This project has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement No.

101069732

= EUROPEAN IOT-EDGE-CLOUD

D3.3 — Final distributed compute
Infrastructure specification and
Implementation

Deliverable No. D3.3 Due Date 28-FEB-2025*

Type Other Dissemination Level Public
Version 1.0 WP WP3

Final specification and final version of implementation of components*The due date
has been requested to be shifted to M31(31-MAR-2025) in the on-going amendment to the Grant
Agreement.

Description

gy UNIVERSITAT
illl:;;) POLITECNICA
G’ DE VALENCIA

iyovalia TrControl siEMENS (&) FILARE

HYDAC INTERNATIONAL FOUNDATION

DEMOKRITOS

% - .
$° Telefénica o T SFOGUS 2= I BSSPAN

COSMOTE ERICSSON

INFO d o\ 8”””5 ¢
\ EUROGATE niversity o
o prodevelop \ EFEr S 821
‘ @2 electrum @ MADE ! B oW ZERLAND ‘ nasertic
POLITECNICO Computence Canter ¥ INNOVATION

JOHN DEERE cCloudFerro e W e

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Copyright
Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITECNICA DE VALENCIA ES
NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL
ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES
TTCONTROL GMBH AT
TTTECH COMPUTERTECHNIK AG (third linked party) AT
SIEMENS AKTIENGESELLSCHAFT DE
FIWARE FOUNDATION EV DE
TELEFONICA INVESTIGACION Y DESARROLLO SA ES

ORGANISMOS TILEPIKOINONION TIS ELLADOS OTE AE - HELLENIC TELECOMMUNICATIONS

ORGANIZATION SA EL
EIGHT BELLS LTD cY
INQBIT INNOVATIONS SRL RO
FOGUS INNOVATIONS & SERVICES P.C. EL
L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL
ICTFICIAL OY Fi

INFOLYSIS P.C. EL
PRODEVELOP SL ES
EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED cY
TECHNOLOGIKO PANEPISTIMIO KYPROU cy
DS TECH SRL T

GRUPO S 21SEC GESTION SA ES
JOHN DEERE GMBH & CO. KG*ID DE
CLOUDFERRO SP ZOO PL
ELECTRUM SP ZOO PL
POLITECNICO DI MILANO T

MADE SCARL T

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES
SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer

This document contains material, which is the copyright of certain aerOS consortium parties, and may not be
reproduced or copied without permission. This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the aerOS
Consortium (including the Commission Services) and may not be disclosed except in accordance with the
Consortium Agreement. The commercial use of any information contained in this document may require a
license from the proprietor of that information. Neither the Project Consortium as a whole nor a certain party
of the Consortium warrant that the information contained in this document is capable of use, nor that use of
the information is free from risk and accepts no liability for loss or damage suffered by any person using this
information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications
Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is
not responsible for any use that may be made of the information it contains.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 2 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

Authors

Name ‘ Partner ‘ e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Raul San Julian P01 UPV rausanga@upv.es

Rafael Vafio P01 UPV ravagar2@upv.es

Salvador Cufiat P01 UPV salcuane@upv.es

Fernando Boronat P01 UPV fboronat@dcom.upv.es

Dr. Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr
Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

George Makropoulos P02 NCSRD gmakropoulos@iit.demokritos.gr
Andreas Sakellaropoulos P02 NCSRD asakellaropoulos@iit.demokritos.gr
Renzo Bazan PO5 SIEMENS renzo.bazan.ext@siemens.com
Florian GramR P05 SIEMENS florian.gramss@siemens.com
Amparo Sancho Arellano P05 SIEMENS amparo.sancho-arellano@siemens.com
Philippe Buschmann P05 SIEMENS philippe.buschmann@siemens.com
Korbinian Pfab PO5 SIEMENS korbinian.pfab@siemens.com
loannis Makropodis P10 1QB giannis.makropodis@ingbit.io
Vasiliki Maria Sampazioti P10 1QB vasiliki.maria.sampazioti@ingbit.io
Avristeidis Farao P10 1QB aris.farao@ingbit.io

Christos Milarokostas P11 FOGUS milarokostas@fogus.gr

Alexandros Kakyris P11 FOGUS akakyris@fogus.gr

Katerina Giannopoulou P11 FOGUS kgiannopoulou@fogus.gr

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Tarik Zakaria Benmerar P14 ICTFI tarik.benmerar@ictficial.com
Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Yan Chen P14 ICTFI yan.chen@ictficial.com

Masoud Shokrnezhad P14 ICTFI masoud.shokrnezhad@ictficial.com
Hao Yu P14 ICTFI hao.yu@ictficial.com

Qize Guo P14 ICTFI gize.guo@ictficial.com

George Koumaras P15 INF gkoumaras@infolysis.gr

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Alvaro Martinez Romero P16 PRO amromero@prodevelop.es

Eduardo Garro P16 PRO egarro@prodevelop.es

Francesco De Angelis P19 DST f.deangelis@dstech.it

Version 1.0 — 17-MAR-2025 - aerOS®- Page 3 of 97

mailto:iglaub@upv.es
mailto:rausanga@upv.es
mailto:ravagar2@upv.es
mailto:salcuane@upv.es
mailto:fboronat@dcom.upv.es
mailto:koumaras@iit.demokritos.gr
mailto:vpitsilis@iit.demokritos.gr

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

Riccardo Leoni P19 DST r.leoni@dstech.it

Oscar Lopez P20 S21SEC olopez@s21sec.com
Ramiro Torres P20 S21SEC rtorres@s21sec.com
Jon Egafia P20 S21SEC jegana@s21sec.com

History

Date Version ‘ Change

26-11-2024 0.1 Final Table of Contents

21-01-2025 0.2 First round of contributions

04-02-2025 0.5 Merged document with first round of contributions. Start final round of
contributions

18-02-2025 0.6 Collection of final round of contributions.

04-03-2025 0.7 Merged document with the final round of contributions.

06-03-2025 0.75 Complete the document check from the lead editor

12-03-2025 0.8 Receive comments from IR and start addressing them.

14-03-2025 0.85 Check on final version after IR

17-03-2025 0.9 Submission to Project Coordination

17-03-2025 1.0 Final version for submission

Key Data

Keywords Decentralized orchestration, smart networking, security, edge-cloud continuum,
self-*, Monitoring, Common API, and Identity and Access Managements, Mini-
mum Valuable Product.

Lead Editor Amparo Sancho Arellano (Siemens), Vivek Kulkarni (Siemens)

Internal Reviewer(s) Eduardo Garro (PRO), Nikolaos Zombakis (8Bells)

Version 1.0 — 17-MAR-2025 - aerOS®- Page 4 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Executive Summary

The document is contextualized to the works in acrOS> WP3: aerOS secure, scalable and decentralized com-
pute infrastructure. The present deliverable is the third and final version of WP3 deliverables planned for
M30. The deliverable is based on the aerOS module definitions presented in D3.1 (initial distributed compute
infrastructure specification and implementation), D3.2 (intermediate distributed compute infrastructure speci-
fication and implementation), D2.6 (aerOS architecture definition (1)) and D2.7 (aerOS architecture definition
(2)); and depicts final version of WP3 activities presenting the relevant components of the aerOS architecture
composed from the following tasks:

e T3.1: Smart networking for infrastructure element connectivity.

e T3.2: Communication services and APIs.

e T3.3: aerOS service and resource orchestration.

e T3.4: Cybersecurity components.

e T3.5: Node's self-* and monitoring tools.
D3.3 is structured in a manner that clearly provides the methodological and technological advances for every
task in the context of the aerOS decentralized infrastructure and performed since D3.2.

IMPORTANT: This deliverable is of type OTHER. This means that D3.3 is mostly a software deliverable.
While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be understood
together with the software release that is uploaded alongside it.

Until mid-term, WP3 smart-networking architecture focused on a highly integrated service mesh using intra-
and inter-domain strategies. Key technologies included eBPF (via Cilium) for packet management, OpenFlow
for network adaptability, and RESTful APIs with Kafka and FIWARE loT agents for cloud-to-edge
communication. Scalable orchestration is achieved with Kubernetes operators, Kafka, and ML tools like
Kubeflow and MLFlow. Security is enforced through KrakenD, Keycloak, and OpenlD Connect for API
protection and IAM. Autonomous node monitoring and self-orchestration leverage PowerTOP, psutil, json-
rules-engine, and KubeEdge, enhancing resilience and efficiency in edge computing.

After mid-term, the transition from MVPv1 (M18) to MVPv2 (M30) highlights the continuous improvements
made in:

o Networking and service orchestration, ensuring seamless deployment across domains.
e Cybersecurity mechanisms, enforcing secure access and trust management.
e Self- capabilities*, enabling autonomous optimization and failure recovery.

The iterative development model allowed aerOS to refine its architecture based on real-world use cases,
ensuring practical applicability and robust performance. By integrating cutting-edge cloud-native
technologies, Al-driven orchestration, and secure networking solutions, aerOS positions itself as a future-
ready platform for managing distributed compute environments. Overall, MVVPv2 successfully validates the
aerOS concept, paving the way for its deployment in industrial, 10T, and cloud-edge scenarios.

