coordinator - NCSRD. This diverse

topology of the MVP allows the evaluation of aerOS federation mechanisms for expanding in an agile way the

aerOS continuum domains with additional/new ones, and this is the purpose of supporting a third one mobile

domain which is provided with minimal legacy equipment from UPV.

Like its predecessor, MVPv2 builds upon outcomes from both WP3 and WP4 which constitute the two technical

work packages of the aerOS project. WP4 undertakes all data management activities and builds the aerOS “Data

Fabric”, which enables the seamless integration and exploitation of a variety of data from various heterogenous

resources, with the aim to support the delivery of intelligence across aerOS continuum, and over a diverse set

of infrastructure resources, by optimizing usage of data without sacrificing control over it. WP4 encompasses

several technologies and is related to several components in the aerOS stack. As already presented in D4.1, next

figure represents the building blocks which WP4 addresses.

Figure 2. Technical components of WP4.

Distributed over 6 tasks, WP4 encompasses a wide range of diverse technologies, each task focusing on specific

domains and their relevant technological advancements. During the initial MVPv1 development, priority was

given to integrating core components essential for establishing the aerOS continuum, ensuring foundational

functionalities were in place to demonstrate the system’s overall viability. With the development of MVPv2,

the focus has expanded significantly, integrating a broader set of functionalities that unlocks the full potential

of aerOS Data Fabric and smart operations building on top of this. This phase has introduced enhanced data

pipelines and data products integration, advanced data analytics, and AI-driven capabilities, allowing for more

intelligent resource management and decision-making across the continuum. By incorporating these additional

layers of functionality, MVPv2 moves beyond demonstrating aerOS core operations and showcases its ability

to support scalable, data-driven, and AI-enhanced services across heterogeneous environments. The aerOS

Portal, serving as the central point of presence, has undergone significant development, evolving into a fully

integrated platform that unifies all capabilities offered across the continuum. Notably, federation mechanisms

have been extended to enable seamless and automated integration of new domains, ensuring smooth onboarding

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 17 of 94

and interoperability across heterogeneous environments. These advancements reinforce aerOS ability to provide

a cohesive and adaptive ecosystem for managing distributed resources efficiently.

With the aim of establishing a Data Fabric that supports federated orchestration, across the continuum, while

enabling seamless integration, retrieval, and transparent reuse of IoT data across the continuum a comprehensive

set of components, tools, and services has been developed, enhancing data value and interoperability.

Additionally, AI-driven capabilities and advanced analytics have been integrated, unlocking new possibilities

for intelligent data processing and decision-making. These advancements ensure aerOS can efficiently manage,

analyze, and utilize distributed data, reinforcing its role as a powerful and adaptive continuum framework. These

mechanisms have been further refined and validated by month 30, ensuring their seamless integration into

existing isolated computing infrastructures and their smooth transformation into aerOS-capable domains, as

exemplified by the aerOS pilot sites. Efforts during this period have been directed towards delivering:

• Appropriate ontologies and graphs which can reflect continuum state as required for orchestration

decisions.

• A mesh of interconnected aerOS Context Brokers, as the aerOS federated data catalogue, able to

propagate queries and data across the continuum.

• Components which can support all the chain towards ingesting and sharing interoperable data.

• AI mechanisms such as federated learning, explainability and frugality to convey a fully functional and

more trustworthy service chain of AI applications.

• Tools which can interact and proxy queries towards the Data Fabric and leverage the aerOS data to

provide real-time analytics.

• aerOS management portal which acts as an entry-point to the aerOS ecosystem.

• Management service to establish federation mechanisms among the multiple aerOS domains that form

the continuum.

The following paragraphs provide a summary of the outcomes of each task, of WP4, which have been delivered

and included in MVPv2 realization. Additionally, their relevance in establishing aerOS continuum

establishment, is roughly presented.

In the second release of the MVP, the semantic interoperability tools – Semantic Annotator and Semantic

Translator – have been developed (in T4.1) and integrated into the aerOS Data Fabric, allowing for efficient,

stream-oriented semantic data processing. Additionally, aerOS continuum ontology has been created,

encapsulating the essential concepts, relationships, and properties relevant to data management, processing and

orchestration within aerOS-based distributed computing environment.

During this second release of the MVP, the T4.2 task focused on consolidating the Data Catalog and Data

Security building blocks. The former block has unlocked the capability for searching data products created in

the Data Fabric, whereas the latter adds authorization into the search and consumption of data products. Along

with the Data Product Pipeline framework introduced in MVPv1, these two blocks complete the aerOS Data

Fabric.

T4.3 provided implementation of an explainability mechanism for HLO allocator that allows to analyse what

attributed to the selection of specific IEs for service deployment. Additionally, federated learning, explainability

and frugal AI techniques have been the focus of the task in this period. Moreover, the example analytics function

consuming data from the Data Fabric was implemented and integrated within MVPv2.

The Embedded Analytics Tool from T4.4 provides a FaaS (Function as a Service) platform for the execution of

analytic and workflow operations. Exploratory Data Analysis and Prediction functions have been deployed and

tested in the demonstrator accompanying the delivery of MVPv2, running over project’s infrastructure

supporting the visualization of data collected and processed from the Data Fabric.

During the period leading up to the second version of the MVP, the task T4.5 focused on revising and enhancing

the Trust Component architecture. The objective was to refine the trust algorithm and produce a robust Trust

Score that effectively represents trustworthiness through a multi-layered approach. In the MVPv2, the

calculation of Trust Score incorporates three sub-scores that evaluate the reliability, security, and reputation of

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 18 of 94

an Infrastructure Element (IE). The third aspect that enhances the proposed model is the addition of a penalty

mechanism which adjusts the trust score based on the susceptibility of the IE to critical events that negatively

impact its trustworthiness. The Total Trust Score (TS) thus provides a comprehensive assessment of an IE’s

overall trustworthiness. This trustworthiness information is securely distributed across the network via IOTA,

a Distributed Ledger Technology (DLT) that ensures secure and verifiable data transactions between different

nodes in the Tangle. The Tangle serves as the underlying data structure, maintaining all necessary information

to track messages and guarantee the traceability of distributed payloads across the network. Both of these

components are deployed across the aerOS domains.

The actions performed in T4.6 can be summarized in two action points: (i) The improvement of the aerOS

Management Portal with the pending functionalities and (ii) The implementation of the aerOS Federator along

with the improvement of federation mechanisms provided by Orion-LD.

On the one hand, new features have been implemented in the Management Portal: a real-time notifications

system based on WebSockets that can be used by any service of the continuum, aerOS AAA management (users,

roles and organizations) which interacts with LDAP, and aerOS Data Fabric’s data products retrieval and

management. Moreover, the features that were implemented for the first MVP have been fine-tuned and

enhanced to improve the user experience and be aligned with the latest versions of the other aerOS Basic

Services. Not only is this block limited to the Management Portal itself but also includes two new components

that interact with the portal. First, the aerOS Entrypoint Balancer has been developed leveraging an Improved

Weighted Least Connection load balancing algorithm to fairly distribute the service orchestration request among

the HLOs of all the domains. Second, the Benchmarking tool provides a way to depict the performance of an

IE in terms of CPU and RAM processing or network connectivity, along with the values of technical KPIs that

are directly measurable from the data provided by the aerOS distributed state repository.

On the other hand, after the NGSI-LD federation mechanisms were successfully tested in the first MVP, thus

methodology was delivered to create the needed Context Source Registrations to achieve domains federation.

The custom aerOS Federator component has been implemented following this methodology and its main

purpose is to automate and coordinate the federation process among the multiple aerOS domains that build the

continuum. Finally, the Orion-LD context broker has been constantly improved to meet the goals of the project.

For instance, its publication and subscription mechanism can now be stablished in distributed way.

3. Final implementation

3.1. Data autonomy for homogenization
The challenge of managing diverse data without centralization is addressed through the implementation of an

aerOS data autonomy for homogenization solution. Specifically, data autonomy is related to the ability of

homogenizing data models at the edge, i.e., to query, interoperate or prepare data to be used by other modules.

In this section, two solutions to support data homogenization process in aerOS are described. They are based

on the concept of semantic data annotation and semantic translation.

3.1.1. Semantic annotation

The aerOS infrastructure utilizes semantic annotation to ingest “raw data” from external sources and enrich it

with appropriate semantic information, to enable further processing. The Semantic Annotator component is an

enhanced and extended version of the semantic annotation enabler developed within the ASSIST-IoT project1.

The source code is published in the aerOS official code repository, including example integrations. The

annotation engine provides support for annotation of JSON, XML or CSV directly into RDF, based on

transformation rules expressed in YARRML/RML, JSONPath and XPath – Figure 3.

1 http://assist-iot.eu/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 19 of 94

Figure 3. Semantic Annotator – data processing workflow.

The tool can perform “single-message” annotation tasks – using REST API, as well as “streaming” annotation

with the help of Kafka/MQTT message brokers as mediators. The tool is designed around annotation of

messages in persistent streams of data, organized into “channels”. Each channel is independently configured

with a CARML transformation and connects to Kafka or MQTT message brokers to ingest and output data, as

well as channel monitoring messages and optional errors. REST API is exposed for the purposes of channel

management. The annotator can connect to any number of brokers to consume and produce data, so cross-broker

annotation channels are possible. Figure 4 depicts an overview of the components that compose the Semantic

Annotator and the interactions among them.

Figure 4. Semantic Annotator components overview.

3.1.1.1. Technologies and standards

Table 1. Technologies for Semantic Annotator implementation.

Technology/

Standard
Description Component

JVM Java Virtual Machine All

Scala
A modern “multi-paradigm” programming language,

targeting (among others) the JVM.
All

Apache Pekko
Actor-based framework for creating highly concurrent,

resilient, message-driven applications.
All

Apache Pekko

HTTP

HTTP request handling for configuration, reporting status,

etc.
API server

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 20 of 94

Apache Pekko

connectors
Apache Kafka and MQTT connectors

Communication

manager

CARML RDF Mapping library Annotation core

MongoDB Configuration & annotation files persistence Storage

3.1.2. Semantic translation

The semantic translation process within aerOS is realized via the Semantic Translator component, which is

based on the Inter-Platform Semantic Mediator (IPSM), a generic streaming semantic translation software

developed by INTER-IoT2, and further enhanced within the ASSIST-IoT European projects. The workflow

processing diagram of the Semantic Translator, including the relevant components is depicted in Figure 5.

Figure 5. Semantic Translator – data processing workflow.

RDF producer is an arbitrary source of RDF data. Semantic Translator can handle many RDF producers

concurrently. Using translation rules contained in the input alignment represented in the IPSM Alignment

Format (IPSM-AF) it expresses the input data in terms of the “central semantics”. By applying the appropriate

output alignment, again expressed in IPSM-AF, the data can be offered using the consumer's preferred

semantics.

More technically, Semantic Translator offers a highly-scalable, efficient translation architecture, with two main

interfaces: REST and reactive streaming. The first option offers quick, one-message-at-a-time, service, while

the latter is meant for handling large asynchronous streams of data.

In both cases, translation is done transactionally “per message” by applying rules defined in IPSM-AF alignment

files. The overview of the architecture of the Semantic Translator component is depicted in Figure 6.

2 https://inter-iot.eu/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 21 of 94

Figure 6. Semantic Translator component architecture.

Currently, the semantic translator’s communication infrastructure is able to utilize two types of streaming

communication channels – Kafka-Kafka and MQTT-MQTT. The component was also provided with a

Kubernetes configuration, which enabled its seamless incorporation into the aerOS Data Fabric infrastructure.

3.1.2.1. Technologies and standards

The implementation of the aerOS Semantic Translator component utilizes the JVM environment, Scala 3

programming language, and Apache Pekko framework, that replaced the now commercial Akka, which was

used to form the backbone of the earlier versions of the tool. The RDF translation engine, responsible for

executing the translation rules expressed in the IPSM-AF uses the Apache Jena framework.

Table 2. Technologies for Semantic Translator implementation.

Technology/

Standard
Description Component

JVM Java Virtual Machine All

Scala 3 The newest version of the Scala programming language All

Apache Pekko
Actor-based framework for creating highly concurrent,

resilient, message-driven applications.
All

Apache Pekko HTTP HTTP protocol handling component for Apache Pekko REST manager

Apache Pekko

connectors
Apache Kafka and MQTT connectors

Communication

infrastructure

Apache Jena A mature, JVM-based RDF handling framework Translation engine

3.1.3. Ontology development

3.1.3.1. Linked Open Terms (LOT) methodology

Linked Open Terms (LOT) [D1] is a lightweight methodology for developing ontologies, with special focus on

industrial use cases. The LOT methodology has been applied in several European projects such as BIMERR,

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 22 of 94

DELTA, or VICINITY. Additionally, it has been followed for the development of the standard ETSI SAREF

ontology and related domain-specific extensions like SAREF [D2].

The LOT methodology, which evolves from the NeOn methodology [D3], aligns the ontology development

process with software development agile practices such as sprints and continuous integration. The LOT

methodology iterates over a base workflow, as illustrated in Figure 7, which is composed of the following main

activities: 1) Ontology requirements specification; 2) Ontology implementation; 3) Ontology publication; 4)

Ontology maintenance.

Figure 7. High-level workflow of the LOT methodology. Source [D1].

Each activity of the workflow produces an artifact that serves as input for the following activity. In addition,

the methodology identifies three different roles participating in the workflow: 1) domain experts; 2) ontology

developers; 3) users. On the one hand, in the scope of aerOS, the roles of domain experts and users are assigned

to people involved in the implementation of aerOS internal services as well as data experts in each of the pilots.

On the other hand, the role of ontology developer is performed by partners participating in T4.1.

In the following paragraphs, each LOT activity is briefly introduced, including its sub-activities and the

artifacts produced, and exhibiting its aerOS implementation and the tools used.

3.1.3.1.1. First activity: Ontology requirements specification

This activity refers to the collection of requirements to be fulfilled by the ontology. To determine the

requirements needed, the use case specification sub-activity is achieved with the collaboration from domain

experts, users, and ontology developers. This sub-activity has been supported with videos calls and documents

provided by the domain experts. In parallel runs the data exchange identification sub-activity, which focuses

on collecting technical documentation about the data of the domain to be modelled, i.e., schemas, formats,

standards, datasets. To help domain experts in cataloguing their datasets, a new template based on markdown

language has been developed. A snapshot of a sample SQL dataset catalogued with the proposed template is

shown in Figure 8. Each dataset is catalogued in a separate markdown file, which is uploaded to a GitLab

repository along with the rest of the ontology artifacts.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 23 of 94

Figure 8. Sample of catalogued SQL dataset.

Based on this information, the next sub-activities aim at defining and agreeing on functional ontological

requirements. The proposal of ontological LOT offers different ways of capturing these requirements, namely

competency questions (CQs), natural language statements and tabular information. Due to the technical

background of domain experts (data owners) and their lack of skills in ontology querying, aerOS has followed

the tabular information approach inspired by the BIMERR project [D4]. Domains experts found themselves

more comfortable mapping their datasets to tables of concepts, properties, and relationships. This information

has been captured in collaborative Excel spreadsheets (see Figure 9 to Figure 11) that enable iterations between

the domain experts and ontology developers until the list of requirements has been completed. To ensure version

control and improve readability, it is planned that future releases will migrate these Excel spreadsheets to

markdown tables and upload them to GitLab.

Figure 9. Sample "Concepts" table of ontology requirements.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 24 of 94

Figure 10. Sample "Attributes" table of ontology requirements.

Figure 11. Sample "Relations" table of ontology requirements.

The generation and completion of these tables concludes the ontology requirement specification activity. The

LOT methodology also proposes the creation of the Ontology Requirements Specification Document (ORSD),

but this sub-activity has been skipped in aerOS. Instead, all the ontology artifacts are stored together on GitLab.

3.1.3.1.2. Second activity: Ontology implementation

The goal of this activity is to build the ontology using a formal language based on the ontology requirements

produced in the previous activity. First, the ontology conceptualization sub-activity produces a conceptual

model that captures the concepts, and the relations identified in the domain of the ontology. This task typically

represents this conceptual model in a diagram. In this sense, aerOS has chosen Chowlk [D5] as the standard

notation and the draw.io3 tool for representing the conceptual models. This process is conducted by the ontology

developers, with optional support from domain experts and users of the use case. The resulting diagram is

uploaded to the corresponding GitLab repository.

Based on the diagram of the conceptual model, the next step is the ontology encoding using an implementation

language like OWL. The Chowlk website offers an online service that allows for bootstrapping the ontology

code based on the provided diagram. Then the generated code is processed with the interactive tool Protegé to

further refine the code (e.g., fix wrong labels) and to extend the code as well (e.g., adding description, language,

metadata). Similarly, the ontology developer uploads the final code of the ontology to GitLab with the rest of

the ontology artifacts.

Lastly, in parallel to the ontology conceptualization and encoding, the ontology reuse sub-activity is conducted.

This task focuses on finding concepts already defined in existing ontologies that can be reused in the ontology

under development. To this end, aerOS leverages the recommended Linked Open Vocabularies (LOV) service

[D6], which provides a tool that can search for concepts among all registered ontologies. However, this sub-

activity is still under exploration in aerOS because its implementation is challenging due to the wide variety of

existing ontologies. Additionally, aerOS aims to align with standard ontologies, albeit interoperability in the

aerOS Data Fabric with external data services is not a top priority.

3.1.3.1.3. Third activity: Ontology publication

This activity focuses on publishing a release candidate of the ontology by means of human-readable

documentation and machine-readable files, which can be accessed online. In aerOS, we have chosen the

WIDOCO open-source tool to generate HTML-based documentation from the ontology [D7]. This

documentation includes further descriptions, examples, and the conceptual diagram from the previous activity.