The final implementation of WP3 components marks the culmination of extensive research and development,
establishing it as a fully functional, decentralized, and scalable compute infrastructure for distributed IoT-
edge-cloud environments. Key advancements include:

e Smart Networking: Secure, scalable, and real-time connectivity across domains using service mesh,
WireGuard, ONOS, and dynamic networking solutions.

e Communication Services & APIs: Standardized APl exposure (OpenAPIl, AsyncAPI) improves
interoperability, while low-code tools simplify integration and automation.

e Orchestration & Resource Management: Al-driven decision-making, ML-powered monitoring, and
dynamic workload balancing optimize system performance.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 5 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

o Cybersecurity Reinforcements: Strong 1AM via Keycloak and KrakenD ensures secure access, with
RBAC and OpenlD Connect enhancing data protection.

e Autonomous Operations: Self-monitoring, anomaly detection, and self-healing reduce human
intervention and maximize reliability.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 6 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Table of contents

TADIE OF CONENES ...ttt bbbttt b bbb s bbbt e se e bt et e bt ebe st e b e e e 7
LIST OF TADIES ..t bRt R b bt R ettt bt e s 8
ST OF FIQUIES .ot b b e et b Rt b e h e bt et e e b e e bbb n e n e 8
I 0] = To3 1] 11700 <SSR 10
1. ADOUL thiS OCUMENT......c.eiiieiiii ettt et e steste e e steete e besreeneesteeneeneenees 12
1.1, DeliVErable CONTEXLEccuiviiiieiieiieiisie ettt ettt b e bbbttt st e 12
1.2. The rationale Dehind the SITUCTUIE.........cciiie it enes 13
1.3, Outcomes Of the AelIVErabIe. ... e 13
1.4, VErSiON-SPECITIC MOTES.......iitieeiieiieiiet sttt bbb r et s bbb e 13

2. IVIVP OVEIVIBW.. ..ttt sttt ettt b bttt b bbb b e b e ket et e st e Rt e bt e bt et e st et et e e e 15
3. FINAl IMPIEMENTALION.ot b ettt bbb nn e 20
3.1. Advancements in Smart networking for Infrastructure Element connectivity.............cccocevveiivevienenn, 20
3.1.1 Updated description and main funCtionalities.............cooerieiiiiiiniieieeeese e 20
3.1.2. Updated SrUCIUIE QIagramcveiveieeieieceeite sttt st s e e sr et esreste e besreeneesre e 30
3.1.3. Technologies and standards deployed iNn IMVP..........cccooiiiciiiiiic e 33

3.2, CommuNication SEIVICES AN APISc.uiieiiieie et sttt see e e nte e eneenre e 34
3.2.1. API concepts, guidelines and best practices proposed in D3.2........cccccceveivivievecieve e, 34
3.2.2. ABIOS OPENAP .. bbb r et nne s 35
3.2.3. ABIOS ASYNCAP ...ttt aeennres 43
3.2.4. 011V oo T L= 0 o To] £SO 55
3.2.5. Technologies and standards deployed iNn MVP..........cccociiieiiiiiiic e 57

3.3. aerOS service and reSOUrce OFChESIIALIONoviiiiriiie et 57
3.3.1 MaiN FUNCEIONAIITIES ... et sb et 57
3.3.2. SETUCTUNE JIAGTAMttt bbbttt b e 65
3.3.3. Technologies and standards deployed iN IMVP..........ccooiiiiiiiiiic e 69

3.4, CybherseCUritY COMPONENTS ... c.viuiitiiterteste sttt sttt sttt b sttt bt e e e s e et et e sb et b b n e 71
3.4.1. Main FUNCHIONAIITIES ..ottt st sne e e 71
3.4.2. SETUCTUNE QIAGTAM ...ttt bbbttt ettt bt 75
3.4.3. Technologies and standards deployed in MVP........c.oooiiiiiiiiieee e 76

3.5. Node’s self-x and MOoNItoring tOOIS...........ccerviiiiiiiire e 77
3.5.1. MaiN FUNCLIONAITTIESveivieiccece ettt besre e nee e 78
3.5.2. SEUCTUIE QIAGIAIM ...ttt sttt ettt et e sae st esbeeme e st e saeeneeseeeneeneeanean 83
3.5.3. Technologies and standards deployed in MVP..........cooiiiiiiiiii e 94

S O o] o o [1ES] o] o SR 97

Version 1.0 — 17-MAR-2025 - aerOS®- Page 7 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

List of tables

Table 1. Network mesh for real time cross-domain service COMmMUNICALIONcccovviieererieresieeie e 30
Table 2. Open Network Exposure for Standardized API ACCESSccocvvveieiiiieeseeee e steenie e 32
Table 3. ONOS OPENFIOW MANAGETcveiieiieeieiie et st e st te et e besre et e te s e e sbesteesaesreeteestesreenrenreans 33
Table 4. Technologies and standards for aerOS networking implementation............cccccovvevevevieeiese e, 33
Table 5. DDS DOMAIN ODJECTvoivitiieieieisesies sttt b bttt nb e b nn e r e 45
Table 6. DDS DiSCOVEIY ODJECT ..ot nren e 46
LI Lo LR B T R oo T (] o] 1= o! OSSO S 47
Table 8. DDS INtErfaCes ODJECT........ccuiiiiiieieiieie ettt e e 47
Table 9. DDS Operation BiNdiNg ODJECL..........ciiiiiiieieieiecieese e 48
Table 10. DDS PUBIISNEr ODJECLcviiiiiie et b et ae s te et e resreeseesre e 48
Table 11. DDS SUDSCIIDEr ODJECEc.viiviiieiiecteeie sttt sttt re e be s ae e b e s beeseesreeseestesreenresre e 48
Table 12. Subset of DDS QO0S POIICY ODJECLS.........ciuiiiiieieiiisiisiesie e 48
Table 13. ROS 2 Server BindiNG ODJECEccviiiie sttt st re st saeenre e e 52
Table 14. ROS 2 Operation Binding ODJECL..........coii it sae e e 53
Table 15. ROS 2 Quality Of SEIVICE ODJECTccueiviiiieieieie e 53
Table 16. ROS 2 type map to ASynCAPI types and fOrmat...........cocvvcveeiveiienieiieece e 54
Table 17. Technologies and standards deployed in MVP ... 57
Table 18. aerOS High-Level Orchestration Components’ deSCIiption...........cuevririrrerierierierieesesesese e 65
Table 19. aerOS Multi Low-Level Orchestration Components’ deSCription...........cuovrervereieeeninienesenieneenens 69
Table 20. Technologies and standards deployed in MVP ... e 69
Table 21. List Of CYDEIrSECUIITY T00ISueiieiicece e et re e nre e 76
Table 22. T0ols deployed iN The IMVP..........oieee e 77
Table 23. Self-* capabilities components, description and INtEraCtioNS...........cccceeveviiiieveceece e, 84
Table 24. Self-* capabilities technologies/standards, descriptions and justifications deployed in MVP.......... 94

List of figures

Figure 1. SOftware release 0F D3.3 ... be e te e st et e e besbeebesbe et e sreeres 14
Figure 2. Building BIOCKS OF WP3 ...ttt sttt st sbe et be b te e sreers 16
Figure 3. Wireguard server configuration in 8erOScciiiiiiiineiecee s 22
Figure 4. Wireguard client configuration in @erOSccveiiiiiic i 22
Figure 5. Dnsmasq server configuration in @BrOSccciiiiiiiiic it ee 22
Figure 6. Left: aerOS continuum “Domain” entity including public key. Right: secret with private key. 23

Figure 7. aerOS continuum “Service” entity including information of domain providing the overlay service 23
Figure 8. Object of the orchestration process including information for connecting to the networking overlay

... 24
Figure 9. Server configuration object, including clients’ informationccoceeeerinieiinienc s 25
Figure 10. Service components connected to the overlay. Data from WireGuard server shell....................... 26
Figure 11. Dnsmasq configuration associating service components with service name............ccccoeceveveievene 26
Figure 12. Overlay connectivity and service names resolution. Network operations within a service
COMPONENT SNEILL......eee ettt ettt e et ete e e see et e e eesreene e besneenteseeeneeseeenes 27
Figure 13. aerOS OVEIIaY QIAGIAM.......cviiiiie et sttt eseeste e e seeereebeereeeeseeeeeseeenes 28
Figure 14. aerOS cross-domain overlay orchestration sequence flow detail.............ccccooeiviiiiiniiiinciene 28
Figure 15. aerOS cross-domain network overlay provision during service orchestration.............cc.ccoceeerennne. 30
Figure 16. aerOS integration With OPENCAPIF. ... e ee 32
Figure 17. aerOS auX SEIVICE TOI SDIN. ..ottt sttt et e b e eesaeeeeseeenes 32
Figure 18. aerOS communications and services through OPenAPI ...t 35
Figure 19. ContextBroker API inside aerOS OPENAPToo it 36
Figure 20. ContextBroker API inside aerOS OPENAPI (2) ...c.eoieiie et 37
Figure 21. Federator API inside aerOS OPENAPIc.vo it ee 37
Figure 22. HLO AP inside aerOS OPENAPTc.vi ettt ettt sre e 37