3 https://app.diagrams.net

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 25 of 94

Given that all ontology artifacts are uploaded to a common GitLab repository, the GitLab CI feature was

leveraged to automatically generate the documentation every time a new release of the ontology is rolled out.

The GitLab CI script generates the HTML code and publishes the website by making use of the GitLab Pages

feature.

3.1.3.1.4. Fourth activity: Ontology maintenance

The last activity in the methodology is the maintenance of the ontology. The incorporation of new ontology

requirements or the identification and fixing of bugs found in the ontology, are discussed among partners via

the Mattermost messaging tool. Additionally, as mentioned before, all the ontology artifacts are uploaded to

GitLab and versioned with tags, thus facilitating continuous integration and version control over the ontology.

3.1.3.2. aerOS continuum ontology

The IoT-Edge-Cloud continuum, managed by the aerOS Meta-OS, represents a distributed computing

architecture where data flows seamlessly from the IoT devices at the edge of the network to a centralized cloud

infrastructure. The inherent complexity of this computing continuum needs to be modelled into a data ontology

as easily as possible, being understandable by humans and efficient for machine communications. In addition,

there is a clear lack of existing ontologies for the computing continuum, and the minimal initiatives that have

been found did not fit into the continuum conceived in aerOS. Therefore, an ontology for the IoT-Edge-Cloud

continuum has been created from scratch for aerOS, inspired by some existing ontologies (e.g., FOAF [D8])

and standardization initiatives such as OASIS TOSCA4. This ontology, as shown in Figure 12, is intended to

encapsulate the essential concepts, relationships, and properties relevant to data management, processing and

orchestration within this distributed computing architecture.

The entities of this ontology can be divided into three blocks: (i) aerOS AAA, (ii) resource orchestration and

(iii) service orchestration. On the one hand, the aerOS AAA block aims to represent the human side of the

continuum, which is the relationship between them and the services and resources that conform the continuum

through the definition of users, roles, and organizations. On the other hand, the physical computing resources

(Infrastructure Elements) must be represented to show the current state of the continuum by taking advantage

of the defined monitoring processes. However, conceptual layers must be added on top of them to depict the

defined continuum in aerOS, such as domains and Low-Level Orchestrators. The last block represents the

deployed services in the IEs of the continuum.

These entities not only represent the status of this deployed services, but also all the stages of the services

orchestration process, from service requirements specifications (SLAs, minimum computing resources, etc) to

execution parameters (network ports, container images, environment variables, etc). Thus, the complete

relationship among all the entities of the ontology is depicted in the aerOS orchestration process, which is

described in detail in section 4.3.1.1 of D3.2.

The ontology documentation was generated using WIDOCO and was published online at

http://w3id.org/aerOS/continuum.

4 https://www.oasis-open.org/committees/tosca/

http://w3id.org/aerOS/continuum

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 26 of 94

Figure 12. Conceptual model for the aerOS continuum ontology.

3.1.3.3. aerOS data catalog ontology

The aerOS Data Catalog Ontology provides a representation for registering data products created using the

aerOS Data Fabric and advertised to the rest of the continuum. The ontology builds upon the standard DCAT

3.0 Ontology [D9], and extends it with concepts defined within the scope of aerOS using the a4dcat prefix.

The concept of dcat:Dataset, which provides a logical representation of a collection of data, is further

extended with a4dcat:DataProduct to explicitly capture a collection of semantically-annotated NGSI-LD

data stored in an NGSI-LD Context Broker. In this sense, the dcat:DataService is also extended with the

a4dcat:ContextBroker concept, to indicate a specific source of data which in the case of aerOS is the NGSI-

LD Context Broker.

The ontology extends DCAT with additional concepts derived from the principles of domain ownership as per

the data mesh paradigm. Data products are owned both by a particular aerOS user, but also by the organization

which the user belongs to. Additionally, a4dcat:DataProductOwner is defined as a new role that users can

take on under their organizations.

Lastly, data products can be related with glossary terms that have been formally defined in a business glossary.

This idea was already envisioned and described by DCAT 3.0 and has been leverage in the scope of aerOS to

improve the discovery of data products within the Data Catalog.

The ontology documentation was generated using WIDOCO and was published online at

https://w3id.org/aerOS/data-catalog.

https://w3id.org/aerOS/data-catalog

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 27 of 94

Figure 13. Conceptual model for the aerOS data catalog ontology.

3.2. Data governance, traceability, provenance, and lineage
The aerOS Data Fabric has been designed upon the data mesh principles, especially the management of data as

a product. The final architecture of the Data Fabric and the components that comprise it, were constituted based

on the consolidated definition of a data product according to the aerOS project.

A data product in aerOS represents the combination of data, metadata and software that make the data align

with the FAIR principles. The data should be findable, keeping track of which data are available, who is

accountable for them, and where they can be found (i.e., which data sources expose the data). The data must be

accessible in a uniform way across the continuum, by means of a shared data fabric infrastructure, but only

exposed to authorized consumers. The data must be easily interpreted (i.e., understood) by any consumer in the

continuum, leveraging the semantic data models commonly agreed. Lastly, data must be reusable, avoiding ad-

hoc integrations, but open and interoperable across use cases.

Therefore, based on this data product definition, the final architecture of the aerOS Data Fabric has been

designed as depicted Figure 14. The diagram illustrates the high-level architecture of the Data Fabric, which is

composed of the following blocks:

• Context Broker: Core component that maintains the Knowledge Graph of the Data Fabric. In

distributed or federated scenarios where multiple Data Fabric instances are interconnected (e.g.,

between multiple aerOS domains), each Context Broker will provide a fragment of the global

Knowledge Graph of the continuum.

• Data Product Manager: Main interface of the Data Fabric towards data products owners for the

onboarding and registration of data products. Orchestrates the Data Product Pipeline for the creation of

data products from raw datasets, and coordinates with the Data Catalog and Data Security components

to govern the new data products.

• Data Product Pipeline: Data pipeline that transforms raw datasets into interoperable, semantic data

products that become part of the knowledge graph. This pipeline is not needed for those data sources

that are considered “native”, i.e., expose datasets that already follow the NGSI-LD format and are

semantically annotated according to the ontologies agreed in the continuum.

• Data Catalogue: Maintains a registry of all the available data, their data sources, and additional

governance metadata such as ownership or domain. Collects metadata from external sources such as

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 28 of 94

Identity Management systems but also receives governance input from the data product owners through

their interactions with the Data Fabric services.

• Data Security: Implements access control policies for new data products based on the security

requirements indicated by the respective data product owner. Coordinates with cybersecurity tools from

aerOS stack to enable authentication and authorization in the Data Fabric.

Figure 14. High level architecture of the aerOS Data Fabric.

The architecture of the aerOS Data Fabric is envisioned to run at an aerOS domain basis, meaning, in the practice

one instance of each building block will be deployed per aerOS domain, except for the Data Product Pipeline

components, which might run multiple instances in different IEs to improve scalability.

This atomic approach relies on NGSI-LD capabilities for distributing requests mong Context Brokers to realize

a federated Data Fabric across the continuum.

3.2.1. Context Broker

The NGSI-LD Context Broker is the component that stores the knowledge graph of the aerOS Data Fabric.

Orion-LD5, a core product of the FIWARE’s stack based on the NGSI-LD standard, has been selected as the

open-source implementation of the Context Broker. Additionally, depending on the setup of the use case, Orion-

LD can be combined with the Mintaka component to provide the temporal NGSI-LD API of the Context Broker.

This was already presented in D4.2, and is further described in the relation with the federation in Section 3.6.

3.2.2. Data Product Pipeline

Semantically annotated datasets that follow an ontology, complying with the NGSI-LD structure, can be directly

sent to the Context Broker. However, in most of the use cases, the Data Fabric will integrate “raw” datasets as

new data products in the knowledge graph. For these kinds of datasets, the Data Fabric includes the Data Product

Pipeline: a framework based on generic, open-source tools based on standards from the Semantic Web, to

facilitate the creation of data products.

Depending on the source, data products can be batch type (such as files or SQL databases) or streaming type

(data coming from Kafka or MQTT).

5 https://github.com/FIWARE/context.Orion-LD

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 29 of 94

The Data Product Pipeline, as illustrated in Figure 14 and previously presented in deliverables D4.1 and D4.2,

comprises three main stages: Ingestion, Preprocessing and Serving. These stages have been implemented by

combining new developed components and existing open-source projects.

In this sense, Figure 15 depicts a low-level architecture of the Data Product Pipeline, indicating which

technologies have been used for components involved in each stage. In this final release of the aerOS Data

Fabric, the integration of the Semantic Tools (Semantic Annotator and Semantic Translator) has been

completed, and the detailed description of these components has been introduced in Sections 3.1.1 and 3.1.2,

respectively. The actual presence of the Semantic Translator in the Data Product Pipeline is optional as it

depends on the particularities of the data product, and therefore it is defined during the data product

onboarding/creation process. In the following subsections, Morph-KGC and the RDF to NGSI-LD Translator

are described in detail.

Figure 15. Low-level architecture of the Data Product Pipeline.

3.2.2.1. Ingestion and Preprocessing

3.2.2.1.1. Morph-KGC

Morph-KGC [D1] is an open-source project that implements an engine designed for constructing Resource

Description Framework (RDF) knowledge graphs from heterogeneous data sources. It supports ingestion of raw

datasets from batch data sources, such as remote files in JSON format or relational databases like MySQL.

Morph-KGC builds upon the RML language for declaring the mapping of raw datasets to an ontology or set of

ontologies. Based on these mappings, the tool transforms the ingested raw datasets and produces RDF triples.

As part of the development of the Data Fabric, Morph-KGC has received significant open-source contributions.

The application now boasts integration with Kafka, allowing for the materialization of the knowledge graph

into a Kafka topic.

Furthermore, an open-source enhancement has been implemented to simplify the deployment and management

of Morph-KGC using Docker. The application can now be built into a Docker image, allowing for flexibility

with optional dependencies specified during the build process.

Finally, Helm Charts have been introduced to streamline the deployment of Morph-KGC in Kubernetes

environments. These Helm Charts offer an efficient way to manage the application, and they incorporate the

capability to schedule recurring tasks using Cron Jobs. This feature enables users to execute specific tasks at

scheduled intervals, enhancing the automation and periodic execution of Morph-KGC processes.

3.2.2.2. Serving

3.2.2.2.1. RDF to NGSI-LD translator

This component implements a generic translator from RDF to NGSI-LD, as depicted in Figure 16. The work

takes inspiration from rdflib6 plugins that store RDF data in backends like Neo4j7. In this sense, this project

6 https://github.com/RDFLib/rdflib
7 https://github.com/neo4j/neo4j

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 30 of 94

provides a rdflib plugin where an NGSI-LD Context Broker works as the storage backend for RDF data.

Additionally, the translator supports the ingestion of streams of RDF data via Kafka.

Figure 16. RDF to NGSI-LD Translator.

In its final release, the translator has evolved towards an implementation based on the rdflib library. This

powerful library provides functions for parsing and serializing RDF. It does not support RDF-star yet, but the

community is planning to extend the library to add support, since RDF-star is about to become a standard.

To transform the RDF data model (triples) into the NGSI-LD data model (property graph), the translator

implements the following set of generic rules:

• Subject: Maps to an NGSI-LD Entity. The URI of the subject in the input RDF triple is the URI of the

output NGSI-LD Entity. It should be noted that this approach does not follow the convention

recommended by ETSI CIM, which goes urn:ngsi-ld:<entity-type>:<identifier>. The

reason for doing this is to provide interoperability between RDF and NGSI-LD.

Additionally, the translator has been improved with an additional feature required for handling subject

mapping in certain scenarios:

o Blank node handling. Blank nodes (or BNodes) are skolemized as described in Section 3.5

of RDF 1.1 Concepts and Abstract Syntax. By generating Skolem IRIs, blank nodes of an RDF

graph can be transformed into NGSI-LD Entities and stored in the NGSI-LD Context Broker.

• Predicate:

o RDF classes

o The a or rdf:type predicates map to the NGSI-LD Entity Type. For example, the RDF

triple <http://example.org/people/Bob> a foaf:Person translates into an NGSI-

LD Entity of foaf:Person type, and URI http://example.org/people/Bob.

o If no rdf:type predicate is found for the subject in the RDF graph, then the Entity Type will

be set by default to the base RDF class: http://www.w3.org/2000/01/rdf-
schema#Class. As described in Section 2.2 of RDF Schema 1.1, the rdfs:Class represent

the class of RDF classes.

o RDF Datatype property maps to an NGSI-LD Property. A special treatment is required when

the literal of the predicate uses xsd:datetime. In this case the resulting NGSI-LD Property

must follow the special format:

 "myProperty": {

 "type": "Property", "value": {

 "@type": "DateTime",

 "@value": "2018-12-04T12:00:00Z"

 }

 }

https://www.w3.org/TR/rdf11-concepts/#section-blank-nodes
http://example.org/people/Bob
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
https://www.w3.org/TR/rdf-schema/#ch_class

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 31 of 94

o RDF Object property maps to an NGSI-LD Relationship. The target of the Relationship is the

URI of the object in the RDF triple.

 Namespaces: There is no need to create specific @context for translating to NGSI-LD. The resulting

NGSI-LD Entity can just use expanded URIs. This approach is easier to maintain as it avoids

maintaining @context files.

Optionally, If the ingested RDF data includes a definition of namespaces with prefixes, then this

information could be used to generate the @context for the translated NGSI-LD Entity. The

resulting @context can be sent along the NGSI-LD payload or stored elsewhere and reference via

Link header. The selected approach will depend on the use case and the developer’s implementation.

In addition to the library that translates RDF into NGSI-LD based on the generic transformation rules, the

component also includes and NGSI-LD client that sends the resulting creation or update of NGSI-LD Entities

to the specified Context Broker.

3.2.3. Data Product Manager

The Data Product Manager component takes the form of a containerized REST API server with orchestration

capabilities in the backend. The Data Product Manager has been developed in Python, leveraging the FastAPI8

and Uvicorn9 libraries.

The REST API provides methods for managing the life cycle of data products as depicted below:

Figure 17. Data Product Life Cycle.

3.2.3.1. Data Product Creation

Allows the onboarding of new data products. Building upon the proposed definition of a data product, this

method expects the following metadata and artifacts:

• Data source configuration. Indicates the type of data source along with connection details such as

source URL (e.g., JDBC URL in relational databases) and access credentials (e.g., username/password,

certificate). Additionally, the following information might be provided depending on the type of data

source:

 Data source freshness. Only supported for data sources of batch type. Determines how

frequently Data Fabric collects raw data from the target data source.

• Mapping. Data mapping is mandatory, based on declarative mapping rules defined with RML [D2] or

YARRRML [D3]). Artifact that describes the mappings to transform the ingested raw data into a graph

structure and semantically annotate the data based on referenced ontologies.

• Translation. If ontology translations are needed, the onboarding process allows uploading artifacts

(files) that will trigger the utilization of the Semantic Translator in the Data Product Pipeline. According

to the description of this component in Section 3.1.2, these optional files (alignments) enable the

translation:

8 https://fastapi.tiangolo.com/
9 https://www.uvicorn.org/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 32 of 94

 From source ontology to central ontology.

 From central ontology to target ontology.

Both files can be provided at the same time, or only one of them. If no files are provided, no translation is

required and, therefore, the Semantic Translator will not be used.

• Data Governance. Metadata containing identifiers to entities required for governing the new data

product from the Data Catalogue. These identifiers are used by the respective entities in the knowledge

graph:

 Data product owner.

 Business glossary terms.

 Tags/keywords.

The Data Product Manager supports onboarding data products from batch data sources (relational databases and

files), as well as from streaming data sources (Kafka and MQTT). Figure 18 to Figure 21 include snapshots of

the documentation of the data product onboarding REST API method for all data sources.

Figure 18. Data product onboarding REST API - Batch type - Files.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 33 of 94

Figure 19. Data product onboarding REST API - Batch type - Relational databases.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 34 of 94

Figure 20. Data product onboarding REST API - Streaming type - Kafka sources.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 35 of 94

Figure 21. Data product onboarding REST API - Streaming type - MQTT sources.

To manage the life cycle of data products, this component uses a local MongoDB10 collection for storing data

product details/metadata.

10 https://www.mongodb.com/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 36 of 94

Upon creation of a new data product, the Data Product Manager returns a JSON object containing all its details,

including its identifier, that enables its retrieval and deletion at any time. Figure 22 contains an example of this

response.

Figure 22. Data product onboarding REST API - Successful JSON response.

Taking the information provided by data product owners through the REST API, the Data Product Manager

deploys and configures a new data pipeline for the onboarded data product. In this regard, all components of

the Data Product Pipeline are containerized and deployed as Helm Charts on Kubernetes. To orchestrate the

construction of the pipeline, the Data Product Manager leverages the Helm Controller component from the

FluxCD project11. The Helm Controller implements a Kubernetes operator that defines Helm charts and Helm

releases as new custom resources in Kubernetes. This allows to manage the life cycle of Helm releases through

the K8s API.

This release also provides support for data governance features in coordination with the Data Catalog Service,

described in Section 3.2.4. Regarding access control policies, these are applied and enforced by the Data

Security Service, described in Section 3.2.5, along with the rest of aerOS security components.

Table 3 includes the definition of the associated REST API method.

Table 3. Data Product Manager – REST API method definition – onboard data product.

Endpoint /dataProducts

HTTP Method POST

Header Value

accept application/json

Content-Type multipart/form-data

11 https://fluxcd.io/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 37 of 94

Description Onboards a new data product.

3.2.3.2. Data Product Retrieval

Allows to get the information of the data products currently registered in the data catalogue. The retrieval can

be performed for all data products (a JSON list with details of all of them is returned), or for a specific one,

providing its identifier. Table 4 and Table 5 include the definitions of the associated REST API methods.

Table 4. Data Product Manager - REST API method definition - retrieve all data products.

Endpoint /dataProducts

HTTP Method GET

Header Value

accept application/json

Description Returns information of all current data products.

Table 5. Data Product Manager - REST API method definition - retrieve specific data product.

Endpoint /dataProducts/{data_product_id}

HTTP Method GET

Header Value

accept application/json

Parameter Description

data_product_id Data Product identifier

Description Returns information of the data product whose identifier is passed as parameter.

3.2.3.3. Data Product Deletion

Allows deleting current, active data products. As with retrieval, deletion can be done for all data products or for

a specific one, providing its identifier. Table 6 and Table 7 include the definitions of the associated REST API

methods.

Table 6. Data Product Manager - REST API method definition - delete all data products.

Endpoint /dataProducts

HTTP Method DELETE

Description Deletes all current data products.

Table 7. Data Product Manager - REST API method definition - delete specific data product.

Endpoint /dataProducts/{data_product_id}

HTTP Method DELETE

Parameter Description

data_product_id Data Product identifier

Description Deletes the data product whose identifier is passed as parameter.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 38 of 94

3.2.3.4. Technologies and standards

Table 8. Data Product Pipeline technologies.

Technology/

Standard
Description Component

FastAPI Web framework for building APIs with Python Data Product Manager

JSON JavaScript Object Notation Morph-KGC

Kafka Open-source distributed event streaming platform
Morph-KGC, RDF to NGSI-

LD Translator

MongoDB
Open-source, document-oriented, NoSQL database

system implementation
Data Product Manager

NGSI-LD
Next Generation Service Interface with Linked

Data
RDF to NGSI-LD Translator

OpenAPI Formal standard for describing HTTP APIs Data Product Manager

RDF Resource Description Framework
Morph-KGC, RDF to NGSI-

LD Translator

RML RDF Mapping Language Morph-KGC

SQL Structured Query Language Morph-KGC

Uvicorn Web server implementation for Python Data Product Manager

YARRRML
YAML subset for representing human-readable

RML mapping rules
Morph-KGC

3.2.4. Data catalogue

3.2.4.1. LDAP Collector

The intermediate release of the aerOS Data Catalogue, described in deliverable D4.2, brought a new component

called LDAP (Lightweight Directory Access Protocol) Connector. As depicted in Figure 23, the main idea that

lies behind this component is allowing the collection of data from LDAP-compliant databases, such as

OpenLDAP, and their inclusion into the knowledge graph as NGSI-LD data that can persist in the Orion-LD

Context Broker.

Figure 23. Data catalog connector for LDAP.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 39 of 94

In this final release, this component has been improved, changing its name for LDAP Collector. It leverages the

architecture and framework of the Data Fabric and the Data Product Pipeline by enabling the inclusion of LDAP

data as a batch data product, as depicted in Figure 24. In this case, the freshness property of this kind of data

allows for periodic synchronization and ensures that mapped directory data is up to date in the knowledge graph.

This is important because access control policies ultimately rely on directory data, particularly users and their

roles (that define permissions).

The LDAP Collector exposes a REST API that allows retrieving data (users, groups, roles and organizations)

as a JSON file/dictionary object. Upon calling the collector, it connects to the configured server and fetches the

data, transforming and aggregating them into a JSON dictionary that is returned in response.

According to the framework and architecture provided by the Data Product Pipeline, the JSON file is

periodically requested by Morph-KGC which, using the appropriate mappings, generates RDF triples and writes

them to Kafka. These triples are then read by the RDF to NGSI-LD translator, generating NGSI-LD data that

are uploaded to the Orion-LD Context Broker, that ultimately ensures their persistence. A sequence diagram

that represents the working principle of the LDAP Collector and the interactions between the LDAP server, the

LDAP Collector and Morph-KGC is also depicted in Figure 25.

Figure 24. Data Product Pipeline for LDAP.

Figure 25. Sequence diagram - Data Product Pipeline for LDAP.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 40 of 94

The LDAP Collector has been implemented as a containerized Python application that uses the FastAPI,

Uvicorn and ldap312 libraries, and is compatible with any LDAP database/server implementation.

The mappings of LDAP data to concepts of standard ontologies (FOAF [D4] and ORG [D5]) and the aerOS

continuum ontology have also been completed in this release. These mappings are grouped into the following

entities: User, Role, Organization and Membership. User and Role entities match to the homonymous classes

present in the LDAP database. The Organization entity holds a particular meaning in the use case of aerOS:

since there will always be one single organization, it matches for groups defined in the database, rather than the

homonymous class in LDAP. The Membership entity acts as a linking concept between users, the roles they

are assigned and the groups they belong to. The YARRRML13 (subset of YAML for representing RML mapping

rules in a human-readable format) mapping definitions are included in Figure 26 to Figure 29. These include

sources and how subjects and properties-objects are generated.

Figure 26. Mappings for LDAP users.

Figure 27. Mappings for LDAP roles.

Figure 28. Mappings for LDAP groups (organizations).

12 https://ldap3.readthedocs.io/en/latest/
13 https://rml.io/yarrrml/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 41 of 94

Figure 29. Mappings for memberships (link between users, roles and organizations/groups).

This final release of the aerOS Data Fabric has introduced the Data Catalog Service as a new component of the

Data Catalog building block. The Data Catalog Service provides a REST API for registering new data products

that have been made available in the Data Fabric by means of the Data Product Pipeline.

This service can be used only by aerOS users with the Data Product Owner to register their data products in the

Data Catalog of the Data Fabric instance. To this end, the access control setup based on KrakenD and Keycloak

is leveraged to enforce authorization for this kind of role.

For the registration of a data product, the owner must provide the following metadata to the API:

o Name of the data product

o Description of the data product

o Owner (aerOS username) of the data product

o Free-text keywords that identify the data product

o Glossary terms formally defined in a business glossary that identify the data product

Based on this input, the Data Catalog Service processes these metadata and registers the data product in the

Data Catalog, as depicted in Figure 30. In this process, the Data Catalog Service transforms the metadata into

NGSI-LD format based on the aerOS Data Catalog Ontology defined in Section 3.1.3.3, and stores these

metadata in the Orion-LD Context Broker of the Data Fabric instance. The result is a Data Catalog that is to the

Data Fabric instance. As noted previously, external applications like the Management Portal can construct a

global aerOS Data Catalog by federating the local Data Catalog metadata among Context Brokers.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 42 of 94

Figure 30. Architecture of Data Catalog Service.

Following a similar approach as in the Data Product Manager, this service has also been implemented as a

containerized microservice based on the FastAPI framework in Python. The implemented REST API can be

accessed by sending a POST request to the /dataProducts endpoint. Such API is documented in more detail

in Figure 31 based on its OpenAPI specification.

Figure 31. Documentation of Register Data Product API.

3.2.4.2. Technologies and standards

Table 9. Data Catalog technologies.

Technology/

Standard
Description Component

FastAPI Web framework for building APIs with Python
LDAP Collector, Data Catalog

Service

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 43 of 94

JSON JavaScript Object Notation LDAP Collector, Morph-KGC

Kafka Open-source distributed event streaming platform Morph-KGC

LDAP Lightweight Directory Access Protocol LDAP Collector

NGSI-LD
Next Generation Service Interface with Linked

Data

Data Catalog Service, LDAP

Collector

OpenAPI Formal standard for describing HTTP APIs
LDAP Collector, Data Catalog

Service

RDF Resource Description Framework
Morph-KGC, Data Catalog

Service

RML RDF Mapping Language Morph-KGC

Uvicorn Web server implementation for Python
LDAP Collector, Data Catalog

Service

YARRRML
YAML subset for representing human-readable

RML mapping rules
Morph-KGC

3.2.5. Data security

The security model in the Data Fabric has undergone significant enhancements, incorporating robust

authentication and authorization mechanisms across multiple components through integrations with Keycloak14,

KrakenD15 (T3.4), and new technologies such as Apache APISIX16 and Open Policy Agent (OPA)17.

Apache APISIX serves as a high-performance, cloud-native API gateway that manages API traffic. It offers

features such as load balancing or dynamic upstream routing. By integrating Apache APISIX, the Data Fabric

centralizes and streamlines API traffic management, ensuring secure and efficient communication between

components.

OPA is an open-source, general-purpose policy engine that decouples policy decision-making from policy

enforcement. Based on the "Policy as Code" paradigm, OPA uses the Rego18 policy language to define and

evaluate fine-grained policies. This allows the Data Fabric to enforce detailed access controls at the data level.

For instance, access for a user with the "maintainer" username can be restricted to querying entities belonging

to "Luxury Stores," as shown in the following policy example:

Figure 32. Policy written in Rego.

14 https://www.keycloak.org/
15 https://www.krakend.io/
16 https://apisix.apache.org/
17 https://www.openpolicyagent.org/
18 https://www.openpolicyagent.org/docs/latest/policy-language/

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 44 of 94

In addition, the integrity and authenticity of the incoming access tokens is verified by checking their signatures

against the public key of our Keycloak. This ensures that the tokens come from a trusted source and have not

been tampered with, as shown in the image below:

Figure 33. Analysing the signature of the access token in OPA.

The Orion-LD Context Broker now incorporates Apache APISIX as the API gateway and OPA. This integration

ensures that:

• Only authorized requests reach the Context Broker.

• Dynamic, fine-grained access control policies are enforced.

• Policies are centrally managed, simplifying updates and maintenance.

The workflow for data consumption is depicted in Figure 34, highlighting the authorization process for data

consumers of the Context Broker.

Figure 34. Authorization workflow for data consumers of the Context Broker.

The Data Product Manager continues to enforce role-based access control (RBAC) for onboarding new data

products. As in previous implementations, only users with the "admin" role are authorized to make POST

requests to the /onboard endpoint of the Data Product Manager's REST API. This ensures that only designated

individuals can introduce new data products into the system. The authorization workflow for this process is

illustrated in Figure 35.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 45 of 94

Figure 35. Authorization workflow for data product owners in the Data Product Manager.

3.2.5.1. Data Security Service

To further enhance policy management and enforcement, the Data Security Service has been introduced. The

service empowers data product owners to define custom access policies tailored to their specific needs. This

FastAPI-based service interfaces with the OPA client, providing comprehensive policy management

capabilities, including:

• Register Policies: Allows users to upload .rego files via a POST request.

• Retrieve and Download Policies: Provides the Rego content of a specific policy, with an option to

download it as a .rego file.

• List Policies: Displays all registered policies.

• Update Policies: Enables users to modify existing policies without deleting them.

• Delete Policies: Supports the removal of policies via a DELETE request.

The Data Security Service offers the following endpoints for policy management:

• List policies: GET /policies

• Get policy content: GET /policies/{policy_name}/?as_file={true|false}

• Register policy: POST /policies/{policy_name}

• Update policy: PUT /policies/{policy_name}

• Delete policy: DELETE /{policy_name}

This service allows for fine-grained control over data access policies, enabling data product owners to define

custom access rules based on various criteria such as specific aerOS users, roles, or organizational groups. This

functionality enhances the data product creation process by allowing the establishment of a default policy when

a new data product is created. Subsequently, data product owners can refine and adjust these policies over time,

all through this centralized service.

With these advancements, the Data Fabric achieves a robust, flexible, and scalable security model, ensuring

compliance with organizational and regulatory requirements while empowering users with granular control over

data access.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 46 of 94

3.2.5.2. Technologies and standards

Table 10. Data Security technologies.

Technology/

Standard
Description Component

Apache APISIX Open-source API Gateway Access Control

Open Policy Agent

(OPA)

Policy-based control for cloud native environments

Access Control, Data

Security Service

Keycloak
An open-source identity and access management

solution
Access Control

KrakenD Open-source implementation of an API GW

Performs the Primary Entry

Point (PEP) role in the

access control for the Data

Product Manager

Rego
A high-level declarative language used to express

policies

Access Control, Data

Security Service

OAuth 2.0
An authorization framework that enables applications

to obtain limited access to user accounts
Access Control

FastAPI Web framework for building APIs with Python Data Security Service

OpenAPI Formal standard for describing HTTP APIs Data Security Service

Uvicorn Web server implementation for Python Data Security Service

3.3. Decentralized frugal AI

aerOS Meta-OS must allow the execution of distributed AI tasks over the continuum considering also limited

resource availability that is possible close to the edge. Decentralized AI mechanisms are to be supported for

internal AI (internal aerOS mechanisms) as well as for external AI (the deployment of specific AI services for

stakeholders over the continuum). Moreover, frugality and explainability of AI-based functionalities have been

also investigated as auxiliary but relevant elements of aerOS. Supplementary research

Decentralized AI service deployment with network representation is included in Appendix A.

3.3.1. Decentralized AI workflows

AI workflows are a combination of workloads, put together in a way to achieve a specific functionality of AI.

In that sense, decentralized AI workflows in aerOS can be described as a concept of AI tasks that can be divided

into sub-tasks and delegated for execution to selected IEs. Hence, aerOS decentralized AI workflow covers the

use case of federated training of ML models (Federated Learning, FL) using continuum resources.

The aerOS AI tasks/workflows will be deployed as a set of interacting services, namely AI Task Controller and

AI Local Executors. One the one hand, AI Task Controller is a set of logically related service components that

control the execution of a decentralized AI workflow in terms of synchronization of partial results. AI workflow

can be decomposed into workloads (or sub-tasks) that e.g., produce results that need to be aggregated or prepare

data to be consumed by the model. On the other hand, AI Local Executor is an aerOS service that executes

workloads (or AI sub-tasks) i.e., to execute a granular “step in the workflow”.

The service components of the AI task controller and AI local executors are illustrated and described below:

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 47 of 94

Figure 36. Internal components of AI Task Controller and AI Local Executor services.

Table 11. Components of AI Task Controller.

Component Description

FL Controller

Responsible for accepting a task description, initializing execution of workload

using deployed services, managing, and monitoring AI task lifecycle by means of a

simultaneous two-way communication channel with every AI Local Executor

through TCP connection for monitoring how many of them are available and

running.

FL Training

Collector

The FL training process involves several independent parties that collaborate to

provide an enhanced ML model. In this process, the different local updates

suggestions should be aggregated. This is tackled by the FL Training Collector,

which is also in charge of sending the results of the training along with the updated

model weights to FL Repository for storage.

FL Repository

One of the key application aspects of FL is making it persistent and configurable.

The FL repository stores (and delivers upon request/need) the aggregation

algorithms, ML algorithms, and the resulted ML models from FL training.

FL GUI

Provides a Graphical UI that allow to set up and track an AI Task workflow,

including the initial configuration (e.g., minimum number of FL Local Executors,

number of FL training rounds, the initial shared AI algorithm, encryption

mechanism, aggregation strategy, or the evaluation metric).

FL API
Offers a REST API to allow communication and interaction between the FL GUI

and FL Controller.

Table 12. Components of AI Local Execution.

Component Description

Model Inferencer
Designed for fast and lightweight communication, Local Model Inferencer provides

predictions of a selected model.

Model Trainer
Offers the functionalities of an FL client, including the local training and evaluation

of models from two popular ML libraries.

Data Transformer
Supports data preprocessing, data loading and training methods using serializable

modules.

Figure 37 presents a sequence diagram of federated training task execution using aux AI services. The execution

is initiated by the AI Task Controller’s that receives and distributes task configuration to other services from

the GUI. After that, both the FL Training Collector service component from AI Task Controller, and AI Local

Executors set up a communication channel and, in rounds, perform training and aggregation of results. The final

validated model (according to predefined performance criterion) is stored in the FL Repository of the AI Task

Controller, which is also accessible through the Task Controller GUI.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 48 of 94

Figure 37. Workflow of FL training execution.

3.3.1.1. Technologies and standards

The deployment process of aerOS decentralized AI workflows is split into two parts, as shown in Figure 38.

Whereas standalone AI Task Controllers must be deployed on aerOS continuum using helm charts, AI Local

Executor services might potentially require some specific configurations depending on the tasks that will be run

on them. Thus, AI Local Executor placement on an aerOS continuum is controlled by intention blueprints

established in the aerOS Management Portal and orchestration mechanisms.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 49 of 94

Figure 38. aerOS decentralized AI workflow deployment.

Table 13. AI workflows technologies.

Technology/

Standard
Description Component

Python

Python is an interpreted high-level general-purpose

programming language with a set of libraries. Very

popular for data analysis and ML applications.

All

FastAPI
A web micro framework written in Python, known for

being both robust and high performing.
All

Flower

A FL framework designed to work with many clients. It

is both compatible with a variety of ML frameworks and

supports a wide range of devices.

Model Trainer, FL

Training Collector

FedML
Research library and benchmark for Federated ML

containing federated algorithms and optimizers.
FL Training Collector

TensorFlow Lite

A free and open-source software library for machine

learning and artificial intelligence. It can be used across

a range of tasks but has a particular focus on training and

inference of deep neural networks.

Model Inferencer, Model

Trainer

pyTorch

An open-source machine learning framework based on

the Torch library, used for applications such as computer

vision and natural language processing, primarily

developed by Facebook's AI Research lab (FAIR).