Version 1.0 — 17-MAR-2025 - aerOS®- Page 8 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Figure 23. HLO AP inside aerOS OPENAPTc.viii ettt et sre e 38
Figure 24. LLO AP inside 8erOS OPENAPLccoiiiieeiei e 38
Figure 25. Data Fabric API inside 8erOS OPENAPIcooiiiii e 38
Figure 26. Data Product Manager APl inside aerOS OPENAPL..........ccoiiiieiiie e 39
Figure 27. Self-Capabilities API inside aerOS OPENAPLcovcvii i 39
Figure 28. Self-Capabilities API inside aerOS OPENAPT (2) ...cvviviiiieieieieieise s 40
Figure 29. IdM API inside aerOS OPENAP........ecii ettt re et s re e e sre e sreenes 41
Figure 30. IdM API inside aerOS OPENAPT (2) c.ecuviiuieiiiiiieie sttt sttt st sre et srenne 41
Figure 31. IdM API inside 8erOS OPENAPT (3) ..veveieieieisiiese et 41
Figure 32. IIMAPI inside 8erOS OPENAPI (4)vieeieieieiesee e 42
Figure 33. IdM API inside aerOS OPENAPT (5) ..ecuviiuieiiiiiieie it s ettt s re st a et ee e nne 42
Figure 34. IOTA AP insSide 8erOS OPENAPc.eiiiiieeiei s 43
Figure 35. aerOS communications and services through ASYNCAPL ..o 43
Figure 36. AsyncAPI specification of a reliable service using the DDS binding.........c.ccccooveviviiiicvcincvie e, 49
Figure 37. UML class diagram of generated CycloneDDS python COUEcoevvveveiveieie e 50
Figure 38. Output of code generator and exemplary CycloneDDS applicationccccceevviiiiinenenenennenn 51
Figure 39. Example ROS 2 server binding OBJECT ..o 52
Figure 40. Example ROS 2 operation binding ODJECL..........ccoiiiiiiiecice st 54
Figure 41. ROS 2 interfaces represented left as the AsyncAPI specification file format and right as a .msg
@ ST 1 LT o] 11 LSS 55
Figure 42. Behavior tre€S iNABIOS.ociiieieieee ettt s be e be e e sr e s be e b e s beete e besbeebesteeneesreeres 55
Figure 43. NOGe-RED N AEBIOS.......cci ottt s te et st e s be e b e s beete e besbeebeste e e e srenres 56
Figure 44. Flow to generate I0W-COAE SKIlIS...........ocoiiiiiiiiiiiic e 56
Figure 45. MLOps inference pipeline structure for the HLO Allocator Al algorithm.cccccoeveiiiniiinnnne. 60
Figure 46. Deep Reinforcement Learning of the HLO Allocation ENgine.........ccccccvvvveveieciene e 61
Figure 47. aerOS High-Level Orchestration COMPONENTSccoririeieiiiiiieesese s 65
Figure 48. aerOS Multi Low-Level Orchestration COMPONENTSc..eoveveiiiriiisiesiesie e 68
Figure 49. Synchronisation of OpenLDAP users in KeYCloaK.ccccoviiiiiiiiiiiiic it 72
Figure 50. Groups generated for 2nd MVP in OpenLDAP (and federated in Keycloak)c.cccccvvrerennne. 73
Figure 51. Roles generated for 2nd MVP in OpenLDAP (and federated in Keycloak)c.ccocvvvrininenne. 73
Figure 52. Users generated for MVPVv2 in OpenLDAP (and federated in Keycloak)cccoeevveviiniicnnnane. 74
Figure 53. KrakenD and its Capabilitiescocveiiiiiicii et sre e 75
Figure 54. aerOS Authentication, authorization, and access CONIol............ccoviiviireneneiee e 75
Figure 55. KrakenD retrieving access token from KeyCloakcccccveviiieiiiiiiic i 76
Figure 56. Deploying token t0 access an a6rOS APL........cov oottt 77
Figure 36. Hardware info sub-module running on a test cluster of infrastructure.............ccccoveviiiniiiie, 78
Figure 37. Power consumption sub-module running on a test cluster of infrastructure.............cc.ccooevvivnennn. 79
Figure 38. Self-orchestrator module running on a test cluster of infrastructure...........ccccccovveveviii s, 80
Figure 60. Self-Security alert @XamPIE..........cooiiiiiieee bbb 80
Figure 61. Self-API module running on node-8 of test K8s cluster-2 of infrastructure............ccccoeevvnenenne. 81
Figure 62. Example of JSON alert from self-healing to Trust Managerccooeioviieie e 81
Figure 63. Example of JSON alerts from self-healing to Self-AP1 ... 82
Figure 64. Self-realtimeness relocating real-time workload with bad time-utility from node 1 to node 2 (2).. 82
Figure 44. Relationships between the different self-* capabilities of an IE.............ccccoooiiiiiiiiiiie 83
Figure 45. Self-awareneSss SCREMA.ottt st sre et et e reeeeseeeeeseeenes 84
Figure 46. Self-0rChestrator SCNEIMAL.oiiiiiiiee bbb 85
Figure 47. Self-SECUITY SCNEIMA ..ottt bbb 86
Figure 89. SEIf-APT SCREIMAottt ettt e e besreetesee e e e seeenes 87
Figure 70. Self-SCAliNG SCNEMAL........oii ittt see et e st reeeeseeeeeseeenen 87
Figure 71. Self-configuration SCHEMAooiiiiiiice bbb 88
Figure 50. Self-Nealing SCNEMAc..oiiiiii e 90
Figure 73. Link QUAlILY ISSUE SCENAIO......ecueiieiieieieeieeiieeie ettt sttt sttt esee st e e see et e besneeneeseeeneeseeenen 91
Figure 74. Network Protocol Violation SCENAIIO.........cc.eiiiiiiiiece ettt 91
Figure 53. Self-optimisation and adaptation COMPONENtS SCNEMAccccvveiiiiiiieii e 92
Figure 76. Schema of Anomaly Detection MOGEN ..o e 92

Version 1.0 — 17-MAR-2025 - aerOS®- Page 9 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

Figure 77. Schema of Sampling Model

List of acronyms

Acronym ‘ Explanation

AAA Authentication, Authorisation, Accountability
ACNC Adaptable Computing-Network Convergence
API Application Programming Interface

BLE Bluetooth Low Energy

BS Base Station

CBAC Context-Based Access Control

CEl Cloud-Edge-loT

CIDR Classless Inter-Domain Routing

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CRD Custom Resource Definition

CRUD Create, Read, Update, and Delete

DDS Data Distribution Service

DDQL-GNN Double-Deep Q-Learning-Generative Neural Network
DevOps Development and Operations

DevPrivSecOps Development, Privacy, Security and Operations
DRL Deep Reinforcement Learning

ETL Extract, Transform, Load

ETSI European Telecommunications Standards Institute
eBPF Extended Berkeley Packet Filter

FaaS Function-as-a-Service

GNN Generative Neural Network

HATEOAS Hypermedia As The Engine Of Application State
HLO High Level Orchestrator

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IdM Identity Management

IE Infrastructure Element

loT Internet of Things

K8s Kubernetes

LCM LifeCycle Management

LDAP Lightweight Directory Access Protocol

Version 1.0 — 17-MAR-2025 - aerOS®- Page 10 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

LLO Low Level Orchestrator

MANO Management and Orchestration

MDP Markov-Decision Process

MILP Mixed Integer Lineal Programming

ML Machine Learning

MQTT Message Queue Telemetry Transport

MVP Minimum Viable Product

NFV Network Function Virtualization

NGSI-LD Next Generation Service Interface — Lined Data
NS Network Service

NSD Network Service Descriptor

NSM Network Service Manager

OAS Open API Specifications

OIDC OpenlID Connect

OMG Object Management Group

OPC UA Open Platform Communications — Unified Architecture
OSM Open Source MANO

PIRA Placement, Instance Assignment, Request Prioritization, and Allocation
PPO Proximal Policy Optimization

QoE / QoS Quality of Experience / Service

RBAC Role-based access control

ROS / ROS2 Robot Operating System

SDK Software Development Kit

SDN Software-Defined Network

SLA Service Level Agreement

SSO Single-Sign On

TOSCA Topology and Orchestration Specification for Cloud Applications
TSDB TimeSeries DataBase

TSN Time-Sensitive Networking

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VPN Virtual Private Network

VPP Vector Packet Processor

Version 1.0 — 17-MAR-2025 - aerOS®- Page 11 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

1. About this document

Deliverable D3.3 presents a concrete view of the final methodological specification and technological imple-
mentation of the components that constitute the aerOS decentralised infrastructure from WP2, which is an
essential part of the aerOS Meta-OS. It builds up on the candidate technologies that thoroughly described in
D3.1, D3.2 and elaborates on the final state of the composing components and their interactions. This deliver-
able is the final blueprint of the aerOS infrastructure and the components that developed in WP3 and posed to
be integrated in aerOS use cases as detailed in WP5 deliverables.

1.1. Deliverable context

Item Description

Objectives O1 (Design, implementation and validation of aerOS for optimal orchestration): Final
implementation of the components related to aerOS orchestration capabilities.

02 (Intelligent realisation of smart network functions for aerOS): Final implementation of
the smart-networking components.

O3 (Definition and implementation of decentralised security, privacy and trust): Final
implmentation of the aerOS cybersecurity components related to authentication,
authorization, and secure access to aerOS APIs.

O5 (Specification and implementation of a Data Autonomy strategy for the 10T edge-cloud
continuum): Final implementation of the NGSI-LD module and its integration with other
aerOS communication services and APIs.

Work plan D3.3 content is based on the definitions and technologies specified in tasks:

» T2.1 state of the art. The development of the aerOS components that presented in this
deliverable are based on the recorded state of the art.

» T2.2 use cases and requirements. The development of the aerOS components that
presented in this deliverable consider the requirements for the different use cases.

* T2.4 DevPrivSecOps. The development of the aerOS components that presented in
this deliverable take into account the DevPrivSecOps methodology.

« T2.5 aerOS architecture. The components that developed and presented in D3.2 are
defined in the aerOS architecture.

The content of D3.3 is the result of the following tasks activities:
e T3.1 Smart networking for infrastructure element connectivity.
e T3.2 Communication services and APIs.
e T3.3 aerOS service and resource orchestration.
e T3.4 Cybersecurity components.
e T3.5 Node's self-* and monitoring tools.

D3.3 presents the final integration of components defined by WP3 tasks within the
decentralized infrastructure. The final development of the D3.3 components are contributing
to WP5 integration and use case deployments tasks.

Milestones This deliverable is the final step from WP3 towards the achievement of the milestone MS7 —
Final software components release (M30).

Version 1.0 — 17-MAR-2025 - aerOS®- Page 12 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Deliverables D3.3 is based on the components that are described in D2.6 and D2.7, and the candidate
technologies analysed in D3.1 (Initial distributed compute infrastructure specification and
implementation) and their intermediate development and integration as described in D3.2
(Intermediate distributed compute infrastructure implementation). Additionally, this
deliverable is coordinated with deliverable D4.3, which is delivered at the same time.

1.2. The rationale behind the structure

D3.3 details the final development and integration of the functional components in the context of the five
WP3 tasks and formalize the work package’s activities as well as elaborates on the actions that performed in
the context of WP3 to finalize the Minimum Viable Product version 2 (MVPv2). Hence, the deliverable
unfolds in five sections. Section 1 provides basic information about the deliverable. Section 2 contains a brief
introduction of the context and current status of aerOS. Section 3 presents an overview of the MVPv2, while
Section 4 elaborates on the advancements of the five WP3 tasks, detailed in separate subsections that follow
the same formal structure. More specifically, the subsections 4.1-4.5 begin with an updated description of the
main functionalities of the WP3 components to the ones described in D3.2. Later, they provide the updated
structure diagrams along with a description of each component, and concludes with the technologies and
standards that employed in the MVPv2. Finally, Section 5 concludes the deliverable.

1.3. Outcomes of the deliverable

This deliverable aims at providing the final version of the aerOS infrastructure components with the work
done in WP3 to accomplish the MVPv2. As in D3.1 and D3.2, the components descriptions are abstracted at
the start of each subsection of section 4 (4.1-4.5), and updated advancements of those components considering
the five different domains that each of the WP3’s tasks focus.

The aerOS smart-networking represents the functional components responsible for attaining networking
efficiency, agility and performance across the aerOS infrastructure elements.

The aerOS communication services and APIs produce the functional components responsible for effortless,
efficient, and continuous communication of the aerOS services across the whole 10T edge-cloud continuum.

The aerOS service and resource orchestration develops the functional components aiming to deploy, manage,
and federate services, responsible for delivering the aerOS functionalities. Moreover, it prepares the functional
components essential to properly allocate and evenly deploy various resources to meet the requirements of
vertical 10T services employed on top of aerOS.

The aerOS cybersecurity components provides Identity and Access Management (IAM) services focusing on
registering and authenticating users in aerOS, managing their access to aerOS elements, as well as providing
secure access to computerized resources (APIs, infrastructure elements or domains) by linking users’ roles and
restrictions with registered identities.

The aerOS node’s self and monitoring tools develop the functional self-* components to enhance
Infrastructure Elements (IEs), deploying automated procedures that minimizes the human interaction during
all the operations of IEs. To accomplish this, several functional and runtime parameters, such as health and
security status, are provided.

1.4. Version-specific notes

As mentioned above, this deliverable is of type OTHER. This means that D3.3 is mostly a software
deliverable. While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be
understood together with the software release that is uploaded alongside it.

In the compressed file that is downloaded when accessing this deliverable, the reader will be able to find two
main artefacts: (i) this very document, that reflects in a narrative way the progresses achieved, and (ii) a

Version 1.0 — 17-MAR-2025 - aerOS®- Page 13 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

compressed file that is, in turn, composed of several compressed GitLab repositories corresponding to the
code development progress by M30.

In particular, and in order to facilitate the readability of the technical delivery, here below there is an
indication of the repositories that have been included in the submission. They are structured following the task
reporting that is used in this document (D3.3). This schema is also used in the submitted file. The directories
contain the current advances, alongside an explanatory README.MD in each of them in order to describe
their purpose and content.

T3.1 Smart networking for infrastructure element connectivity

aer0S Domain TLS
Core aer0OS networking
OpenFlow Commander

aer0S orchestrator overlay

T3.2 Communication services and APIs

* aerQS OpenAPl
* AsyncAPl ROS2
* MVP Node-RED

T3.3 aerOS service and resource orchestration

* Specification files
aerOS K8s shim
HLO Frontend
HLO Local Allocation Manager
HLO Data Aggregator
HLO Allocator
LLO CR API
LLO K8s Operator SDK
LLO Docker Operator

LLO Docker Controller

wg-kopf

T3.4 Cybersecurity components

* APl Gateway
* |dM

T3.5 Node's self-* and monitoring tools

Self-API
Self-awareness

Self-configurator

Self-healing

Self-optimization
Self-orchestrator
Self-realtimeness
Self-scaling

Self-security

Version 1.0 — 17-MAR-2025 - aerOS®- Page 14 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

2. MVP Overview

Over the course of its realization, aerOS has carefully designed an architecture aimed at providing loT
developers with a coherent environment to leverage distributed capabilities across the entire continuum. This
architecture delivers a unified execution environment to support the deployment and reuse of 10T services
seamlessly. With a vision to functionally unify a diverse range of computing and network resources—from
cloud to edge and even 10T devices—the project has employed and integrated numerous state-of-the-art
concepts and technologies.

Building upon the foundational architecture, significant advancements beyond the state of the art have been
achieved by M30 through research, development, and implementation in key technical domains. These
include advancements in compute and network fabric, service fabric, and data fabric, which collectively
underpinned the development of new components and additional functionalities. Extending the initial MVVPv1,
which was delivered by M18, MVPv2 (delivered in M30) consolidated recent project advancements and
addressed various development and integration complexities, providing an enhanced platform which can
validate and demonstrate the final technological achievements of aerOS.

The MVPv2 has been structured in different flows, which demonstration has been recorded and will be
uploaded to aerOS’ official YouTube channel as soon as the post-editing activities are finalized.

aerOS Meta-OS encompasses a wide area of technologies in the field of programmable networks for enhanced
connectivity, resources and service management and orchestration, resilient and self-adapting runtime layers
that need to be employed in order to provide the minimum for the execution environment that aerOS requires.
Additionally, cybersecurity tools and trust management are essential to ensure private and secure
communications and access to services over all the aerOS continuum. All IEs and aerOS domains seamlessly
expose APIs for fully defined communication among components and services. Respectively, Data Fabric
technologies and integrated components are designed to support the transition from heterogeneous IoT data to
a unified Data Dabric, and while monitoring capabilities should extract all information produced and needed
for the self-adaptation of the ecosystem, analytics are foreseen to support events recognition and healing
processes’ triggering. Even more, Al tasks are designed to run over different IEs in the continuum with
optional use of frugality techniques and inclusion of explainability and interpretability.

Above mentioned technologies represent the primary aerOS technologies and tools employed to realize the
continuum and all these are implemented encompassing assimilable cloud native practices to enable
stakeholders to design, deploy, and operate scalable and resilient applications over the aerOS Meta-OS. The
goal is to encompass cloud-native techniques naturally in continuum deployments, where infrastructure
(physical and virtualized) ranges from loT devices all the way up to cloud data centers (and not only the latter,
which is the usual cloud-native case). The complex nature of the above tasks and the integration of so many
diverse technologies and implementing components introduced the requirement for an iterative development
which would consider and integrate early implementation evaluations, and which should optimize
functionalities based on feedback emerging both from development teams and from targeted audience, i.e. 10T
developers

It is worthwhile mentioning that addressing all the complexities and successfully achieving the project’s goals
could not be accomplished in a single stage. Thus, following the agile methodology of the project, a clear,
staged strategy was defined and implemented. Initially, the aerOS team developed a Minimum Viable Product
(MVP) by M18 to integrate the aforementioned technologies and tools into a functional prototype. By month
30, this approach has evolved further, leading to the completion of MVVPv2. Building upon the insights gained
from the initial MVP, the aerOS team refined the architecture concepts and expanded the platform’s
capabilities, addressing new use cases and challenges. MVPv2 not only realizes all the core functionalities of
a Meta-OS for continuum, as designed by aerOS, but also introduces additional components and features that
enhance the overall system’s performance and scalability. Throughout this process, aerOS has maintained a
focus on resource efficiency, validating with MVPv2 that the aerOS remains a lightweight implementation
while preserving the platform's core functionalities. MVPv2 also includes advanced safeguards and
mitigations, enabling seamless deployment to pilot locations and allowing the team to validate and fine-tune
real-world scenarios. This iterative development approach has proven invaluable in demonstrating the
feasibility, viability, and effectiveness of aerOS’s architecture in real and diverse environments.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 15 of 97

https://www.youtube.com/@aeros-project

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

While the initial MVP encompassed the most compelling -first version of- aerOS functionalities, MVPv2
integrates all components of architecture building blocks and is thus a valuable ecosystem for demonstrating
core concepts of aerOS architecture for a continuum Meta-OS. MVPv2 integrates two aerOS domains, which
are deployed in two distinct locations, in geographic and administration terms, to demonstrate its functionality
over the public cloud. Additionally, a mobile domain, although it is not a part of the continuous development
and deployment process, is ad-hoc integrated when we need to exhibit the process, and the simplicity of this
process, of integrating new infrastructure and extending the continuum.

One of the core two domains is designed to be the entrypoint domain, while the other stands as a plain aerOS
domain, which could be deployed anywhere across the continuum. The entrypoint domain is located in the
common development and integration infrastructure of the project (a space provided by the partner, cloud
provider, CloudFerro), while the plain one resides in the premises of the Technical Coordinator - NCSRD.
This diverse topology of the MVP allows the evaluation of aerOS federation mechanisms for expanding in an
agile way the aerOS continuum domains with additional/new ones, and this is the purpose of supporting a
third one mobile domain which is provided with minimal legacy equipment from UPV.