Model Trainer

MongoDB
MongoDB is a source-available cross-platform

document-oriented database program.
FL Repository

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 50 of 94

VUE.JS

An industry standard with a comprehensive set of tools

for creating web user interfaces, a d built with full

Typescript support.

FL GUI

The main pages of the customized Graphical User Interface web application embedded within the AI Task

Controller are pictured below:

Figure 39. FL GUI home page in which a new decentralized AI workflow can be set up on top of the AI Task

Controller.

Figure 40. FL GUI configuration for the decentralized AI workflows.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 51 of 94

Figure 41. ML models resulted from aerOS decentralized AI workflows, stored in the FL Repository.

3.3.2. Frugal AI – AI Model Reduction

Frugal solutions allow deployment and execution in a resource-restricted environment in terms of memory,

processing power, network bandwidth, but also availability of data for model training. Frugal applications can

be deemed as the ones most suitable to be deployed close to the edge, instead of a centralized deployment.

Consequently, frugality can be treated as an “add-on” to decentralized AI.

In the scope of T4.3 the following techniques have been implemented and tested to validate their applicability

in the edge deployment scenarios.

Pruning in neural networks is a technique used to reduce the size of a model by removing parts of the network

that contribute little to its output. The main goal of pruning is to improve the efficiency of neural networks

without significantly sacrificing accuracy. This technique can be essential for deploying models on devices with

limited computational resources, such as smartphones or embedded systems.

There are various benefits of using the pruning technique. It reduces the number of parameters in the model,

which decreases its storage requirements. Next, with fewer calculations, the pruned network can offer faster

inference times, making it more suitable for real-time applications. Smaller models require fewer computational

resources, which can lead to lower power consumption. Lastly, pruning can help reduce overfitting by removing

unnecessary parameters, leading to models that generalize better on unseen data.

There are two main approaches to pruning. The first one is unstructured pruning, which focuses on removing

individual weights or connections within the network based on specific criteria, typically their magnitude. In

this approach, weights deemed less important (e.g., those with values close to zero) are set to zero, eliminating

their influence in the network. The second approach is structured pruning, which involves removing entire units

or sets of connections, such as neurons, channels, or even layers. This type of pruning is guided by the structure

of the neural network itself, aiming to simplify the architecture in a way that maintains its integrity while

reducing complexity.

One must note that unstructured pruning's effectiveness in accelerating inference is highly dependent on the

availability of specialized hardware or software that can exploit the sparsity of the model. Structured pruning,

however, typically results in models that can be more readily accelerated by standard hardware because the

pruned model retains a dense structure. Both methods aim to preserve the model's accuracy as much as possible.

However, structured pruning may sometimes lead to a more significant drop in performance than unstructured

pruning due to its coarse-grained nature.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 52 of 94

Both structured and unstructured pruning have been implemented. The methods have been tested on neural

networks involving recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The results

for structured pruning are very promising as they lead to a significant increase in inference speed and model

size reduction. Nonetheless, more work must be done to explore the aspects of generalizability of the

implemented methods and ways of applying them in aerOS as a service for users.

The following method that has been deeply explored is quantization, a technique used to reduce the precision

of the numbers representing the weights and activations within a model. Quantization works by mapping a large

range of values to a smaller one, often through rounding operations. This process is vital for deploying deep

learning models on resource-constrained devices such as mobile phones, embedded systems, and IoT devices,

as it can significantly reduce the model's memory footprint and speed up inference while maintaining acceptable

levels of accuracy. The main challenge in quantization is maintaining the model's accuracy with reduced

numerical precision, which requires careful selection of the quantization scheme and possibly adjustments to

the model or training procedure.

Quantization techniques have been applied in a practical setting. These include static quantization, dynamic

quantization, and their combination. The test results are reassuring, proving that this method can be applied to

different neural network architectures, speeding up the inference and reducing the model size.

Knowledge distillation is a model compression technique that facilitates the transfer of knowledge from a

larger, more complex model to a smaller, more efficient model. In this approach, a pre-trained model with high

capacity, often referred to as the "teacher", serves as a guide for training a "student" model that has a reduced

number of parameters and computational requirements. The student model is trained not solely on the original

dataset labels but also on the soft predictions provided by the teacher, which encapsulate richer information

about the underlying data distribution. This process enables the student model to approximate the teacher’s

performance despite its simpler architecture, making it well suited for deployment in environments where

computational resources are limited. By capturing the nuances of the teacher’s behaviour, knowledge distillation

helps maintain a high level of accuracy and generalization while significantly reducing model size and inference

time. This technique has been applied during the experiments. The results proved that the method impact

positively the quality of smaller, student networks.

3.3.2.1. Experimental results

In order to validate the behaviour of mentioned methods, experiments were conducted using the dataset with

required characteristics (correspondence to dataset that can be processed in edge computing scenarios). The

dataset used for the experiments should be structured as datasets that can be processed in potential aerOS

deployment (e.g. monitoring readings with the aim of anomaly detection). Requirements:

• Time-series data – in edge environments data are often read from sensors or come from continuous

observations.

• Spikes – unusual spikes (or drops) can signal system issues.

• Noise – the data coming from the observations usually contains noise.

For the experiments the PTB-XL19 dataset was chosen as a good representative of potential datasets that can be

used in edge computing-based systems.

The tests were run against CNN, RNN, and ResNet architectures. In the experiments, pruning, knowledge

distillation, and quantization have proven effective in reducing model size and computational requirements

while maintaining satisfactory performance. However, the results were not consistent in every case. E.g.,

quantization led to a slowdown in case of small convolutional models, quantization in case of RNN was rather

a poor choice on the tested processor (Intel i9) as the floating-point version of the model had access to faster

kernels for the LSTM layer, too aggressive pruning could lead to a poor fit of the models. And most importantly

the results are use-case and hardware specific. The Table 14 presents a concise summary of the results obtained

during the experiments. Columns with arrow pointing up represent the relative increase, and these with the

arrow down the relative represent decrease. The relative results are compared against the base model behaviours.

19 https://www.kaggle.com/datasets/bjoernjostein/ptbxl-electrocardiography-database

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 53 of 94

Table 14. Extract from AI model reduction experiment.

• q – quantization (float32 -> int8)

• p – pruning

• Speed – how much the inference speeds up

• Size – reduction of disk size

• AUROC – reduction in value

During the experiments and further research, it was established that each of the methods requires a considerable

customization for each model (considering its domain, i.e., data or task type) and the target hardware capabilities

along with software available during the inference time. Any simplification of the customization could be

deemed as unacceptable, making the potential service offering generic methods unusable. Later, neural

architecture search (NAS) was considered as another option for the service abstracting the algorithmic task of

compressing the model from the use case. Yet, the runtime of the algorithms, even for simple models, is too

long or resource expensive, and again the needed customization in a practical, not theoretical, scenario is

difficult to achieve. Thus, the implementation of the model reduction as a service was declared as unachievable.

The outcome of the experimentation is a set of observations and guidelines that can be useful when considering

techniques to be used for a specific use case. The application of frugality techniques is recommended to be

performed “inside” the AI implementation for a given use case with careful verification which methods give

satisfying results.

3.3.2.2. Technologies and standards

Table 15. Technologies considered for AI Model Reduction.

Technology/

Standard
Description Component

PyTorch

PyTorch is an open-source machine learning library based on the

Torch library, widely used for applications such as computer vision

and natural language processing. Initially, it was developed by

Facebook's AI Research lab. The library was used to define the

model architectures and create the training environments. It was

used both for implementing pruning and quantization methods.

Pruning,

Quantization

Python

Python is a high-level, interpreted programming language known

for its clear syntax, readability, and versatility. The programming

language was used to implement the experiments.

Pruning,

Quantization

Neural

Compressor

The Neural Compressor is a tool provided by Intel that focuses on

compressing and optimizing deep learning models to improve their

performance and efficiency, especially on Intel hardware. It was

used for quantization purposes.

Quantization

ONNX

ONNX, which stands for Open Neural Network Exchange, is an

open-source format for AI models. It provides a platform-agnostic

way of representing deep learning models, enabling them to be used

across different frameworks, tools, and hardware without being tied

to one ecosystem. In addition to its core functionality, the ONNX

ecosystem includes tools for optimizing models and ONNX

Pruning,

Quantization

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 54 of 94

Runtime, a performance-focused engine for running ONNX

models. ONNX was used to quantize models and to run them.

NNI

NNI, which stands for Neural Network Intelligence, is an open-

source AutoML toolkit developed by Microsoft. It aims to help

users automate the machine learning lifecycle, including feature

engineering, neural architecture search, model compression, and

hyper-parameter tuning. It was used for pruning techniques.

Pruning

3.3.3. Explainability support - AI Explainability Service

In aerOS, AI is used internally to support intelligent decision making when managing the continuum and can

be used externally to enable running of arbitrary AI using aerOS infrastructure. In both cases, the need may

arise to explain and/or interpret predictions made by ML models. To this aim, an approach based on a dedicated

service is proposed to enable “plug-in” of explainability/interpretability step. The AI Explainability Service

handles predefined cases like the interpretability of HLO allocator decisions. However, it will also provide

methods that can be used for a more comprehensive number of use cases.

An AI-related service must meet some requirements to use the AI Explainability Service.

The first requirement is to prepare a small representative dataset (the ground dataset). The bigger it is, the more

reliable the output of the AI Explainability Service. A rule of thumb is to prepare something a size of 100 data

samples. These could be the training data. However, the exact size may depend on the service's data availability,

the algorithm's (i.e., AI model) complexity, and other aspects.

Regarding the representative aspect of the data, one can understand it as being typical or average data

encountered by the model. The exact way of preparation of the dataset is something to be discovered by a service

maintainer to verify that the explanations returned by the AI Explainability Service “make sense” in the specific

domain. The Explainability would reuse the dataset for different explanations until a maintainer observes a

degradation of the results. For instance, external factors like a data drift phenomenon on the service side could

cause that.

Next, the AI Explainability Service, to explain a prediction requires the input and the output. The explainer's

internal algorithm requires the original input to perform calculations, which are needed to provide the

mathematical explanations of the prediction. The explainer uses the original output of the prediction for

visualization purposes.

The following requirement is access to the explained model. This element is a crucial aspect of the AI

Explainability Service. A service maintainer decides what part of the model one wants to explain. Let us take,

for example, a simple logistic regression. Then, the AI Explainability Service needs access to the whole model

to run experiments on it internally. However, suppose that a service uses a more sophisticated algorithm, for

instance, some reinforcement learning approach. Suppose a maintainer wants to explain the behaviour of some

part of it (i.e., the policy network). In that case, the maintainer must be able to extract this part of it and make it

usable by the AI Explainability Service.

The explainer assumes that a model behaves as a function that, for an input, returns an output. Although this

may sound simple and obvious, the practical aspect of this realization is much more difficult. Users may want

to use various frameworks and programming languages to create their AI models. Furthermore, the AI

Explainability Service should focus on providing explanations and not handling various inference runtimes for

different users. To this end, the Explainability Service would use a specific interface to which users must adhere

while exporting their models. This can be realized by, for instance, Function-as-a-Service (FaaS). However, one

must note that different approaches with advantages and drawbacks exist. This aspect is still to be verified in

the aerOS ecosystem.

Various SoTA methods for explainability in AI have been analysed. The most promising ones (popular,

applicable to a wide variety of cases) are based on calculating Shapley values to provide users with easy-to-

understand explanations that are mathematically provable. In this area, algorithms like Kernel SHAP and Deep

SHAP (an enhanced version of DeepLIFT) were tested in practical settings. The explanations were generated

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 55 of 94

for a reinforcement learning algorithm that allocates a set of interconnected tasks to a set of computing nodes

to reduce parameters like overall energy consumption. Apart from connecting the reinforcement learning

algorithm with an explainer, the visualization of the results was prepared. So far, the results are auspicious,

especially in giving a user a way to interpret the decisions made while allocating the tasks.

Figure 42 shows an importance graph that visualizes the relative significance of different features in influencing

a model's predictions. It helps identify which variables have the most impact on the model's output, aiding in

feature selection and interpretation.

Figure 42. Example of the output for explanation of a single decision made by the HLO, accessible in Embedded

Analytics Tool.

To create an explainer the following steps are required:

1. Prepare a set of example data that is representative of the inputs for the algorithm during inference, this

is task specific. About 100-1000 examples should be enough.

2. Create a handler that has access to the raw algorithm to be explained, i.e., the handler should be able to

call the algorithm directly and treat it as a simple function of the inputs, f(x). The handler should use

the Shap Python library to generate the explanations. The output is use-case specific. The example data

should be accessible to the handler. For an example, see the explainer for the HLO.

3. Deploy the handler using Embedded Analytics Tool.

3.3.3.1. Technologies and standards

Table 16. Technologies for AI Explainability Service.

Technology/

Standard
Description Component

Shap

SHAP (SHapley Additive exPlanations) is a Python library for

interpreting machine learning models by assigning feature importance

scores using Shapley values from cooperative game theory.

Explainer

Python

Python is a high-level, interpreted programming language known for

its clear syntax, readability, and versatility. The programming

language would be used to implement the solution.

Explainer, API

FastAPI

FastAPI is a modern, high-performance, web framework for building

APIs with Python. The framework would be used to create a HTTP

interface to the service.

API

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 56 of 94

Kafka

Apache Kafka is an open-source stream-processing software platform

developed by the Apache Software Foundation, written in Scala and

Java. Designed to provide a unified, high-throughput, low-latency

platform for handling real-time data feeds, Kafka is fundamentally a

distributed event streaming platform capable of publishing,

subscribing to, storing, and processing streams of records in real time.

The message queue would be used for internal communication inside

the service, as well as the external communication to store the results.

Message Queue

Celery

Celery is an asynchronous task queue/job queue based on distributed

message passing. It is focused on real-time operation but supports

scheduling as well. The execution units, called tasks, are executed

concurrently on one or more worker servers. Celery is used for

executing and managing tasks in a distributed fashion, allowing

developers to scale their applications easily and process vast amounts

of tasks quickly and efficiently. It would be used to schedule the

internal computations of the explainer.

Explainer

MongoDB

MongoDB is an open-source, document-oriented NoSQL database

designed for ease of development and scaling. It is one of the most

popular databases for modern apps, particularly known for its flexible

schema, scalability, and performance. The database would store the

configuration of the service, as well as some intermediate results.

Database

3.4. Embedded multiplane analytics
The Embedded Analytics Tool (EAT) is a collection of containers with established interfaces to produce a

platform for the creation, distribution and deployment of analytical functions to provide insights and advanced

decision making to the aerOS Meta-OS. The purpose of EAT is to allow for the utilisation of

additional/specialised operations for predefined use cases such as those described in the project pilot

demonstrations. Additionally, the flexible and modular nature of “Function-as-a-Service” while being part of

the cluster allows for EAT to be called on to fill operational gaps or extensions for future adaptations or use

cases. The EAT also provides visualisation features through Grafana for user friendly dashboard creation, and

web page hosting for technical experts who require full customisable visualisation capabilities.

3.4.1. Architecture

The EAT is designed as a collection of open-source containers that have been adapted and coordinated to

provide complete embedded multiplane analytics for the aerOS system accessible through user friendly

dashboards.

Figure 43. The Embedded Analytics Tool Architecture.

The Embedded Analytics Tool is divided into subcomponents for easier management. The architecture of the

tool, as shown in Figure 43, is referenced in Table 17 which provide detailed descriptions of each subcomponent

with the interfaces and communication between components. The subcomponents, highlighted within the blue

box, consist of images included in the OpenFaaS collection. From a user perspective, the key subcomponent is

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 57 of 94

the gateway. Through this component, users can access the dashboard interface, view deployed functions, and

manually trigger those functions via webpage buttons. Through this gateway, new deployed functions are

created as containers in the cluster running docker images based on our aerOS template. All subcomponents are

sourced from the open-source community as independent container images, with communication configured

using helm charts. These images are customized for aerOS and deployed on Kubernetes clusters. The interfaces

between the subcomponents are predefined and static, allowing them to be configured during the helm

installation process. However, the functions themselves are dynamic, enabling real-time deployment, removal,

or modification, and the ability to establish new interfaces within a function. These interfaces are crucial for

processes like data retrieval from the Data Fabric or triggering actions through the High-Level Orchestrator

(HLO). The EAT platform has been finalised and delivered via the project GitLab.

Table 17. Components for Embedded Analytics Tool.

Component Description Interactions

gateway

The gateway hosts the deployed functions

on the aerOS Embedded Analytics Tool. It

exposes the functions through an HTTP

API. The gateway also hosts a dashboard

GUI.

The gateway provides connectivity for the

deployed functions. Technical users will

establish a HTTP connection to invoke

functions and retrieve the results

Non-technical users can utilise a GUI to

invoke functions

prometheus
Prometheus provides monitoring of the

aerOS Embedded Analytics Tool.

Prometheus monitors the gateway and

pushgateway components through a

scraping process on a regular interval.

Metrics may be exposed through the

Prometheus dashboard.

alertmanager

Alertmanager is a feature component of

Prometheus. This allows for the creation of

alert criteria around metrics gathered from

the gateway and pushgateway component.

Alertmanager interacts directly with the

Prometheus component. Alerts can be

configured and communicated to external

components when they are triggered.

pushgateway

Pushgateway is a feature component of

Prometheus. This allows for the exposing

of in-function metrics to Prometheus. As

Prometheus scrapes metrics at an interval it

is possible that several functions may

execute and close within that time frame.

Pushgateway hosts this information

beyond the lifecycle of the function so it

may be gathered.