Like its predecessor, MVPv2 builds upon outcomes from both WP3 and WP4 which constitute the two
technical work packages of the aerOS project. WP3 works on providing the required infrastructure
components, based on the aerOS architecture, needed to enable scalable and secure 10T edge-cloud continuum
aiming to support the resources and services orchestration across the continuum. WP3 encompasses several
technologies and is related to several components in the aerOS stack. As already presented in D3.1 and D3.2,
the figure below represents the building blocks which WP3 addresses.

Infrastructure Element (IE)

aerOS Runtime Decentralized Orchestration

Distributed State Repository

Network and Compute Fabric

Data Fabric

Service Fabric

aerOS Basic Sy STy g

Services Self-* and Monitoring

Decentralised Al

Common API

Management Framework]

Covered by
WP3 e |
aerOS Aux

Distributed over 5 tasks, many diverse technologies are addressed within WP3. Each task further breaks down
to a set of relevant technologies related to its domain of interest. While first MVP version, prioritized
components which were considered to provide functionalities prominent in establishing a prototype to
demonstrate aerOS continuum, MVPv2 integrated many more functionalities that unleash the potential of an
efficient management of resources and services for continuum actors in various industry verticals from edge to
cloud.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 16 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

With the target of supporting, through the deployment of MVPv2, a fully integrated environment that
demonstrates advanced federated orchestration capabilities—managing a variety of services across diverse
heterogeneous resources—WP3 has focused on providing the underlying mechanisms to enable this process.
These mechanisms have been further refined and validated by month 30, ensuring their seamless integration
into existing isolated computing infrastructures and their smooth transformation into aerOS-capable domains,
as exemplified by the aerQOS pilot sites.

While tasks T3.1-T3.5 have devoted to completing the established formal goals, the efforts required to
materialise the MVVPv2 have been directed, mostly, to:

o Network programmability and automated connectivity management, targeting cross-domain
overlay connections built over public networks, interaction with network devices external to
aerOS ecosystem, and providing binds with telco NFV standards.

e API development and standardization based on industry specifications, which can boost
interoperability, security, and automation.

e Low code tools integration for introducing streamlined data exchange and enabling easy users
interaction.

e Extended orchestration capabilities, incorporating networking isolation, Al-driven decision-
making with explainability, and energy-aware resource selection.

e Complete security and access control mechanisms, including 1AM, RBAC, and secure API
gateways, ensuring controlled access to aerOS services, alongside secure development pipelines
for component integration.

e Self-* capabilities, enhancing IE monitoring, anomaly detection, self-optimization, self-healing,
and real-time status updates, which can support dynamic and resilient service orchestration across
the continuum

The following paragraphs provide a summary of the outcomes of each task, of WP3, which have been
delivered and included in MVPv2 realization. Additionally, their relevance in establishing aerOS continuum
establishment, is roughly presented.

The first release of MVP (v1) established the foundations for network integration in a connected continuum.
Inter-domain connectivity and service exposure were, thus, already ensured by M18. For MVPv2 focus shifted
towards advancing the programmability and automation of network connectivity. The crucial point was to
ensure the automated connection between service components (isolated pieces forming a service flow). For
doing so, cross-domain overlay connections were needed. Now, every time that such flow is orchestrated,
isolated components can automatically and securely connect among each other, regardless their location.
Components that can interact with external networking infrastructure, based on programmability of external
OpenFlow capable devices, were investigated with the goal to provide a close binding with hosting premises.
Additionally, identifying the advantages of aligning with industry-standard frameworks, in this period aerOS
networking capabilities were integrated with key telco domain and NFV technologies. This includes the task
to integrate with openCAPIF, which implements the CAPIF (Common API Framework) specification,
developed by ETSI, with the aim to facilitate interoperability with telecom networks. By aligning with
CAPIF, the programmability and automation of aerOS network is enhanced, enabling seamless service
orchestration and integration across diverse environments. This effort is part of a broader goal to bridge cloud-
native networking with traditional telecom infrastructure, ensuring compatibility with future NFV and telecom
standards.

In terms of service intertwining and API establishment, the foundational aspects of APl development are
shaped within the aerOS ecosystem, focusing on API guidelines and best practices, and API specifications and
tooling. As this task has been instrumental in establishing comprehensive guidelines for API design, ensuring
consistency, scalability, and security across the system, it has greatly contributed to MVP since by embracing
industry-standard specifications like OpenAPI, aerOS did not only streamline APl documentation but also
facilitated their integration across diverse tools and platforms. Additionally, the adoption of the low-code tool
Node-RED has been pivotal in enhancing user interactions within the aerOS ecosystem. It has enabled the
creation of a user-friendly Ul interface that allows users to effortlessly send data to Orion-LD and

Version 1.0 — 17-MAR-2025 - aerOS®- Page 17 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

automatically publish information in IOTA, further enriching the system's interoperability and data handling
capabilities. The adoption of code generators under this task has further expedited the development process,
enhancing the ecosystem’s versatility and interoperability. These efforts collectively form a crucial part of the
aerOS infrastructure, setting a robust framework for efficient communication within aerOS MVPv2.

The capacity of orchestrating microservice applications across heterogeneous Infrastructure Elements of an
aerOS continuum is one of the most prominent innovations of the project. While in MPVv1 the foundational
components that can ensure structured orchestration were successfully developed and validated, in the second
period, capabilities with a special focus on network automation sere advanced. These include, among others,
Al-driven decision-making, and enhanced resource efficiency. Developments in first period (M18), come up
with a double layer orchestration process. HLO and LLO layers are key components of aerOS, enabling
efficient service deployment across the continuum. LLO provided orchestration for Kubernetes (K8s),
container, and Docker-based workloads, while HLO managed IE selection, requirement processing, and
deployment coordination. Now within this period and for MVPv2, automated networking capabilities were
integrated to enable dynamic connectivity management, and HLO and LLO components were extended to
support isolated overlay subnets allocation per service, improving segmentation and security. HLO was
further enhanced with energy-aware selection criteria, optimizing deployments for power efficiency.
Additionally, we expanded Al-driven decision-making in HLO with explainability mechanisms, increasing
transparency in IE selection and orchestration decisions. To support these advancements, continuum models
were extended, such as internal protobuf messaging, and topology descriptors (TOSCA) that incorporate these
new parameters, ensuring a more intelligent, adaptive, and efficient orchestration framework.

Secure and controlled access to resources is critical, therefore, all processes related to aerOS Cybersecurity
have been finalized and incorporated into the second version of the MVP to demonstrate their integration with
the entire aerOS Meta-OS. As a result, the authentication, authorization, and access control capabilities of
aerOS are deployed and showcased in MVPv2, demonstrating how users with different access rights can be
effectively managed by the aerOS IAM system using the RBAC mechanism and the KrakenD secure gateway.
The combination of these tools enables the blocking or allowing of access to aerOS APIs (e.g., NGSI-LD
endpoints). For the second version of the MVP, regarding the aerOS secure APl Gateway, additional
functionalities were introduced over time as different components required extra endpoints. Moreover, |IAM
facilitates authorized access to the aerOS Management Portal (for more details, refer to D4.3), ensuring
restricted access to different domains within the portal based on user roles and groups. Since the initial version
of the MVP, which was iterated on throughout the project, these roles and groups have been updated based on
project needs. Consequently, access to the registered resources and functionalities within the Management
Portal is tightly regulated and only allowed for authorized users. While the above features deal with securing
the aerOS runtime environment, aerOS development team has also put in place a foundational toolset to
support the development and secure integration of components, around the GitLab platform depicted from
task T2.4 with pipelines for secure code development and continuous integration. Although, this toolset is not
incorporated into MVPVv2, it provides valuable functionality for securely developing and deploying aerOS
components.

Also, in the MVP, the most relevant self-* modules (those that live and act within the scope of a single IE)
have continued to be developed, improved, integrated and tested. It is worth mentioning that only a sub-set of
the self-* modules were incorporated into the MVPv2 due to functional reasons (some of the components
have very specific purposes to respond to particular cases that were not replicated in the demonstration flows
of MVPv2).

The self-awareness component has been included in MVPv2, as it automates the process of publishing IE
capabilities and updating, on real-time, running IE availability. For this new version of the MVP, the amount
of information that can be extracted from each IE in the continuum has been increased, the integration with
the rest of the self-* components has been improved, and the possibility of modifying the data sampling
frequency (via REST API) has been added to optimize the IE resource consumption. The information obtained
by the self-awareness module is modelled using aerOS data model for the continuum (WP4), and IE status is
propagated all across the continuum consisting thus a candidate for 10T service components deployment. The
self-orchestrator module has also been conveniently updated, increasing the amount and variety of
information capable of managing its rules engine or reducing its resource consumption, among other new
features. This component is in charge of sending re-orchestration alerts to the HLO as and when necessary.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 18 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

For protection and mitigation of IE intrusion events, self-security has improved its threat detection capabilities
and is now able to detect a wider variety of attacks towards an IE. Not only the MVPv1 self-* module
integrations have been reinstated and improved, but more self-* capabilities have been included. It is now
possible to handle critical situations in a more elegant, faster and efficient way. Based on the objective of
providing a complete set of functionalities, self-optimization and adaptation has also been developed to detect
anomalies based on the information received by self-awareness, and optimize IE resources by requesting early
re-orchestration to the self-orchestrator to avoid a saturation in IE resources. Self-healing has also been
planned and developed, to detect failures in both the IE and loT devices connected to the node, through
different scenarios. The self-API (another implemented module) allows the connection with the internal APIs
of the self-* modules used. This results in a robust result that can be deployed in aerOS-compatible
continuums.

MVPv2 has served as the primary environment for validating the stability of architectural concepts and
evaluating the viability and synergy of components. The aerOS development team, composed of numerous
technical partners, has worked collaboratively to deliver seamlessly integrated components. While
development adhered to specifications, contracts, APIs, and data model definitions, MVPv2 provided the
necessary deployment environment for verifying the interaction and interworking of these components as an
integrated system. This environment has been instrumental in ensuring the seamless operation of aerOS as a
unified platform.

MVPv2 development has been the basis to plan and execute an enhanced demonstrator, with a detailed
scenario capable to showcase the project’s advancements and highlighting its capabilities in realistic
scenarios. aerOS’s iterative development phase has been critical, incorporating vertical stakeholders' feedback
to enhance existing features, resolve issues, and introduce new functionalities guided by real-world demand.

The above-mentioned outcomes are diverse and stem from distinct domains of expertise. It is the integration
of these components into MVPv2 that speaks about project's progress and refinement and ensures the
identification of tasks addressed at this stage. MVVPV2 integrates, validates and concludes technical milestones
within the project lifecycle. In the initial design phase, the MVPv1 guided the prioritization of developments
by defining the minimal set of features required to make aerOS viable for its first set of internal users and
capable of demonstrating its foundational vision and functionalities. Subsequently, MVPv2 has built upon the
initial insights, refining the architecture concepts, introducing enhanced capabilities, and expanding
functionalities based on user feedback and evolving technical requirements.

At this final stage, MVPv2 serves as the foundation for deploying the aerOS stack across project pilot use
cases. The validation of core functionalities and system stability has paved the way for replicating aerOS
deployments in the five pilot locations. These pilots, while not all requiring the full stack, have selected and
are currently deploying the services most relevant to their specific needs and vertical domain purposes (for
more detail refer to deliverable D5.3). MVPv2 facilitates this selective deployment by enabling stakeholders
to understand the functionalities provided and choose those that align with their requirements.

It is important, at this point, to also mention aerOS DevPrivSecOps platform as a critical enabler of MVPv2’s
success. The aerOS development lifecycle is managed through an on-premises GitLab platform hosted by
UPV (https://gitlab.aeros-project.eu). This GitLab platform not only provided a unified development
environment but also ensures that every iteration, enhancement, and refinement to MVPV2 is systematically
documented and version controlled. GitLab streamlines workflows from coding and testing to deployment,
allowing real-time tracking of MVPv2’s evolution.

The software accompanying this deliverable, hosted in aerOS GitLab, is fully demonstrable within the aerOS
MVPv2.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 19 of 97

https://gitlab.aeros-project.eu/

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

3. Final Implementation

3.1. Advancements in Smart networking for Infrastructure
Element connectivity

3.1.1. Updated description and main functionalities

aerOS is designed as a Meta-OS, establishing the continuum as a network of interconnected aerOS domains.
Each domain is equipped with the same capabilities and is itself a network of connected IEs. Building around
this concept and encompassing a design which does not include components with a central controlling role,
with single point of presence, any domain can be self-contained and additionally can be easily integrated as a
peer in the continuum. This topology is reflected in aerOS networking. All network capabilities are built with
the goal to support self-contained functionality and at the same time to flexibly adapt to wide area
connectivity requirements once a domain joins aerOS continuum.

Task T3.1 aims to establish a fully functional network and compute fabric from edge to cloud. It ensures
connectivity for IEs, allowing them to register as part of the continuum and execute specific workloads during
loT service deployment. Furthermore, WP3 lays the foundation for securely connecting domains and building
a federated ecosystem. At the same time, it enables overlay communication for service components
orchestrated across IEs in different administrative or geographical domains.

The research and development within WP3 were responsible for fulfilling these capabilities. As outlined in
architectural deliverables (D2.6 and D2.7), IEs publish their capabilities and offer computational resources by
integrating into administrative domains. These domains share a common set of core functionalities, and are
known as aerOS domains. The capability to network IEs within each domain and abstract their cross-domain
connectivity forms the foundational underlay required to establish the continuum. Ensuring programmable but
at the same time secure and controlled networking capabilities is crucial, particularly when operating over
public networks.

Basic network functionalities were part of previous developments. Building on these capabilities, IEs could
connect within aerOS domains, which securely exposed services. These domains integrated a networking
pipeline to control access, expose endpoints, and route requests to orchestration and federation services.
Orchestration decisions could securely route deployment requests to selected IEs across all aerOS domains
within the continuum. Additionally, loT data could be federated across domains, enabling on-demand
consumption throughout the continuum. This functionality allowed the creation of applications capable of
interacting with each other by sharing application data seamlessly on top of data fabric federation capabilities.
These federation capabilities were enabled with the support of the network stack for aerOS services exposure
as described in D3.2. The period from M18 to M30, new advanced networking features were introduced,
including isolated network overlays establishment for direct 10T service chaining, enabling real-time
communication, when smart orchestration decisions dictate services placement on different IEs (thus,
domains) across the continuum. Additionally, advancements and integration with tools and technologies based
on open standards are developed and integrated with the aim to provide open exposure of aerOS capabilities to
third parties.

These, along with the refinement of network functions required to ensure secure exposure, load balancing, and
access to federated orchestration services across domains. The solutions developed go beyond simply
achieving network connectivity; they establish a robust framework for integrating technologies capable of
dynamically adapting network parameters, enabling programmability of network functionalities, and
supporting performance monitoring. These advancements build upon tools and technologies that emphasize
the separation of control and data planes, ensuring scalability and flexibility.

At a higher level of abstraction, workloads operating over physical or virtual resources, i.e., IEs, are designed
to remain agnostic of the underlying virtual networking infrastructure while addressing their own connectivity
requirements, including policies, security, load balancing, and other critical aspects. The research and
development conducted during this phase have gone beyond creating a connectivity layer for IEs, extending to
the connectivity of workloads distributed across different aerOS domains located across the continuum,

Version 1.0 — 17-MAR-2025 - aerOS®- Page 20 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

supported by the establishment of virtual overlays. This foundational layer integrates abstractions and
automation typical of Software-Defined Networking (SDN), providing seamless and adaptive integration of
resources. By doing so, it ensures that aerOS can effectively support heterogeneous and distributed
infrastructures, aligning with its overarching vision of a unified continuum environment.

Task T3.1 efforts have been organized across seven key research lines:
1. Smart networking within the K8s context
Intra-domain network service mesh

Inter-domain network service mesh

2
3
4. Integration of Network Service Mesh with Service Mesh
5. Synergy between Network Service Mesh and SDN

6

Combining Network Service Mesh and NFV
7. TSN support for the aerOS continuum

By month M30, development efforts have further concentrated on tools and technologies that span multiple
research lines, aiming to refine and consolidate the innovations made thus far. It is worth noting that while all
research lines have progressed, their level of focus and advancement has varied depending on priorities and
the complexities of integration. Significant emphasis has been placed on ensuring seamless integration of
isolated overlays for cross-domain networking needed to support orchestration process decisions. This ensures
a seamless interoperability between the network service mesh, SDN, NFV concepts and the overall aerOS
architecture. In the following sections, the progress done within this final reporting period, for T3.1, regarding
networking functionalities, and topologies is presented.

3.1.1.1. Network mesh for real time cross-domain service communication

As explained above and detailed in D3.2, a full network stack was developed by M18, providing core aerOS
networking capabilities. Building on this foundation and the accessibility of aerOS services, application data
can now be shared using the federation functionality of the aerOS data fabric. This enables data produced in
one domain to be seamlessly shared and retrieved by consumer applications anywhere in the continuum via
aerOS federation. In this final period, a prominent goal for aerOS networking was to enable service
components—opart of the same service deployment request but allocated across different IEs in multiple aerOS
domains—to resolve and securely access each other directly, regardless of their location across the continuum.

This functionality was implemented during this period based on a new functionality which provisions for the
deployment of an isolated overlay for each service. These overlays span from IE to IE, across remote
domains, but not fully routing IE to IE, but just connecting service components of the allocated service. This
means that IEs are not part of this overlay but just the hosted service components. So, an IE can host several
service components, constituents of different services each of them, and these service components can be part
of different, distinct and isolated overlays. Thus, the hosting IE is not itself part of any overlay, it is just
networked within the aerOS domain, but several workloads hosted in this IE can be, each one of them, part of
different overlays. Beyond direct connectivity, among workloads, the overlay also provides essential network
services such as secure and private networking and DNS resolution.

To explain this, one can consider a scenario of deployment of a service, initiated from aerOS portal, which
needs to perform end-to-end network performance testing, analyse the results, and visualize them. This could
require five service components: a server, a client, an orchestrator component to initiate procedures and
collect results, a time series database (TSDB), and an analytics function. While the client and server must be
positioned at opposite ends of the network for measurement, the remaining components can be placed
anywhere in the continuum. However, they all need to resolve and securely communicate with one another.
For instance, the orchestrator must be able to instruct the client to generate traffic, the client must reach the
server, the orchestrator must retrieve results from the server and push them to the TSDB, and the analytics
component must access and process the data. While such interactions are straightforward within a local
network, when service components are distributed across the continuum and deployed over different aerOS
domains, additional provisioning and a complex support process are required.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 21 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

This functionality has now been fully developed and integrated as part of aerOS networking capabilities. The
provisioning of such an isolated overlay is managed by the aerOS HLO but also involves multiple other aerOS
entities. Once the HLO determines the optimal placement for all service components across the continuum, an
additional step is performed: establishing an overlay network exclusively for that service. The two main
provisions of this networking functionality are secure connections—enabled by the domain WireGuard
server—and name resolution—provided by the accompanying Dnsmasq server. WireGuard and Dnsmasq are
part of the networking stack in every aerOS domain, as described in D3.2. While WireGuard was already
integrated, Dnsmasq was recently introduced to support this new functionality. These two components operate
as a bundle. Although each aerOS domain includes such a bundle, the one responsible for providing the
overlay for a deployed service is the domain that initially received the deployment request via its exposed
HLO API.