Pushgateway communicates directly with

executing functions on the aerOS Embedded

Analytics Tool exposing their in-function

metrics to Prometheus.

grafana
Grafana provides visualization features to

the aerOS Embedded Analytics Tool.

Grafana connects directly to Prometheus as a

data source. Exposing all metrics to

visualization by Grafana.

The Grafana dashboard may be used to

visualise metrics from the aerOS Embedded

Analytics Tool and previously executed

functions.

3.4.2. Template

The flexibility of Function-as-a-Service (FaaS) approaches also brings added complexity in terms of resource

management, function design, and communication. Resource management challenges can be mitigated by

configuring the clusters and utilizing monitoring tools available through aerOS. To address the issues related to

function design and communication, templating is employed.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 58 of 94

Figure 44. aerOS Template Structure.

Functions for the aerOS system are created using the aerOS template, which offers a standardized structure that

abstracts and simplifies common functionality. The function template provides content for 4 scripts which the

user has generated at the creation of a new function. The initialiser (__init__) makes connection with the Grafana

component, sending the predefined dashboard to be loaded and data sources are created for visualisation. The

metric reporter (metric_reporter) provides templated code for the user to export data from inside the function to

Prometheus where it can in turn be visualised through the Grafana component. The requirements file

(requirements) is a list of libraries to be installed to the function image through the python pip application.

Finally, the handler script (handler) is the logic of the function. The handler script is executed once the function

is invoked and typically follows three stages of execution: 1) Data Retrieval, 2) Processing, and 3) Response.

Data Retrieval provides generalized code to fetch information from data sources, such as the Data Fabric.

Processing defines the core logic of the function, where specific operations are executed. Response handles the

aerOS-approved interfaces, allowing functions to trigger additional actions, such as invoking other functions or

interacting with other aerOS components.

3.4.3. Functions Implementation

The Embedded Analytics Tool comes pre-packaged with three distinct functions: 1) Stratified Sampling, 2)

Anomaly Detection, and 3) Data Drift. Each of these functions are created using the faas-cli application and are

implemented in Python using a range of data science libraries.

Figure 45. faas-cli application operations.

The faas-cli application utilises our aerOS template to create a new function which can then be built into a

Docker image. These images are pushed to the project’s Gitlab to be accessible to all aerOS partners. These

images can then be deployed onto the EAT gateway from the registry ensuring users always access the latest

version of EAT functions. A collection of predefined functions is provided on the Gitlab registry allowing users

immediate access to EAT features. Stratified Sampling is a flexible function that generates a data sample based

on parameters specified by the user. These parameters include filters for data retrieval and an option to produce

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 59 of 94

either a proportional or disproportional sample. Anomaly Detection uses a similar data retrieval process but

applies different logic to identify outliers in the data sample. This function can be enhanced through training to

better suit specific use cases. Data Drift involves a more complex data retrieval process, as it compares current

data to historical data to detect variance over time. Depending on the type of drift, some algorithms are better

suited to identifying this variance. Our approach uses a distribution-based algorithm to highlight data drift

between historical and current data.

3.4.4. Technologies and standards

Table 18. Technologies for Embedded Analytics Tool.

Technology/

Standard
Description Component

OpenFaaS

OpenFaaS is an open-source Function-as-a-Service platform which

utilises containerised docker images as functions to be deployed,

executed and managed.

EAT

Prometheus

Prometheus is a popular open-source monitoring component in

industry used to expose metrics of internal components and

processes.

EAT

Grafana

Grafana is an open-source interactive visualization tool. When

linked to a data source Grafana provides diagrams and tables to

represent the data.

EAT

3.5. Trustworthiness and decentralized trust management
Trustworthiness and secure communication among the IEs are key features of the aerOS ecosystem. Tasks 4.5

and 3.4 collectively comprise the security aspects of the aerOS architecture. This architecture ensures a robust

and trustworthy environment by adopting an effective and comprehensive approach to cybersecurity, utilizing

complementary security-enabling components and multi-layered solutions.

The task aims to develop two components: the aerOS Trust Manager, responsible for the dynamic assessments

of the IEs, and the IOTA, ensuring decentralization, data integrity, scalability, and efficiency in data exchange.

This section presents a comprehensive summary of the final progress achieved in Task 4.5, emphasizing the key

advancements and refinements made since the submission of deliverable D4.2.

3.5.1. Trustworthiness of IEs in the continuum

This document outlines the updates introduced to the Trust Manager since deliverable D4.2, focusing on the

calculation of the trust score for Infrastructure Elements (IEs). Key changes include the deprecation of the Trust

Agent and the introduction of new sub-scores, as well as adjustments to the overall calculation process. After

discussions with the partners of the task, it was decided to enhance the trust score to make it more concrete and

improve the aerOS ecosystem's trustworthiness. The previously used Trust Agent module, which played a role

similar to the Self-Awareness module, has been deprecated to achieve this. This change was made to streamline

functionality, as both modules retrieved overlapping system information from IEs (e.g., CPU usage, memory

usage) and stored it in the Orion-LD Context Broker. This data now directly contributes to the calculation of

the Reliability sub-score, which forms a part of the total trust score.

In addition, to provide a more comprehensive and granular evaluation of trustworthiness in terms of security

and reliability, the trust score has been divided into three sub-scores. These sub-scores introduce new terms and

frameworks for assessment, ensuring a transparent, effective, and stronger measure of trustworthiness within

the aerOS ecosystem. This division allows for more precise identification of strengths and areas for

improvement, further enhancing the system’s overall reliability and security. The three sub-scores are:

Reliability Sub-score (SBrel)

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 60 of 94

The Reliability Sub-score evaluates the performance and stability of Infrastructure Elements (IEs) based on key

system metrics such as CPU and memory usage. The TOPSIS (Technique for Order Preference by Similarity to

Ideal Solution) algorithm is used to calculate this score, as it is well-suited for multi-criteria decision-making.

TOPSIS ranks IEs by comparing their performance to an ideal solution, ensuring that the evaluation is both

systematic and objective.

• Process:

1. The Self-Awareness module collects various system data (e.g., CPU and memory usage) based

on predefined configurations.

2. These data points are updated periodically in the Orion-LD Context Broker.

3. The Trust Manager retrieves this information and calculates the reliability score using the

TOPSIS algorithm for each attribute.

4. The resulting score represents the reliability of the IE.

Security Sub-score (SBsec):

This sub-score represents the system's short-term state regarding exposure to cyber threats, specifically the

occurrence of attacks. The Self-Security module is configured to operate in push mode, transmitting real-time

alerts to a designated endpoint in the Trust Manager. These alerts are triggered whenever Self-security generates

a notification, enabling immediate processing and integration into the trust evaluation framework.

• Process:

1. The Self-Security module includes an API designed to send real-time alerts to the trust manager,

each of which has a severity priority ranging from 1 (least severe) to 5 (most severe).

2. The Trust Manager calculates the average priority value of these alerts and normalizes it to a

scale of 0 to 1.

3. The normalized value becomes the security sub-score.

Reputation Sub-score (SBrep)

The Reputation Sub-Score represents an overall measure of confidence in the robustness and reliability of a

node within the system. It evaluates the node's historical performance by analyzing its exposure to cyber threats

and its ability to maintain consistent functionality without frequent failures. This score is designed to reflect

how well the node can avoid excessive risk and recover from potential issues, providing a long-term perspective

on its trustworthiness. To calculate the Reputation Sub-Score, the Trust Manager interacts again with the Self-

Security API. As aforementioned, the Self-Security API supplies input that helps assess the node’s resilience

against cyber threats over time, but in this sub-score the timeframe is longer.

• Process:

1. The Self-Security module provides alerts generated over a one-week period via an API.

2. The Trust Manager retrieves these alerts, calculates the average priority value, and normalizes

it to 0 to 1.

3. This value forms the reputation sub-score.

Penalty Mechanism

A key factor in the trust score calculation is the enforcement of a penalty to account for critical events that

impact Infrastructure Elements (IEs). These events are identified through self-healing alerts over a one-week

period and are incorporated into the trust score to reflect the system's operational reliability.

The penalty is determined using the formula:

Total Penalty = Health Penalty × Number of Alerts.

In this function, the Health Penalty represents a predefined cost assigned to each alert, and the Number of Alerts

corresponds to the total alerts generated during the evaluation period. This mechanism ensures that recurring or

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 61 of 94

critical issues are effectively accounted for in the trust evaluation, encouraging proactive maintenance and

timely resolution of incidents.

Weight Mechanism

To introduce flexibility into the trust score calculation, a weighting system has been designed to allow the Trust

Manager to prioritize specific aspects of trustworthiness based on the system's operational goals. By adjusting

the weights assigned to different components, such as reliability and security, the system can adapt to varying

priorities and use cases.

A key constraint of the weighting system is that the sum of all weights must equal 1, expressed as Wrep + Wsec

+ Wrel = 1, where Wrep represents the weight for the reputation score, Wsec the weight for the security score,

and Wrel the weight for the reliability score.

This approach enables tailored trust evaluations for different environments. For instance, in reliability-focused

environments, a higher weight can be assigned to Wrel, emphasizing performance and stability metrics.

Conversely, in security-critical environments, increasing Wsec allows for greater emphasis on mitigating

security risks. This flexibility ensures that the trust score remains relevant and aligned with the specific goals

and challenges of the operational context.

Total Trust Score Calculation

The total trust score (TS) provides a comprehensive evaluation of the trustworthiness of Infrastructure Elements

(IEs) by combining multiple sub-scores and applying a penalty for critical events. This score ensures a balanced

assessment of reliability, security, and reputation, tailored to the specific priorities of the system.

The total trust score is computed using the following formula:

TS=(Wrep×SBrep) + (Wsec×SBsec)+(Wrel×SBrel) − Penalty

Where:

• Wrep, Wsec, Wrep: Weights assigned to the Reputation, Security, and Reliability sub-scores,

respectively.

• SBrep, SBsec, SBrel: The Reputation, Security, and Reliability sub-scores.

• Penalty: A deduction based on the frequency of critical self-healing alerts, reflecting the stability of the

IE.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 62 of 94

Figure 46. Trust Manager architecture and overall workflow for trust score calculation.

The Figure 46 illustrates the workflow for calculating the trustworthiness of an Infrastructure Element (IE)

within the aerOS ecosystem. Only the total trust score is stored in Orion-LD and IOTA for broader access and

integration. This approach ensures that the most relevant and actionable data is readily available while

minimizing storage requirements. By restricting Orion-LD and IOTA storage to the total trust score, the system

significantly reduces unnecessary data transmission, enhancing scalability and efficiency. All sub-scores,

including reliability, security, reputation, and health alerts, are stored locally within the Trust Manager.

These data points are maintained as JSON files, which are effectively managed by the Trust Manager. This

lightweight yet comprehensive storage solution provides detailed insights and maintains a historical record for

in-depth analysis and retrospective evaluations. The Trust Manager prioritizes dynamic responsiveness by

integrating event-triggered recalculations with fixed interval updates, ensuring trust scores remain adaptive and

accurate in a rapidly changing environment. Real-time, event-driven updates allow the system to swiftly respond

to critical changes, while periodic scheduled updates maintain a consistent baseline for recalculations.

3.5.1.1. Technologies and standards

Table 19. Technologies for trustworthiness.

Technology/

Standard
Description Justification

Python
A high-level

programming language.

Python is widely used due to its ease of use, extensive

libraries, and strong community support.

TOPSIS

(Technique for

Order of

A multi-criteria decision-

making (MCDM) method

used to rank alternatives

TOPSIS is effective in evaluating multiple criteria, making

it suitable for computing trust subscores by considering

various weighted factors

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 63 of 94

Preference by

Similarity to

Ideal Solution)

based on their similarity

to an ideal solution.

3.5.2. Trustful decentralized exchange: IOTA

IOTA provides a shared network between all nodes called the Tangle, which allows for secure and trustworthy

feeless data transactions between different nodes. This is the root of the IOTA deployment in aerOS, where the

Hornet Nodes are the multiple IEs found in the shared continuum and the Tangle is the data structure that

contains all the information necessary to track messages and ensure traceability of the payloads distributed

across the network. When one program issues a message to a node, said node verifies the message and sends it

via the gossip protocol through the network to its ‘neighbours’, other nodes in the Tangle network connected to

the first one. All other nodes in the network see the message and retrieve the same status of the network. The

data shared here is only meant to be the most important of data regarding the state of the network. This data

could be, for example, the IP address of elements in the continuum, the domain addresses, etc. With this in

mind, the deployment of IOTA’s nodes is done accordingly with both the domain and continuum requirements.

A deployment of a private IOTA Tangle network has been done in the CF and NCSRD environments, with the

CF Kubernetes cluster acting as the main cluster and the NCSRD cluster acting as the secondary cluster.

Successful tests with data transfer between the nodes have been performed, with the results being shown in the

DLT status and the capability of data to support multiple formats. Afterwards the deployment was done

spreading the nodes across multiple test domains that would emulate a real use case situation, with all the parts

of the network involved. A diagram of the setup can be seen below, with all icons taken from IOTA:

Figure 47. aerOS testing IOTA Tangle.

A few elements have been changed or upgraded throughout the project. The entire installation was automated

as much as possible via a Helm chart. A Kubernetes automatic peering element has been developed, where the

main node of each cluster automatically links with all other hornet nodes of the cluster.

This way the user only needs to link the different domains between one another. Another development was the

creation of an API that simplifies the process of interaction with the hornet nodes of the cluster. This allows the

users to upload to the Tangle in an easier way and keeps a log of the successful uploads. The API works in

conjunction with the dashboard to provide all the necessary utilities to use IOTA and the Tangle.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 64 of 94

3.5.2.1. Technologies and standards

Table 20. Technologies for trustful decentralized exchange.

Technology/

Standard
Description Component

IOTA
A decentralized, feeless distributed ledger designed for

the Internet of Things (IoT) and secure data transfer.

All components related with

IOTA

IOTA Tangle

A directed acyclic graph (DAG) used instead of

blockchain, where each transaction confirms two

others, enabling scalability and efficiency.

All components related with

the data transfers, alongside

the Tangle DB

IOTA Hornet
A lightweight, high-performance IOTA node software

that helps maintain and validate the Tangle network.

The individual nodes

installed in all IEs

IOTA Coordinator

A temporary mechanism that ensures security and

finality in the IOTA network until full decentralization

is achieved.

The single “special

component” installed

alongside the Tangle DB

3.6. Management services and aerOS management portal

3.6.1. aerOS Management Portal

The block schema of the aerOS Management Portal was slightly modified for the first MVP when it comes to

the interactions between the Backend and the aerOS Basic Services, but this schema has not changed since that

point, so this description, which is depicted in Figure 47, is still valid.

The entrypoint balancer it is only needed for distributing the aerOS orchestration requests among all the

available domains, but because of its stateless nature it can be used to distribute more requests if needed, so it

has been decided to keep this part in the schema. Following this explanation, Data Fabric and aerOS Federation

are distributed by definition, hence it is not necessary to add another distribution layer. When it comes to the

users and roles management, the aerOS AAA tools to manage them (LDAP and Keycloak) will always be

deployed in the entrypoint domain so distribution is not needed.

Figure 48. aerOS Management Portal architecture.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 65 of 94

3.6.1.1. Frontend

Before developing the code for the Frontend part of the Management Portal, an analysis phase was conducted

to define the requirements needed for the Management Portal. Once the requirements were discussed and finally

set, these requirements have been used by the UX/UI team as the starting point for drawing the first mock-up

designs of the Management Portal using Figma, which is an online collaborative tool for designing user

interfaces. Once the mock-ups were approved by the partners and internal team, frontend development began.

The management portal is structured as a single-page component-based application built with the popular Vue.js

framework (version 3), an industry standard with a comprehensive set of tools for creating web user interfaces.

The Vue components has been built with full Typescript support and the application uses Pinia as a store

manager, to allow the sharing of states between all the web application components. It is important to highlight

that the portal only shows information and allows to perform actions in accordance with the role that has been

assigned to the logged user in the aerOS AAA framework (see section 4.4.1.1 of D3.3 for more information

about the defined roles in aerOS). For instance, only users with the proper rights can initiate an orchestration

request (e.g., a vertical deployer) or check the status of the IEs that belong to his linked domains (e.g., continuum

administrator). Therefore, the aspect of the portal changes according to the user roles and permissions.

The IoT-Edge-Cloud continuum presents a heterogeneous range of computing resources, so aerOS as a Meta-

OS must provide some supporting tools for depicting this computing resources adapted to the aerOS architecture

concepts (Domains, IEs, LLOs, etc). For that reason, after some technical analysis, an interactive network graph

has been selected to try to overcome the challenge of drawing the computing continuum. Specifically, the v-

network-graph, a lightweight Vue.js fully compatible library, has been used.

Finally, this is the list of the developed user interfaces along with some description:

• Welcome page and navigation menu

Figure 49. aerOS Management Portal welcome page and navigation menu.

First, users must complete the logging process which is based on the Authorization Code Flow with Proof Key

for Code Exchange (PKCE) of the OAuth2.0 protocol implemented by Keycloak. Therefore, when users access

to the portal without having been previously logged in, they are redirected to the Keycloak login page to

introduce their credentials. After a successful credential’s validation, users are redirected to the Management

Portal welcome page. This introductory page consists of a central descriptive part and the side navigation menu.

When it comes to the navigation menu, the user can choose from several options, the current list follows below:

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 66 of 94

o Home: by clicking this item the user will be redirect to the home page of the Portal.

o Domains: clicking on the Domains option will direct the user to the section related to his/her domains

within the aerOS continuum. In this section the user can go into the details of a selected domain such

as the list of the IE that build the domain, along with their metrics collected in real-time.

o Deployments: by clicking on the Deployments option the user will be redirected to the wizard that

list the deployed services and allows to request a service orchestration in the aerOS continuum.

o Continuum: in this page, users will be able to see, in a simple and intuitive way, their own relative

Infrastructure Elements that comprise their domains: the aerOS continuum indeed.

o Benchmarking: a page to display benchmarking results of the IEs, compare them and to run a new

benchmark.

o Data catalog: this page displays all the registered Data Products in the aerOS Data Fabric and allows

to register a new one.

o Notifications: this section has been created to inform users that some events have been triggered (the

list of events and the development will be performed in the next phase). Moreover, the number of

unread notifications is displayed near the notification’s entry of the menu. This count is reset each

time the user enters to this page.

o Users: this view is composed of a list of the registered users in the aerOS Meta-OS with some key

information such as their role or status. In addition, new users can be added to the system and existing

users can be edited (mainly to change their assigned role) or even deleted.

o Settings: a menu to configure some general settings (dark mode, language, font size, …) of the portal.

• Domains

Figure 50. aerOS Management Portal domain view.

In the Domains section, the aerOS user accesses a table with a list of federated domains along with a first glance

of their characteristics. By clicking on the view call-to-action, the user will land on the detail page of the selected

domain, where they can browse a complete list of domain information, including the underlying IEs.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 67 of 94

• Deployments

The Deployments section provides an overview of active service deployments in a structured table format. The

table includes key details such as the ID, Name, and Description of each deployed service. The ID column

contains unique identifiers, while the Name column displays service names formatted as URNs. The Description

column provides additional context about each deployment, such as its purpose or function.

Each row in the table represents a deployed service and includes a set of action icons on the right side. These

icons allow users to view details, pause the service, or delete it. A pagination control at the bottom enables

users to navigate through multiple pages of deployments.

Figure 51. aerOS Management Portal deployment view.

At the top right corner of the section, a "New Service Deployment" button allows users to initiate a new

deployment. The interface is designed for easy management, providing administrators with a clear view of

active services and essential controls for managing them efficiently.

The steps shown in the image below, involves the configuration of the service component deployment

parameters through multiple input fields and selection options. The component's name and a brief description

can be specified in their respective text input fields. A field for the container image is provided to define the

image to be used for the component.

For resource allocation, the users can select the CPU usage and required RAM from the available dropdown

menus. A separate dropdown menu allows the users to choose the CPU architecture, with options such as x64.

Additionally, there are toggle options to specify if the component is real-time capable and whether ports should

be exposed, with "Yes" or "No" options for each.

At the bottom of the form, buttons are available for configuring command-line arguments, environment

variables, and network ports. Once these configurations are complete, the users can proceed by clicking the

"Next" button to continue to the next step in the deployment process. This step ensures the proper configuration

of various parameters required for the automatic deployment of the service component.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 68 of 94

Figure 52. aerOS Management Portal deployment form.

• Continuum view

The Continuum section of the aerOS system provides a visual representation of all domains and their

corresponding Infrastructure Elements (IEs). This interface is structured as a network graph, where each domain

serves as a central node, branching out to its associated IEs. The visual layout enhances the user's ability to

understand relationships, dependencies, and system structure at a glance.

Each node in the graph is labelled with relevant details, including the domain or IE identifier and its current

status. Domains typically serve as the backbone of the structure, connecting to multiple IEs that handle

various processing tasks. The status of each IE is indicated, helping users quickly assess operational

conditions, such as whether an IE is functional or in a ready state. Additionally, network addresses and URLs

are provided, facilitating direct access to specific components for further inspection or interaction.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 69 of 94

Figure 53. aerOS Management Portal continuum view.

• Benchmarking

The benchmarking section showcases the performance of IEs in terms of CPU and network interfaces across

various aerOS domains. Users can select an IE within a specific domain to view its performance in common

operations and compare it against benchmark results. If the requested benchmarking has not yet been performed,

users can initiate its execution to access detailed performance specifications. In addition, the full set of CPU

benchmarks results are available on the Geekbench website.

Figure 54. aerOS Management Portal CPU benchmarking view.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 70 of 94

Additionally, users can compare benchmarking results using the "Compare" button located at the top right. This

functionality allows for the comparison of two different IEs, either within the same domain or across different

domains. By leveraging this feature, users can conduct a comprehensive performance evaluation, gaining

insights that may highlight opportunities for optimizing their infrastructure.

Figure 55. aerOS Management Portal CPU benchmarking comparison view.

Figure 56. aerOS Management Portal network benchmarking view.

• Data Catalog

The Data Products section provides an organized interface for managing and accessing data products. It includes

a search bar and several dropdown filters, allowing users to refine their search based on data product names,

glossary terms, owners, and tags. Each data product is displayed in a structured card format containing key

details such as the product name, owner, description, the context broker in through which is accessible and

relevant metadata. The owner is represented with an icon and name, while context broker fields include

information like a link to its specification and its endpoint URL.

Tags and glossary terms are visually represented as blue pill-shaped labels, making it easy to identify and

categorize each data product. Additionally, each product card features a trash icon for deletion and an option to

expand or collapse details. Positioned at the top right corner, the "Add Data Product" button enables users to

introduce new data entries. The interface is designed for quick navigation and efficient data management.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 71 of 94

Figure 57. aerOS Management Portal Data Catalog section.

The image below displays the Data Product modal for adding new Data Products, with required fields that vary

depending on the selected Data Product type.

Figure 58. aerOS Management Portal Data Product creation.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 72 of 94

• Users

The Users Section in aerOS serves as a central interface for managing registered users within the system. This

section presents a comprehensive list of users, displaying key details such as their name, assigned role, and

current status. The role designation indicates the level of access and responsibilities within the system, including

categories such as Continuum Administrator, Data Product Owner, or standard aerOS user. The status field

reflects whether the user is active or otherwise restricted.

To facilitate user management, the section includes search and filtering capabilities. A search bar enables quick

identification of specific users by name, while dropdown menus allow filtering by role and status, ensuring an

efficient navigation experience.

Continuum Administrators can perform various actions on user accounts. Each entry in the list is accompanied

by options to view detailed user information, modify user roles or other attributes, and delete accounts if

necessary. These actions are represented by intuitive icons that streamline the management process.

Figure 59. aerOS Management Portal users view.

The section also supports the addition of new users to the system. A call to action, "Add a new user", at the top-

right corner provides a straightforward method for onboarding new users. The user creation modal enables

administrators to create a new user, assign a role, and associate the user with an existing organization or create

a new organization from scratch. This ensures that administrators can easily expand the user base while

maintaining control over access levels and system permissions.

To enhance usability, pagination controls are available at the bottom of the interface, allowing users to adjust

the number of displayed entries per page and navigate through multiple pages of user records. This structured

approach to user management ensures that administrators can effectively oversee access control within the

aerOS environment, maintaining a secure and organized system.

Figure 60. aerOS Management Portal user creation modal.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 73 of 94

• Notifications

The Notification Settings section provides users with a centralized view of all notifications related to operations

performed within the aerOS system. This includes updates on service deployment, benchmarking execution,

and other relevant system activities.

Users can filter notifications by priority, ranging from Critical to Informational, ensuring quick access to the

most relevant updates. They can view notification details, delete individual notifications, or clear all at once.

This section ensures that users stay informed about key system events, enabling timely decision-making and

efficient management of their infrastructure.

Figure 61. aerOS Management Portal notification view.

• Settings

The Settings section allows users to personalize their aerOS experience by configuring display preferences,

notifications, and system-related options. In addition, it is displayed a disclaimer.

This section is organized into a main category: General Settings. Within this category, users can customize their

experience in several ways. Dark Mode can be toggled on or off to switch between light and dark themes. The

Language option provides a dropdown menu for selecting a preferred language, with English set as the default.

Font Size can be adjusted using a slider, allowing users to modify text size for better readability. Additionally,

Push Notifications can be enabled or disabled with a simple toggle switch.

Figure 62. aerOS Management Portal settings menu.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 74 of 94

3.6.1.2. Backend

Developing a backend component for a web application depends on the specific requirements and functionalities

of this application. In the scope of aerOS, that considers the aerOS Basic Services as a suite of lightweight

microservices (including the potential workloads to be deployed in the computing continuum), heavier

computing processes (e.g., data processing) must be removed from the web application. Removing this logic

from the web application allows to develop the frontend to just react to user actions and obtain the needed data

in the expected format to be then efficiently interpreted, as well as avoiding some security issues like the well-

known CORS. Therefore, the backend component acts as a middleware between the web page and third-party

APIs. This component has been developed as a Spring Framework application, starting the project with Spring

Boot and using some complementary libraries such as Spring Security or Spring Cloud.

It is important to highlight that this backend doesn’t interact with a database to store configuration or state,

which is a common practice in web applications dashboards, as the Management Portal can be moved to other

aerOS domains in a flexible way if the Entrypoint domain changes. All the needed data by the portal can be

obtained from the aerOS Basic Services in a decentralized and federated way, for instance, users’ data is stored

in Keycloak Identity Manager, and continuum and services data can be obtained through Orion-LD taking

advantage of the Data Fabric mechanisms.

When it comes to cybersecurity, the backend protects the incoming requests by checking authorization JWT

tokens with Keycloak. This way, the backend first ensures that these requests are sent by the Frontend to then

check if the requested action can be performed by the role granted to the user that initiates actions in the web

application. In addition, this token can be reused in case of the backend must send some requests to endpoints

protected by KrakenD API Gateway.

When integrating with external systems like OpenLDAP, the backend acts as a bridge that facilitates secure and

efficient communication. The backend manages key LDAP entities, including users, roles, and groups, through

specific Java classes, while handles operations such as user and group management, role assignment, and

querying directory services. This integration ensures that the backend can fetch and update user information

dynamically, which is transparently updated in Keycloak to enable the proper creation of access tokens.

The interaction between the backend and OpenLDAP is performed through RESTful API calls, encapsulated

within the Spring Boot application and is implemented via dedicated controllers, including UserController,

GroupController, and RoleController, which facilitate CRUD (Create, Read, Update, Delete) operations for

LDAP entities. These controllers handle HTTP requests for each LDAP entity and interact with the

corresponding repository classes (UserRepository, RoleRepository, and GroupRepository), that leverage Spring

LDAP ODM (Object-Directory Mapping) to execute LDAP operations. These operations correspond to LDAP

actions and ensure seamless management of directory data.

Finally, the backend integrates a WebSocket-based communication channel among it and the Frontend to allow

the exchange of real-time messages, such as notifications to be displayed to final users. This channel has been

developed using Socket.IO, which is a modern framework that enables low-latency, bidirectional and event-

based communication by going a step beyond traditional WebSockets. Notifications are added to the Meta-OS

via a POST endpoint that is part of the Backend, which can be called by any component or service of the Meta-

OS as long as it has the proper permissions to retrieve a valid access token. When notification is received, the

Backend creates a new NGSI-LD entity for it in Orion-LD and then sends it to the Frontend through the

Socket.IO channel to be finally displayed in real-time to the users as pop-up notification. As the notification has

previously been added into Orion-LD, users will also be able to check it until it’s manually deleted. The format

of the notifications is aligned with the Alert FIWARE Smart Data Model.

In addition, the backend also supports the reception of NGSI-LD notifications (emitted by Orion-LD when a

subscription is triggered) in order to be translated into the format expected by the notifications in the system

(the FIWARE Alert data model), to then be added to Orion-LD and displayed to the users in the portal. For

instance, the Benchmarking tool leverages this functionality to display notifications each time a benchmark

execution has started or finished.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 75 of 94

Figure 63. OpenAPI definition of the aerOS Management Portal Backend

3.6.1.3. Entrypoint balancer

Before proceeding to the analysis of existing load balancing (LB) approaches, it is necessary to outline the

requirements that must be accomplished by the aerOS entrypoint balancer. First, in terms of decision-making,

the LB algorithm should rely on the balancing rules and not operational requirements. It should forward the first

received Intention Blueprint request and focus strictly on workload distribution since task re-transferring is part

of the HLOs’ responsibilities. Finally, the chosen algorithm should have a low level of overhead and possibly

be simple to implement.

These conditions were considered in the selection of quality metrics used to evaluate existing LB algorithms.

Among the metrics proposed in [M1], [M2], the ones that are the most relevant include scalability, degree of

imbalance, and performance. In terms of areas of application, the focus has been placed on algorithms that aim

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 76 of 94

to maximize the throughput and avoid bottlenecks. The resource-utilization-tailored ones were of less

importance since the entrypoint balancer does not process Intention Blueprints.

The literature proposes many taxonomies used to categorize LB algorithms. The most common one, introduced

among others in [M3], [M4] divides them into static, dynamic, meta-heuristic, and ML-centric ones. Here, it

should be pointed out that meta-heuristic and ML-centric algorithms (e.g., Genetic Programming based Load

Balancing (GPLB) [M5]) have a high level of complexity and are considered mostly in case of large solution

spaces. Therefore, regarding the specifications for the entrypoint balancer, they are architecturally

overcomplicated, and, as such, they were not considered in further analysis.

Static LB algorithms use predetermined knowledge and assumptions about resources. The most widely used

algorithms within this group include different versions of Round Robin (RR) [M6], [M7], which assigns tasks

according to a circular list, or Opportunistic Load Balancing (OLB) [M8], which focuses strictly on keeping

components busy while assigning workloads in arbitrary order. Since these algorithms do not adjust to the

current state of the system, they have minimal overhead, however, at the same time, they are of low flexibility.

As such, they may not be able to properly handle dynamic changes in the aerOS infrastructure such as re-

transferring tasks between HLOs.

The better suited are the dynamic LB algorithms, which consider the current system state, by, for example, re-

evaluating the load of its components. Consequently, algorithms from this group are more difficult to

implement, but they also are a better fit for heterogeneous systems. The scope of dynamic LB comprises a

variety of different algorithms. The simpler ones, in the majority, are the modifications of the Least Connections

(LC) which redirects the requests to the infrastructure component that has the least number of active connections

(e.g., Weighted Least Connections Round Robin -WLC RR [M9]). The more complex ones are, for example,

Resource-based Load Balanced Min-Min (RLBMM) or LBMM, which take into account also task re-

distribution and resource utilization. However, considering the restricted amount of information to be processed

by the entry point balancer implementation of these more complex algorithms would not be possible without

re-adjustments of current architectural concepts.

Therefore, based on the conducted research, it has been determined that the most suitable LB algorithm in the

case of the entrypoint balancer is the LC (or one of its modifications). The proposed algorithm meets all

established criteria and yet is simple enough that it doesn’t require major changes in existing architecture.

The algorithm implemented within Entrypoint balancer is based on the Improved Weighted Least Connections.

It works in the following way. The Entrypoint balancer first retrieves all the Domain entities from the aerOS

distributed state repository and then assigns to each of them the flag availability, which indicates whether a

given domain is going to be considered in the processing of next client request. Initially, all domains are marked

as available. The information about the domains’ availability is stored in the Entrypoint balancer’s cache and is

being updated in consecutive computations of the algorithm.

Whenever the client request is received, the Entrypoint balancer begins by evaluating the scores of each

available domain using the weighting function. By default, the weighting function computes the CPU usage of

all IEs belonging to the given domain. However, its code can be easily modified (e.g. to take into account

different properties such as RAM usage) depending on the high-level requirements. The domain’s score is

obtained by dividing the number of services running within a domain (services with Running status) by the

weight computed using weighting function. Then the domain, which has a highest score is selected by the

algorithm.

To prevent the cases in which a single domain would be consecutively selected by the algorithm (e.g. when it

was newly added to the continuum), the Entrypoint balancer uses a parameter maxAssignments. If a given

domain is selected more than maxAssignments time, it is being temporarily blocked for the next

maxAssignments - 1 selections [M10]. After that, the domain is made, once again, available. Obviously, this

feature is applicable if there is at least one additional domain to the entrypoint in the continuum.

3.6.1.4. Benchmarking tool

The benchmarking tool provides two main functionalities within the management portal:

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 77 of 94

1) IE performance in terms of CPU/RAM processing as well as network interfaces.

2) Dashboard of those technical KPIs that are directly measurable in an aerOS continuum.

The first functionality of the benchmarking tool is in turn split into two services. On the one hand, the IE

processing performance service is carried out by an agent that is installed on every IE of the aerOS continuum.

In particular, the Geekbench open-source agent is used, which, by executing a series of standardized tests

measure both CPU and GPU capabilities that put the hardware through rigorous tasks, mimicking real-world

applications to generate scores. These scores cover multiple aspects, including single-core and multi-core

performance. Thus, the benchmarking tool helps aerOS practitioners to gauge how well an IE performs under

different workloads. The generated results of Geekbench are stored in the Orion-LD context broker as new

entities of type “cpuBenchmark”, following NGSI-LD data model, so that each benchmark result contains

relevant attributes reflecting different aspects of the performance, such as `singleCoreScore`, `multiCoreScore`,

`deviceName`, and `timestamp`.