To develop this capability the following objects have been studied as information included in them needs to be
aligned within aerOS:

o WireGuard server configuration, which defines the parameters required for the server to expose
connectivity, authenticate and assign IP addresses to clients, and correctly forward and masquerade
traffic across the overlay.

[Interface]

Address = 10.13.13.1/24, 10.13.0.1/24

ListenPort 51820

PrivateKey = UE+7i7, . : e . =

PostUp = iptables -A FORWARD -1 wg® -j ACCEPT; iptables -t nat -A POSTROUTING -o eth® -j MASQUERADE
PostDown = iptables -D FORWARD -1 wg® -j ACCEPT; iptables -t nat -D POSTROUTING -o eth® -j MASQUERADE

[Peer] # peer 1
PublicKey = +zbgPIaf7nWD8oyQelTdeFZdZgtGRwZpCzqDVPCmgD4=
AllowedIPs = 10.13.0.2/32

o WireGuard client configuration, which includes the necessary parameters for establishing secure
connectivity, such as the private key for encryption and authentication, the server’s URL and port, and
the assigned IP address within the overlay network.

[Interface]

Address = 10.13.13.2/32

PrivateKey = wCo4TE8dGyzBC9XADwOb9vael/*
ListenPort = 51820

MTU = 136[§

IEE

PublicKey = w6r8RJIaMOkGxdhXkR29E/MNh51vgZtFbgXWX/Yaxjo=
Endpoint = ncsrd-dev-domain.aeros-project.eu:51820
AllowedIPs = 10.220.0.0/16, 172.25.0.0/16, 10.160.1.0/24
persistentKeepalive = 25

o Dnsmasq server configuration, which holds all the mapping of names to overlay IPs

server=8.8.8.8

address=/peerl-name/10.13.0.
address=/peer2-name/10.13.0.

To establish an overlay per service—where service components can securely connect and resolve one
another—the necessary configuration objects must be generated during the orchestration process. The required
information should either be available within the continuum or dynamically created as needed. Finally, these

Version 1.0 — 17-MAR-2025 - aerOS®- Page 22 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

configuration objects must be properly assigned to the respective services to ensure seamless operation. The
following aerOS components have been extended, modified, or developed to manage and utilize this
information effectively:

e aerOS Domain Private and Public Key: The private key is used in the server configuration object,
while the public key is shared with all clients that need to connect. These keys are generated once per
domain (with the option to regenerate if necessary) by an initialization script running within a core
aerOS service. This service exposes internally APl to manage domain keys. These keys are securely
stored within the domain, such as in a vault or a K8s secret when the domain is based on a Kubernetes
cluster. Additionally, the public key is included as an attribute of the “Domain” continuum entity,
enabling its retrieval across the continuum for seamless WireGuard client configuration.

GET Jentities?type=Domain&format=simplified

Params ® thorization® Hea
Query Params

Key Value
Body L feaders (10

Pretty Preview Visualiz JSON v

1d:Domain:NCSRD",

ype":
descript

NCSRD 0S MVP Domain®, - =
publicUrl": "https://ncsrd-mvp-domain.aeros-project.eu”, mvp-ncsrd-domain Copy
owner”: [ncsrd-aeros Edit
"urn:ngsi-1d:0rganization:NCSRD mvp-admin Next Match
1, v0.32.4 #v0.32.7 Prev Match
isEntrypoint”: false, v1.28.3 Toggle Auto-Refresh
domainStatu urn:ngsi-1d ainStatus:Functional CPU: 11% Toggle Decode
[publicKey": 92/L9Px10dhX/QTXdckTF3sXH="] 41%
N
1

: 32 bytes
3 H 32 bytes

o aerOS continuum “Service” entity, is extended to include the information of the domain that hosts
the overlay server. The name provided to this attribute is “domainHandler” (see figure below).

GET Jentities?type=Service&format=simplified
mse A rization ® sders (9) Body
O none form-data x-www-form-urlencoded raw binary GraphQL
Body Kie aders (10)
Pretty W W JSON
[
i

“id": "urn -1d:Service:tsc01”,

"type": "S

*name”: " service_urn:ngsi-1d:Service:tscel®,

"description”: "TOSCA for network performance

"description”:

| “domainHandler": "

Version 1.0 — 17-MAR-2025 - aerOS®- Page 23 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

o HLO deployment engine, has been massively extended so that along with the allocation requests (see
D3.2) it performs two more actions:

o Locally reconfigure WireGuard and Dnsmasq server and provide all information for the
clients that will be connected (allocated service components)

o Built configuration objects, which will be sent to the domains which host the selected IEs
where service components will be allocated, that will provide connectivity to the overlay to
the service components.

o Private-public keys pair generation per each service component, as these are part of above-
mentioned configuration objects, which are integrated in the private key on service
component configuration and the public in server configuration.

e LLO, isextended to be able to handle information about the overlay and proceed to force workload to
also perform connectivity handshake using the client configuration object provided by the HLO.

The figure below is part of the logs of the aerOS orchestrator and exposes this information which is used

to configure connectivity in the overlay.

wpitsilis@earth: ~

The figure above illustrates how the allocation object sent to the LLO has been extended to include
networking information. It clearly shows the integration of the previously discussed WireGuard client
configuration object, which is now included and transmitted to the LLO. This configuration is then utilized
during workload deployment to establish secure connectivity to the remote server using the provided URL,
port, and key. The following figures demonstrate the orchestration results of a service comprising four service
components, specifically highlighting the overlay establishment. Notably, the names of the service
components are defined within the TOSCA-formatted deployment request sent to the HLO API.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 24 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

: mvp-ncsrd-domain Copy
ncsrd-aeros Edit
mvp-admin Next Match
v0.32.4 #v0.32.7 Prev Match

1 v1.28.3 Toggle Auto-Refresh
9% Toggle FullScreen
41%

wg-configmap
default
<none>
<none>

[Interface]

Address = 10.13.13.1/24, 10.13.0.1/24

ListenPort = 51820

PrivateKey = UE+71fjWuY04J43WINGmdJaMhppaWIFB1skQzHmO3ms

PostUp = iptables -A FORWARD -1 wg® -j ACCEPT; iptables nat -A POSTROUTING -o eth@ -j MASQUERADE
PostDown = iptables -D FORWARD -1 wg® -j ACCEPT; iptables -t nat -D POSTROUTING -o eth® -j MASQUERADE
###ESTART_BLOCK _urn:ngsi-1ld:Service:tdo2

[Peer] #influxdb

PublicKey = bTRQwZ9YYArlpLtgnUlfOpdkFbinY@OSWIQV/p2USkyw=

AllowedIPs = 10.13.0.2/32

[Peer] #iperf-server
PublicKey = CNHRdflPlcWupw4jWadnuZjLNawM776DV1u5CHPcNmgY=
AllowedIPs = 10.13.0.3/32

[Peer] #iperf-client
PublicKey = QYDEkKdLBBS1ooMUBH3P11FaZ3Rx0XDrZeCQ2esYClw=
AllowedIPs = 10.13.0.4/32

[Peer] #exp-orch

PublicKey edfVtfUzjSntLey4QI94+baCGHfmByBDiMIYCsBiZ9iw=
AllowedIPs = 10.13.0.5/32

###STOP_BLOCK _urn:ngsi-ld:Service:tdo2

Version 1.0 — 17-MAR-2025 - aerOS®- Page 25 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

wireguard-server-5dbfdcedb4-69vdl: /# wg

public key: ylL2vQPNLAe/ejZwtEW9z/L9Px1DdhX/QTXdckrF3sXM=
private key: (hidden)
listening port: 51820

endpoint: 64.225.136.228:39971
allowed ips: 10.13.0.3/32

latest handshake: 20 ago
transfer: 180 received, 92 sent

endpoint: 64.225.136.228:45242
allowed ips: 10.13.8.5/32

latest handshake: 28 ago
transfer: 180 received, 92 sent

endpoint: 10.220.0.1:39629

allowed ips: 10.13.0.4/32

latest handshake: 22 ago
transfer: 180 received, 92 sent

endpoint: 64.225.136.228:53388
allowed ips: 10.13.0.2/32
latest handshake: 23 ago

transfer: 724 received, 940 sent
wireguard-server-5dbfdcé4b4-69vdl: /# I

mvp-ncsrd-domain Copy

ncsrd-aeros Edit

mvp-admin Next Match

v0.32.4 4v0.32.7 Prev Match

v1.28.3 Toggle Auto-Refresh
9% Toggle FullScreen
41%

dnsmasq-configmap
default

<none=

<none=

server=8.8.8.8

HHSTART_BLOCK :ngsi-ld:Service:tdo2
address=/influxdb/10.13.0.2

address=/iperf-server/10.13.0.3
=/iperf-client/10.13.0.4
ess=/exp-orch/10.13.0.5

###STOP BLOCK urn:ngsi-ld:Service:tdoz

BinaryData

Version 1.0 — 17-MAR-2025 - aerOS®- Page 26 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

root@aeros-service-td@3-component-iperf-client-65c57474cf-z5m77: /app# ifconfig
eth®: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500

inet 10.244.2.35 netmask 255.255.255.255 broadcast 0.0.0.0

ineté feBO::5c33:faff:fe56:2367 prefixlen 64 scopeid 0x20<link>

ether 5e:33:fa:56:23:67 txqueuelen 1000 (Ethernet)

RX packets 51 bytes 4604 (4.4 KiB)

RX errors @ dropped ® overruns @ frame 0

TX packets 53 bytes 4264 (4.1 KiB)

TX errors O dropped 0 overruns O carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets ® bytes @ (0.0 B)
RX errors ® dropped ® overruns @ frame @
TX packets © bytes @ (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

wgB: flags=209<UP,POINTOPOINT ,RUNNING,NOARP> mtu 1420
inet 10.13.0.4 netmask 255.255.255.255 destination 10.13.0.4
unspec 00-00-00-00-00-00-00-00-P0-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
RX packets 3 bytes 276 (276.0 B)
RX errors ® dropped ® overruns @ frame 0
TX packets 19 bytes 956 (956.0 B)
TX errors ® dropped @ overruns @ carrier @ collisions @

root@aeros-service-td@3-component-iperf-client-65c57474cf-z5m77: /app# ping iperf-server
PING iperf-server (10.13.0.3) 56(84) bytes of data.