On the other hand, the networking service is designed to measure the bandwidth performance of network

connections of any IE. For that purpose, iPerf3 open-source tool is implemented. iPerf3 is a command-line tool

that allows users to test the throughput of their network by generating TCP and UDP traffic, and measuring how

much data can be transferred over a network within a specified time frame, offering insights into both the speed

and quality of their network connection. During the test, iPerf3 generates network traffic from the client to the

server and measures the rate at which data is transferred, providing reports on bandwidth, packet loss (for UDP),

jitter, etc. Likewise, the performance benchmarking service, the results of the networking tests are stored as

dedicated “networkBenchmark” entities. Finally, both types of entities are retrievable by the management portal

for visualization purposes in the form illustrated in Figure 63. The overall benchmarking tool system can also

be observed in the next figure:

Figure 64. Benchmarking tool architectural diagram.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 78 of 94

For the second functionality of the benchmarking tool, the technical KPIs dashboard, the following values are

displayed. These are the values of technical KPIs that are directly measurable from the data provided by the

aerOS distributed state repository:

• # of federated aerOS domains

• # of IEs that belong to the domains

• # of container management frameworks used by IEs and % of usage

• # of CPU architectures used by IEs and % of usage

• # of deployed user services and # of their underlying components

• # of authenticated users

3.6.1.5. Technologies and standards

Table 21. Technologies and standards for aerOS Management Portal.

Technology/

Standard
Description Justification

Vue.js

Vue.js is an open-source

JavaScript framework for

building web user

interfaces.

Vue.js is currently one of the most popular frameworks to

build web applications along with React, so it was decided

to take advantage of previous experience in the technology

by the partners involved in the task.

Pinia
Pinia is a state store library

for Vue.js

State management plays an important role in web

applications because allows to store the current state of the

application, which depends on the actions previously

performed by users.

Keycloak.js

A Keycloak client library

in JavaScript to interact

with Keycloak

This library is used to interact with Keycloak to perform the

user login process which is based on the Authorization Code

Flow with Proof Key for Code Exchange (PKCE) of the

OAuth2.0 protocol. It also allows to retrieve key data from

the logged user such as its name, organization and role.

v-network-graph

Vue3 library for creating

interactive network

graphs.

The Management Portal is intended to show the current state

of the computing continuum in a visual friendly way, so this

library has been selected to show this information following

a network graph visualization.

nginx
nginx is a modern web

server and proxy

nginx has been selected for the portal packaging to act as (i)

a web server to serve the frontend web application and (ii) a

reverse proxy to enable the communication among frontend

and backend

Spring

Framework

One of the most popular

Java frameworks to

develop microservices,

completely oriented to

build cloud-native

microservices.

Partners involved in the task have expertise in the

technology and it has resulted a good option to develop

backends of dashboard built as web applications.

Spring Security

Spring Security is the de-

facto standard for securing

Spring applications.

Requests sent by the frontend must be authenticated with

Keycloak tokens, so the backend must check the validity and

scope of these tokens through the interaction with Keycloak.

It can be achieved by using the built-in Oauth2.0, OIDC and

Keycloak support.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 79 of 94

Spring Cloud

Spring Cloud provides

tools for building

applications in the scope

of distributed systems.

The Backend will forward some requests to aerOS Basic

Services that will not need any modifications, so it must be

able to act as a reverse proxy (Spring Cloud Gateway). In

addition, the Backend can leverage more capabilities

provided by Spring Cloud libraries.

Socket.IO

Socket.IO is a library that

enables low-latency,

bidirectional and event-

based communication

between a client and a

server.

This library has been selected to implement a real-time

WebSocket-based communication between the frontend and

backend to display notifications in the portal. It is used in

both frontend (as the client) and backend (as the server)

components.

Improved

Weighted Least

Connections

load balancing

algorithm

Dynamic load Balancing

algorithms take into

account the current state

of the system by re-

evaluating the load of its

components.

Service orchestration requests from the portal’s backend

must be forwarded to HLO instances of different domains

following a distributed approach. After a research, dynamic

least connection algorithms (or its modifications) are the

best fitting into the aerOS distributed architecture.

Geekbench

Geekbench is a popular

open-source

benchmarking tool used to

assess the performance of

various devices, including

smartphones, tablets, and

computers, by executing a

series of tests that measure

both CPU and GPU

capabilities.

Geekbench agent is installed on every IE of the aerOS

continuum, and by executing a series of standardized tests

(mimicking real-world applications) measure both CPU and

GPU capabilities that helps aerOS practitioners to gauge

how well an IE performs under different workloads.

iPerf3

iPerf3 is a widely used

networking benchmarking

tool designed to measure

the bandwidth

performance of network

connections.

iPerf3 provides detailed metrics on throughput, latency,

jitter, and packet loss, which are very helpful for identifying

network bottlenecks, validating optimizations, and ensuring

network performance meets required standards in aerOS

federated IEs and domains.

3.6.2. aerOS Federator

The aerOS Federator serves as a management service responsible for controlling the establishment and

maintenance of federation mechanisms among the multiple aerOS domains that form the continuum. According

to its block architecture, it is composed by two main components: (i) custom aerOS Federator component and

(ii) Orion-LD context broker. The core federation functionalities are provided by the context broker through the

establishment of Context Source Registrations (CSR), which allows an Orion-LD instance to retrieve

information (in NGSI-LD entities format) from another Orion-LD instances, which in the aerOS continuum

means that data from one domain can be obtained just by calling the context broker of another domain once a

proper registration has been performed. In addition, Orion-LD also allows to perform its publication and

subscription mechanism in a federated way, a novelty that wasn’t ready for the first MVP of the project. These

federation capabilities are directly linked with the aerOS Data Fabric described in section 3.2, but the aerOS

Federator component has been designed to act as the starting point of this mechanism (domain discovery) and

is mainly focused on the data related with the management of the continuum, which follows the ontology

introduced in section 3.1.3.2. It also acts as the building block for the aerOS distributed domain repository and

allows to discover and retrieve the data products (see section 3.2) created in each domain in a federated way.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 80 of 94

As reported in the previous D4.2, the main efforts for the first MVP of the project were put in testing Orion-LD

federation mechanisms to deliver a methodology to create the needed Context Source Registrations to achieve

domains federation, always having into consideration the aerOS ontology for Cloud-Edge-IoT computing

continuum. This work allowed to create a solid base to develop the custom aerOS Federator component on top

of it, which is the main novelty of this block of the task for the reported period.

Figure 65. aerOS Federator architecture in a single domain.

3.6.2.1. Enhanced capabilities of Orion-LD context broker

It is important to highlight that Orion-LD is not only an open-source implementation of an NGSI-LD context

broker that has been taken from its repository, deployed, and used in the aerOS project, but also is constantly

being improved within the scope of aerOS. In addition, the main development team of Orion-LD, which is the

FIWARE Foundation, is an active partner of the aerOS project, so functionalities needed for the aerOS

Federation are directly added to the context broker. These improvements and solved challenges will be described

below with more details. Furthermore, other teams working on the task are responsible for testing (through the

creation and execution of ad-hoc functional tests) these enhancements along with previously developed

functionalities to improve the quality of the broker as it is a core component in the aerOS architecture.

Regarding the code development of Orion-LD in the scope of aerOS, queries for retrieving contextual data as

NGSI-LD entities actually stored in different context brokers play a main role in the aerOS federation. Thus, in

the domain of distributed systems, particularly within the context of entity federation, the pagination of entity

query results stands as a significant technical challenge. This challenge escalates when the queries involve

dynamic attribute values, at which point the task transitions from merely difficult to seemingly unfeasible. For

effective pagination, it is imperative to establish a consistent set of resulting NGSI-LD entities across different

paginated queries. Otherwise, without this consistency, the realization of pagination is not viable. These

challenges have been extensively deliberated within the ETSI ISG CIM, in the course of standardizing the

NGSI-LD API. Consequently, two distinct solutions have been formulated:

• Entity Maps: this solution involves freezing the set of resulting entities as a list that only includes their

IDs.

• Snapshots: this approach goes a step further by freezing the entities themselves, storing them within a

local database.

After some technical discussions, the Entity Maps strategy was first adopted by the aerOS project in order to

reduce the amount of exchanged data among the brokers, aligning with its implementation in Orion-LD for the

MVP. After being successfully tested in the project, this approach was incorporated into Orion-LD version 1.5.1

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 81 of 94

(its current version is the 1.9.0) and then was slated for inclusion in the v1.8.1 of the NGSI-LD API specification.

Finally, it was included in this version of the specification, which was delivered in March 2024. The Snapshots

method remains under discussion in ETSI ISG CIM and is anticipated to be part of NGSI-LD API version

1.10.1, targeted for summer-autumn 2025.

Going into more technical details, the process begins with an initial query to Orion-LD API to obtain a set of

NGSI-LD entities (GET /ngsi-ld/v1/entities?<queryParameters>) during which the Entity Map is generated

and stored in the broker. The response includes the Entity Map's ID in an HTTP header (NGSILD-EntityMap),

along with the first batch of entities in the payload body. Subsequent paginated requests must provide this Entity

Map ID, along with offset/limit URL parameters for pagination.

An Entity Map is structured as an array mapping entity IDs to arrays of Context Source Registration IDs,

indicating the registrations associated with each entity. In the aerOS project, where attributes of entities are not

distributed across multiple brokers, the registration ID arrays typically contain a single entry. Furthermore, for

entities hosted locally in the broker, a special identifier (@none) is used. Finally, armed with the information of

the Entity Map, the broker is fully informed to dispatch distributed requests and compile the responses into an

array of entities. Upon processing all responses, the broker then furnishes this array to the original requester.

Figure 66. Orion-LD Entity Map example.

In addition, a first version of the distributed operations for subscriptions over contextual has been implemented,

as it was a requested feature for the aerOS Meta-OS in order to enhance the federation among domains. This

feature, which is also based on Context Source Registrations, enables the creation of subscriptions in one Orion-

LD that target entities that are stored in other Orion-LD instances. In the scope of aerOS, it allows to subscribe

to contextual data that is present in other domains to be notified in the original domain when this data changes.

For instance, some key attributes of all Service Components or Infrastructure Elements of the continuum can

be monitored from a module deployed in a single domain.

When a subscription is created in an Orion-LD instance, it checks its CSRs to select the ones which matches

with the target entities of the subscription. Then, for each matched CSR, it creates in the target Orion-LD broker

of the CSR (the broker specified in the endpoint attribute) a subordinated subscription. This subordinated

subscription points to a special notification endpoint from the original Orion-LD in which was created:

/ex/v1/notify/subscriptions/{subscriptionId} in order to notify the local changes to the original Orion-LD

instance. When the original subscription is deleted, the subordinated subscriptions are sequentially deleted.

3.6.2.2. aerOS Federator custom component

The aerOS Federator custom component is intended to provide another layer of automatization above Orion-

LD to avoid direct interaction with the context brokers of the continuum when it comes to federation

management, as well as federated backup mechanisms for federation critical data (e.g. domains registry).

In the design phase of this component, gRPC was taken into consideration to develop the API of this component

as it provides some advantages over traditional REST such as bidirectional communications and the reduction

of payload size. However, the aerOS Federator must interact constantly with the REST API of Orion-LD, so

the improvements provided by gRPC would be limited at the end. In addition, the use of a REST API enables a

better integration with the aerOS domain API Gateway, so that the Federator API endpoints can be seamlessly

included in this API Gateway to improve the connectivity between Federator instances of all the domains.

Although there are some tools such as gRPC-Gateway that translates REST request (using JSON in their

payloads) into gRPC requests (using binary protobuf in their payloads), the inclusion of more reverse proxies

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 82 of 94

would also add more latency into the system, which is a matter of concern in distributed ecosystems such as the

aerOS continuum.

The aerOS Federator has been developed using Go because this language focuses on the fast implementation of

functionalities while provides high performance for microservices and cloud-native applications. In addition,

Go provides by default a fast and easy compilation mechanism to target a wide range of CPU architectures, so

it facilitates the build of multi-architecture container images to spread the federation capabilities of aerOS in

several kinds of IEs and domains.

This component is mainly focused on the management of the Context Source Registrations in the context broker

of its domain, because they are the key elements that enable the federation of NGSI-LD context brokers.

Therefore, five types of Context Source Registrations are automatically created and then managed by the aerOS

Federator. Each type targets a different set of entity types with different permissions over those entities:

• AAA: it allows to retrieve entities related with the aerOS AAA (types: User, Role and Organization).

• Infrastructure: entities of types - Domain, InfrastructureElement and LowLevelOrchestrator. These

entities can only be retrieved in a federated way (retrieveOps) as they reflect the current status of the

infrastructure of the domains, so they can only be modified locally in the CB of the domain which

belongs to.

• Services: entities of types - Service, ServiceComponent, InfrastructureElementRequirements, and

NetworkPorts. These types of entities can be retrieved, updated and deleted in a federated way

(retrieveOps, updateOps and deleteEntity) to enable the aerOS decentralized orchestration process.

• DataFabric: entities of types DataProduct, Concept and ContextBroker to list the data products

available in all the domains.

• Benchmark: it allows to retrieve the results of the Benchmark executions, so it only applies to entities

of type Benchmark with retrieveOps operations.

Figure 67. Example of a Context Source Registration created by the aerOS Federator.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 83 of 94

Each instance of the aerOS Federator must be assigned with another Federator instance, which is named as peer

federator, to be able to spread the addition of its own domain and to stablish a starting point for additional

spreading processes.

This component provides a complete REST API to expose its capabilities, which can be split into two groups:

(i) initiation of a federation process (spread its own domain creation or deletion); and (ii) reaction to a in the

continuum (e.g. new domain notification, spread a new domain when acting as a peer federator, deletion of a

domain…).

Figure 68. Endpoints of the aerOS Federator API.

Finally, in the next figure it is displayed a complete sequence diagram (with several technical details) that

depicts the whole process when an instance of the aerOS Federator is deployed in a new domain in order to be

added to the continuum. In this diagram, it is shown the interaction with the local CB, the peer federator and the

process carried out by it to spread the new domain addition across the continuum. Moreover, it also acts as a

matter of proof of the technical difficulties that involves the development of this tool, which is actually one of

the key components to stablish the federation between domains in the continuum.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 84 of 94

Figure 69. Sequence diagram for the process of adding a new domain to the continuum.

D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 85 of 94

3.6.2.3. Technologies and standards

Table 22. Technologies and standards for aerOS Federator.

Technology/

Standard
Description Justification

Orion-LD

Open-source implementation

of the NGSI-LD context

broker.

The main developer team of Orion-LD is partner of

aerOS (FIWARE Foundation), so custom

functionalities have been developed to improve its

fitting in the aerOS domain federation. In addition,

some partners have previous expertise on the usage of

this context broker, so it allowed to perform the

testing of these new functionalities in a more agile

way.

Microservices

architecture

A microservices based

architecture is a software

development and deployment

approach where an application

is built as a collection of small,

loosely coupled and

independently deployable

services.

The aerOS Federator provides a layer of

automatization and fault tolerance mechanisms on top

of Orion-LD. By using a microservices architecture,

the development of this component has been more

agile, by allowing each development team to develop

a specific feature in the most appropriate

programming language. In addition, some capabilities

would not be required in each domain or at every

point in time.

gRPC

Open-source implementation

of remote procedure calls

(RPC) developed by Google,

which uses the HTTP/2

protocol for communications

and Protocol Buffers as its

messages format.

aerOS Federator instances are expected to exchange a

huge number of messages and react to some key

events in near real-time due to changes in the

continuum (e.g., the failure of the entrypoint domain),

so it must be built on top of modern and agile

communication protocols and technologies such as

HTTP/2 and gRPC.

Key-value store

A key-value store (or key-value

database) is a type of non-

relational database that stores

data as a collection of key-

value pairs. It is one of the

simplest types of databases,

optimized for fast retrieval and

storage of data.

The aerOS Federator can use a key-value store or

database to store locally some key information of the

continuum (e.g. key information of domains) that can

be useful for recovery in case of failures or service

interruptions.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 86 of 94

4. Conclusions
This deliverable presents the final release of the WP4 software components for delivering intelligence at the

edge. The document has additionally provided an overview of the second version of aerOS demonstrator

MVPv2 from the standpoint of WP4, detailing how each of the building blocks has contributed to the realization

of features of the aerOS MVPv2 such as the intelligent orchestration of the continuum or data sharing with Data

Fabric.

Regarding data homogenization, the Semantic Annotator and Semantic Translator components have been

integrated into the aerOS Data Fabric. The Linked Open Terms (LOT) methodology for ontology development

was used in the project and applied during the creation of the aerOS continuum ontology and aerOS data catalog

ontology. This methodology will be further explored and followed for developing ontologies in the use cases

identified within aerOS.

Research activities around data governance have consolidated the definition of a data product in

aerOS. This definition has derived into a stable architecture of the aerOS Data Fabric, introducing Data Product

Pipeline as a framework to facilitate the creation of data products, along with the Data Product Manager to

interface with data product owners and orchestrate these pipelines. The aerOS Data Fabric was additionally

extended data security and data catalog features.

When it comes to decentralized frugal AI, the AI Local Executor and AI Task Controller components have been

prepared for AI workflow execution (specifically federated learning). The AI Local Executor service is deployed

using aerOS service deployment mechanism allowing for setting restrictions on the needed Infrastructure

Elements. In addition, an explainability for an aerOS use case based on reinforcement learning has been

proposed, which can be replicated and adjusted for other use cases of providing explainability in the aerOS

environments. Different frugality techniques were evaluated for their applicability to be used on a dataset typical

for edge-based computing use cases and conclusions were drawn.

An Embedded Analytics Engine has been implemented as a platform for the creation, distribution and

deployment of analytical functions to provide insights and advanced decision making to the aerOS Meta

Operating System. It includes template capabilities to help in the creation of user-defined functions, as well as

a set of pre-packaged functions based on popular data science libraries.

Trustworthiness and secure communication between Infrastructure Elements are key features of the aerOS

deployments. Here, two components were developed: the aerOS Trust Manager, responsible for the dynamic

assessments of the IEs, and the IOTA, ensuring decentralization, data integrity, scalability, and efficiency in

data exchange.

The crucial component for aerOS is the Management Portal and management services that provide an entrypoint

to the system, as well as mechanisms to manage the environment. aerOS Management Portal allows for

interaction with Basic Services, support real-time notifications, AAA management, Data Fabric’s data products

management and includes benchmarking tool. Moreover, the custom aerOS Federator component has been

implemented to automate and coordinate the federation process among the multiple aerOS domains that build

the Cloud-Edge-IoT continuum.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 87 of 94

References
[D1] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-López, and R. García-Castro, ‘LOT: An

industrial oriented ontology engineering framework’, Eng. Appl. Artif. Intell., vol. 111, p. 104755, May

2022, doi: 10.1016/j.engappai.2022.104755.

[D2] R. García‐Castro, M. Lefrançois, M. Poveda‐Villalón, and L. Daniele, ‘The ETSI SAREF ontology for

smart applications: a long path of development and evolution’, in Energy smart appliances: Applications,

methodologies, and challenges, 2023, pp. 183–215. doi: 10.1002/9781119899457.ch7.

[D3] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, ‘The NeOn Methodology for

Ontology Engineering’, in Ontology Engineering in a Networked World, M. C. Suárez-Figueroa, A.

Gómez-Pérez, E. Motta, and A. Gangemi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.

9–34. doi: 10.1007/978-3-642-24794-1_2.

[D4] ‘BIMERR Ontologies’. Accessed: Feb. 18, 2024. [Online]. Available: https://bimerr.iot.linkeddata.es/

[D5] D. Garijo and M. Poveda-Villalón, ‘Best Practices for Implementing FAIR Vocabularies and Ontologies

on the Web’, 2020, doi: 10.48550/ARXIV.2003.13084.

[D6] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón, and B. Vatant, ‘Linked Open Vocabularies

(LOV): A gateway to reusable semantic vocabularies on the Web’, Semantic Web, vol. 8, no. 3, pp. 437–

452, Dec. 2016, doi: 10.3233/SW-160213.

[D7] D. Garijo, ‘WIDOCO: A Wizard for Documenting Ontologies’, in The Semantic Web – ISWC 2017, vol.

10588, C. d’Amato, M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange, and J.

Heflin, Eds., in Lecture Notes in Computer Science, vol. 10588. , Cham: Springer International Publishing,

2017, pp. 94–102. doi: 10.1007/978-3-319-68204-4_9.

[D8] ‘FOAF Vocabulary Specification’. Accessed: Feb. 18, 2024. [Online]. Available:

http://xmlns.com/foaf/spec/

[D9] A. G. Beltran, R. Albertoni, D. Browning, S. Cox, A. Perego, and P. Winstanley, ‘Data catalog vocabulary

(DCAT) - version 3’, W3C, W3C Proposed Reccommendation, Jun. 2024.

[M1] E. Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih Qader, ‘Load-balancing algorithms in cloud

computing: A survey’, J. Netw. Comput. Appl., vol. 88, pp. 50–71, Jun. 2017, doi:

10.1016/j.jnca.2017.04.007.

[M2] S. S. Tripathy et al., ‘State-of-the-Art Load Balancing Algorithms for Mist-Fog-Cloud Assisted

Paradigm: A Review and Future Directions’, Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2725–2760,

May 2023, doi: 10.1007/s11831-023-09885-1.

[M3] M. Hamdan et al., ‘A comprehensive survey of load balancing techniques in software-defined network’,

J. Netw. Comput. Appl., vol. 174, p. 102856, Jan. 2021, doi: 10.1016/j.jnca.2020.102856.

[M4] I. N. Ivanisenko and T. A. Radivilova, ‘Survey of major load balancing algorithms in distributed system’,

in 2015 Information Technologies in Innovation Business Conference (ITIB), Kharkiv, Ukraine: IEEE, Oct.

2015, pp. 89–92. doi: 10.1109/ITIB.2015.7355061.

[M5] S. Jamali, A. Badirzadeh, and M. S. Siapoush, ‘On the use of the genetic programming for balanced load

distribution in software-defined networks’, Digit. Commun. Netw., vol. 5, no. 4, pp. 288–296, Nov. 2019,

doi: 10.1016/j.dcan.2019.10.002.

[M6] T. Hidayat, Y. Azzery, and R. Mahardiko, ‘Load Balancing Network by using Round Robin Algorithm:

A Systematic Literature Review’, J. Online Inform., vol. 4, no. 2, p. 85, Feb. 2020, doi:

10.15575/join.v4i2.446.

[M7] S. B. Vyakaranal and J. G. Naragund, ‘Weighted Round-Robin Load Balancing Algorithm for Software-

Defined Network’, in Emerging Research in Electronics, Computer Science and Technology, vol. 545, V.

Sridhar, M. C. Padma, and K. A. R. Rao, Eds., in Lecture Notes in Electrical Engineering, vol. 545. ,

Singapore: Springer Singapore, 2019, pp. 375–387. doi: 10.1007/978-981-13-5802-9_35.

[M8] T. D. Braun et al., ‘A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems’, J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–

837, Jun. 2001, doi: 10.1006/jpdc.2000.1714.

[M9] G. Singh and K. Kaur, ‘An Improved Weighted Least Connection Scheduling Algorithm for Load

Balancing in Web Cluster Systems’, vol. 05, no. 03.

[M10] Choi, D., Chung, K.S., Shon, J. (2010). An Improvement on the Weighted Least-Connection Scheduling

Algorithm for Load Balancing in Web Cluster Systems. In: Kim, Th., Yau, S.S., Gervasi, O., Kang, BH.,

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 88 of 94

Stoica, A., Ślęzak, D. (eds) Grid and Distributed Computing, Control and Automation. GDC CA 2010 2010.

Communications in Computer and Information Science, vol 121. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-17625-8_13

[A1] C. Wang et al., "Dependency-Aware Microservice Deployment for Edge Computing: A Deep

Reinforcement Learning Approach With Network Representation," in IEEE Transactions on Mobile

Computing, vol. 23, no. 12, pp. 14737-14753, Dec. 2024, doi: 10.1109/TMC.2024.3453069

[A2] W. Feng et al., "Exploring Collaborative Diffusion Model Inferring for AIGC-enabled Edge Services," in

IEEE Transactions on Cognitive Communications and Networking, doi: 10.1109/TCCN.2024.3519320

[A3] Y. Chen, H. Yu, Q. Guo, S. Zhao and T. Taleb, "Dynamic Edge AI Service Management and Adaptation

Via Off-Policy Meta-Reinforcement Learning and Digital Twin," ICC 2024 - IEEE International

Conference on Communications, Denver, CO, USA, 2024, pp. 867-872, doi:

10.1109/ICC51166.2024.10622765

https://doi.org/10.1007/978-3-642-17625-8_13

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 89 of 94

A. Supplementary research
A.1. Decentralized AI service deployment

Decentralized AI service deployment with network representation

The aerOS supports the deployment of distributed AI tasks across the continuum, considering heterogeneous

and resource-constrained environments in terms of both network and computation. These distributed AI tasks

may represent sub-tasks of a specific application, with specific logical dependencies among them. In such cases,

it is crucial to account for these dependencies and the end-to-end QoS requirements of complex applications.

However, factors such as dynamic system environments, the heterogeneity of computational capabilities, and

the complexity of dependencies are not always thoroughly investigated, leading to issues such as excessive

network resource consumption and inefficient decision-making in deployment strategies.

To achieve the ambition of aerOS, we developed a dependency-aware service deployment approaches to

achieving efficient mapping between distributed AI tasks and physical edge continuum [A1]. The delivered

approach is designed for the three-layer edge-cloud continuum aligned with aerOS, comprising the cloud layer,

edge layer, and user equipment (UE) layer. An emerging AI application can be decomposed into a set of sub-

tasks, where dependencies among these sub-tasks, represented as microservices, can be modeled as a directed

acyclic graph (DAG). The proposed approach consists of two main components: the attention-based

microservice representation (AMR) component and the attention-aided deployment strategy.

Figure 70. The attention-based distributed AI task representation [A1].

Figure 70 displays the attention-based distributed AI representation. The AMR algorithm is designed to extract

system features and optimize the embedding representations of microservices and infrastructure using a multi-

head attention mechanism. The process begins by extracting microservice and infrastructure features and

mapping them into the structure attention space. Weighted representations are then leveraged to derive the

service-chain attention space, ultimately producing the final embeddings for infrastructure and services.

Initially, the algorithm takes as input the microservice DAG, infrastructure features, microservice features, and

the service-chain set. For each service chain, it identifies neighboring microservices deployed on the

infrastructure and computes their structure attention weights. These weights are then used to update the

infrastructure representation, followed by normalizing the score function to derive the service-chain attention.

Finally, the embeddings for microservices (FS) and infrastructure (FI) are generated.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 90 of 94

Figure 71. The attention-aided deployment strategy.

Figure 71 displays the attention-aided deployment strategy by considering the obtained representation context

of FI and FS. The problem of distributed AI task deployment typically faces the challenge of large state and

action spaces. To address this issue, we developed an attention-aided soft actor-critic (ASAC) method. The

context of FS and FI, obtained from the AMR algorithm, is used as part of the state observation. The agent then

processes this state observation to generate a service deployment decision. After executing the action, the current

reward is computed based on data collected from applications and the continuum. Simultaneously, the system

transitions to a new state based on its own evolution dynamics. The agent employs a soft actor-critic learning

process to iteratively update its policy through interactions with the continuum until convergence is achieved

[A1].

(a) Average system reward with different

episodes

(b) Average system reward with different MS

number.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 91 of 94

(c) Average system reward with different UE

number.

(d) Average system reward with different ES

number

Figure 72. Comparisons of average system reward [A1].

We conducted simulations to evaluate our proposed approaches. Figure 72 depicts the evaluation results,

comparing the performance of our ASAC algorithm with existing approaches. The experimental results

demonstrate that ASAC significantly outperforms baseline schemes such as SAC, DQN, and Random allocation

in terms of convergence, scalability, and adaptability across various system configurations. Specifically, ASAC

achieves performance improvements of up to 15.8%, 22.2%, and 120% over SAC, DQN, and Random

algorithms, respectively, by leveraging its advanced feature extraction capabilities, optimized resource

allocation, and adaptive learning mechanisms. It excels in dynamic and large-scale environments, maintaining

high performance as the number of UEs and MSs increases while effectively balancing latency, energy

consumption, and computational efficiency. ASAC achieves peak reward performance at 10 ESs, though its

efficiency declines when ESs increase to 20 due to higher computational demands. In contrast, SAC and DQN

exhibit stable but lower performance, while the Random algorithm struggles under increasing system

complexity. These results highlight ASAC’s ability to intelligently manage resources, optimize system rewards,

and adapt to dynamic conditions, making it a robust solution for complex network environments.

Exploring Collaborative Inferring for AIGC-enabled Edge Services

As aerOS advances the distributed deployment of AI-driven applications, edge collaborative inference for large-

scale AI models emerges as a key use case, demanding strong edge system support. Traditional AI-based

solutions struggle with the growing demand for high-quality content due to mobile devices' computational

limitations. While AI-Generated Content (AIGC) provides innovative solutions, large models like Stable

Diffusion require extensive resources, making mobile deployment impractical and leading to network

congestion, excessive data traffic, and latency issues.

To address these challenges, aerOS explores the Edge-User Collaborative Inference (EUCI) framework, which

partitions inference between edge servers and users. Figure 73 (a) illustrates the Edge-User Collaborative

Diffusion-based AIGC Framework, designed to enable high-quality AIGC under constrained network

conditions while enhancing resource efficiency and reducing cloud server load.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 92 of 94

(a) (b)

Figure 73. Illustration of (a) edge-user collaborative diffusion-based AIGC framework, and (b) workflow of edge-user

diffusion model collaborative inferring [A2].

To further improve user Quality of Experience (QoE), we propose the Edge-User Diffusion Model Collaborative

Inference framework (Figure 73 (b)), consisting of three phases: (1) local user request, (2) collaborative edge-

user inference, and (3) image generation and transmission. In this framework, diffusion models are stored in the

cloud, while edge servers and users collaborate on inference. The edge server processes text prompts and

generates an initial noisy image, which the user partially refines before the edge server completes the final image

generation.

We conduct two types of experiments: comparative and ablation experiments to evaluate the performance of

our proposed approach. The comparative experiments assess our framework's performance against existing

approaches in terms of Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural

Similarity Index (SSI) during image generation. The ablation experiments, on the other hand, focus on

comparing service latency and computational efficiency.

(a) (b) (c)

Figure 74. Visualization of image quality generated by different baselines, (a) mean square error (MSE), (b)

Structural Similarity Index (SSI), and (c) peak signal-to-noise ratio (PSNR) [A2].

(a) (b) (c)

Figure 75. Visualization of image quality generated by different ablation studies, (a) mean square error (MSE) (b)

Structural Similarity Index (SSI), and (c) peak signal-to-noise ratio (PSNR) [A2].

Figure 74 and Figure 75 present the simulation results of image generation [A2]. The MSE values for our

algorithm are lower than those of the comparison algorithms for most images, while the SSI values for our

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 93 of 94

method are higher than or comparable to those of the other algorithms, highlighting its effectiveness. These

results suggest that our framework consistently maintains high image quality across various images and scenes,

demonstrating its strong generalization ability. Additionally, the PSNR values for our algorithm are either higher

than or comparable to those of the other algorithms, further validating the effectiveness and superiority of our

approach.

Dynamic Edge-AI service management and self-adaption

As aerOS supports AI applications, it will facilitate the operation of various AI services across the edge

continuum, as well as the entire workflow of AI applications, particularly those for IoT use cases. These

workflows primarily include data acquisition, data transmission, and data processing. In an AI-powered IoT

application, data acquisition refers to the sensing process, which gathers relevant data from the surrounding

environment to support application decision-making. The acquired data is then processed by a pre-trained AI

model to generate decision outcomes. aerOS enables the distributed deployment of AI services, ensuring

efficient utilization of limited edge resources.

Additionally, frugal AI technologies such as model pruning enhance resource flexibility by allowing AI services

to provide different levels of QoS through AI models with varying parameter sizes. Generally, AI models

deployed within the edge continuum are trained based on available data and AI training technologies. Service

providers can upgrade their maintained AI models as they collect more data or adopt new training techniques.

These upgrades can improve QoS and resource efficiency, leading to higher inference accuracy, lower memory

consumption, and reduced computational overhead. However, such upgrades can also alter environmental

conditions, as edge AI services are increasingly integrated into infrastructure, particularly in the future AI-as-a-

Service (AIaaS) paradigm. This may lead to performance degradation if deployment management policies—

especially DRL-based policies—are optimized for existing AI models. Therefore, the system must adapt to the

evolving characteristics of upgraded AI models to maintain optimal performance as AI-driven applications

become more prevalent.

To achieve this goal in aerOS, we developed an approach based on meta-reinforcement learning [A3]. Figure

76 illustrates the architecture of the proposed approach, which consists of two major components: the meta-

training part and the meta-adaptation part. The meta-training process is supported by a digital twin network and

offline datasets, which provide data for offline meta-training. The digital twin network emulates various

environmental conditions and stores data collected from different scenarios. Meta-training is primarily

conducted using off-policy and offline meta-RL approaches, allowing independent policy updates based on

collected data (i.e., from offline datasets or digital twin simulations) until convergence. Through meta-training

across multiple offline datasets, the context encoder embedded within the policy learns to estimate

environmental features, enabling the policy to adapt to new conditions—even those different from the training

environments. The meta-adaptation process is triggered when the system transitions to a new condition, such as

an AI model upgrade by service providers. This process follows several key steps. First, the policy for managing

the physical edge continuum is initialized using the meta-policy obtained from the meta-training phase. The

policy then interacts with the edge continuum to collect a small amount of data. After gathering a mini-batch

dataset, the policy is updated through a process similar to meta-training. Notably, during meta-adaptation, the

context encoder responsible for estimating environmental features remains unchanged. Instead, it continuously

estimates environmental features and uses them as latent system states to assist in policy decision-making as

well as the update of policy.

 D4.3 - Software for delivering intelligence at the edge final release

Version 1.0 – 20-MAR-2025 - aerOS© - Page 94 of 94

Figure 76. The architecture of meta-RL-enabled dynamic AI service adaptation [A3].

Through the proposed framework, the policy implementation and training processes are decoupled, reducing

the need for online interactions with the physical edge continuum. This decoupling significantly lowers both

the probability of generating risky actions during the initial implementation phase and the overall cost of policy

training. We have conducted studies focused on minimizing the service latency of edge AI applications while

ensuring inference accuracy through the joint optimization of data sampling, task allocation, and AI model

selection. Additionally, this approach aligns with aerOS’ objective of supporting AI tasks while guaranteeing

performance.

Figure 77 presents the simulation results of average latency over the meta-training process in three different

testing environments, where AI models exhibit varying resource and performance characteristics [A3]. The

results indicate that traditional reinforcement learning (SAC) agents trained under specific environmental

conditions suffer from policy mismatches and suboptimal performance, resulting in higher latency in unseen

scenarios. Training in Digital Twins accelerates convergence due to increased data availability but leads to

overfitting, thereby reducing adaptability. In contrast, the proposed approach effectively minimizes service

latency across different AiSF conditions without requiring re-training. Furthermore, meta-RL policies enhance

both stability and adaptability by inferring latent environmental contexts, ensuring robust performance in

dynamic conditions.

Figure 77. Average system latency comparison in different testing environments [A3].