64 bytes from 10.13.0.3 (10.13.0.3): icmp_seq=1 ttl=63 time=71.

64 bytes from 10.13.0.3 (10.13.0.3): icmp_seq=2 ttl=63 time=64.

64 bytes from 10.13.0.3 (10.13.0.3): icmp_seq=3 ttl=63 time=64.

C

--- iperf-server ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 64.599/66.988/71.647/3.294 ms
root@aeros-service-td@3-component-iperf-client-65c57474cf-z5m77: /app# ping influxdb
PING influxdb (10.13.0.2) 56(84) bytes of data.

64 bytes from 10.13.0.2 (10.13.0.2): icmp_seq=1 tt1l=63 time=65.4 m

64 bytes from 10.13.0.2 (10.13.0.7 icmp_s 2 tt1=63 time=64.4 m

64 bytes from 10.13.0.2 (10.13.0.2): icmp_seq=3 ttl=63 time=64.5 ms

nC

--- influxdb ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 64.386/64.738/65.370/0.447 ms
root@aeros-service-td@3-component-iperf-client-65c57474cf-z5m77: /app# ping exp-orch
PING exp-orch (10.13.0.5) 56(84) bytes of data.

64 bytes from 10.13.0.5 (10.13.0.5): icmp seq=1 ttl=63 time=64.5 ms

64 bytes from 10.13.0.5 (10.13.0.5): icmp_seq=2 ttl=63 time=64.7 ms

e

--- exp-orch ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 64.521/64.608/64.696/0.087 ms
root@aeros-service-td@3-component-iperf-client-65c57474cf-z5m77: /app# I

A quite abstract representation of the final overlay and the layered nature of aerOS networking is
demonstrated in the following figure. It demonstrates the fact, also mentioned above, that although each
domains hosts a WireGuard server, for each new service deployed the one that is instrumented to provide the
overlay, over the continuum, is the one hosted in the aerOS domain which received the orchestration request.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 27 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

VI?N_SEI'\TQ@ [VP N_sErFe'r‘@
|
f
\
]

‘f Wreguerd aerOS Domain | wRecuARD | aerOS Domain
|
| ‘ g I | 1
/ < WG NETWORK OVERIAY ! @ }
\ - .
——®

|
I
|
|
|
/

Finally, a sequence flow of the allocation of an isolated overlay, as part of the service orchestration, is
demonstrated below. This assumes the orchestration of two a service which includes two service components,
and one is allocated in the same domain which received the request by the user, and which also hosts the
WireGuard network server, and the other service component is allocated to another aerOS domain across the
continuum.

Domain receiving orchestration request Domain with selected |IE

i
st Domain e Domain HLO | Remote Domain | | Remate Domain HLO
Orion D allocator

Hest Domain HLO Host Domain HLO Hos Mo Remet in M
i Host Domain OrionAD | | (Cross domain allocator) Host domain WG server | | (Local domain allacator) | | IELLLO SComponentl [} Connectivity aver Public Intemet 1FE, DA, A1)

(FE, DA, Al

ooooo

Pars TOSCA & generote
NGSILD entiies

Allocation of service component for Allocation of service component for IEs
local domain hosted IEs hosted in a remote domain

Network control and configuration \

induaing network v qurss
o .
Oeploy
-
" Bvatay: et to (WELIF For it socared Ovprlay establishment and Dala plane
Overlay: Connet 1o (WG F-Por) with alocated 1P T

e} compones D rans (2 conectfy sns rames e .

Host Domain HLO Host Domain Orion-LD | | Host Domain HLO Host domain WG server | Host Domain HLO [ELLLO SCompanent1 }| Connectiviy aver Public Intemet |4 Remote Domain HLO | Remote Domain | | Remate Domain HLO | | RemotelE.LLO SComponent2
1FE, DA, Al (Cross domain allscator) (Locs! domain alkcator) 4" IFe., DA A rioniD | | (Local domain aocator)

VPN server receives Service X Service/

" \ J
connection requests componeht compghent
from all allocated allocatediin pa alleCated in
service components local IE remote IE

3.1.1.2. Open Network Exposure for Standardized API Access

To enhance the functionality and interoperability of aerOS orchestration and federation framework across the
cloud-edge continuum, a new component has been developed to expose aerOS APIs with the 3GPP Common
API Framework for 10T (CAPIF). This integration aligns with industry standards and unlocks the potential
of integrating aerOS into modern 5G and telecom ecosystems. CAPIF provides a standardized approach to
API exposure, ensuring compatibility and seamless collaboration with external systems, devices, and third-
party services within a globally recognized and regulated framework. This effort is part of our broader goal to
bridge cloud-native networking with traditional telecom infrastructure, ensuring compatibility with future
NFV and telecom standards.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 28 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

CAPIF provides support for secure API exposure. Orchestration and federation involve critical operations
such as resource allocation, workload management, and policy enforcement, and CAPIF enables dynamic
APl discovery and management, making it easier for clients, such as edge devices or third-party
applications, to locate and interact with aerOS APIs.

CAPIF’s adoption offers API discovery mechanisms, which can ensure aerOS services are accessible and
usable in a dynamic, multi-vendor ecosystem, aligning thus aerOS framework with the emerging 5G and
Network-as-a-Service (NaaS) models. By exposing our APIs through CAPIF, telecom operators and service
providers may leverage aerOS orchestration and federation capabilities directly within their 5G environments.
This opens up opportunities for advanced use cases such as network slicing, edge resource orchestration,
and loT data federation, positioning possibly aerOS within the telecom ecosystem. To implement the
exposure of aerOS APIs under the 3GPP CAPIF specification, OpenCAPIF was utilized. Developed by ETSI,
the OpenCAPIF initiative extends the applicability of CAPIF beyond the telecom domain, addressing broader
industry requirements. This strategic effort opens new possibilities for acrOS framework’s role as a key player
in the evolving landscape of cloud-edge continuum and 5G innovation.

3.1.1.3. aerOS programable networking

The aerOS networking capabilities are designed to be self-contained, enabling seamless integration of
advanced SDN functionalities within the broader system. During this period a component which can
intermediate the interaction with external network services or infrastructure has been developed in the grounds
of aerOS auxiliary networking functionalities. Although this is not a core component and is not intended to be
part of the MVPV2 it can find use in configuring networking behaviour of hosting domains as it is built to
communicate specific SDN controllers (ONOS tested), providing the necessary OpenFlow commands to
manage connected switches and ensure intended traffic control throughout the network.

This service is developed as a cloud native application, the ONOS Flow Manager, which is a Python-based
tool that facilitates interaction with the ONOS SDN controller and allows for the dynamic deployment of
OpenFlow rules to Open vSwitch (OVS) devices. The script serves as the backbone for configuring traffic-
forwarding policies, managing flows, and applying packet filters. It offers flexibility by enabling
administrators to define criteria such as source and destination IPs, MAC addresses, and output ports, ensuring
granular control over network behaviour.

The service receives as input a list of parameters, including the ONOS controller access details, and a set of
parameters which describe matching criteria, actions, and priority levels. Once validated, these specifications
are translated into OpenFlow-compatible commands and sent to the ONOS controller using its REST API and
support:

o Multiple flow filters (e.g., source IP, source MAC, destination IP, destination MAC).

e Action-based modifications (e.g., output port, destination IP, MAC).

o LLDP packet redirection to the controller.
Additionally, it has been adapted for compatibility with EAT to enable its triggering based on events
recognized by analytics. The goal of integrating these advanced SDN capabilities, is to set the groundwork for
a flexible and programmable networking environment. This component represents an effort towards achieving
a continuum-aware network fabric, where external network services and infrastructure can be seamlessly
integrated to support dynamic and scalable 10T deployments.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 29 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

—aer0S

3.1.2. Updated Structure diagram

Tosca

overlay CRD
mngmnt

Server conf Er

Remote
Allocation
Request

TOSCA deployment request

Network overlay configuration data
retrieval

Configure Overlay Server
HLO to LLO CRD incl. network conf

Service component deployment incl.
wg client

Wg handshake

Data Plane establishment

Service Service CRD
component ---'~ |~ Tmoooreo component 4——
conf. & wg client & wg client client
conf.
A N
(‘ NETWORK OVERIAY ')

Figure 15. aerOS cross-domain network overlay provision during service orchestration.

Table 1. Network mesh for real time cross-domain service communication

Component

Description

Interactions

HLO Deployment
Engine (Cross domain
Allocator)

Located in aerOS domain which
received the deployment request.
Retrieve from Orion-LD, and
generate data needed to build
overlay configuration objects for
server and client peers (service
components). Reach domains of
all selected IEs and send
descriptors including networking
data.

Proceeds to NGSI-LD queries to the Orion-
LD broker and to API calls to overlay
management component and HLO
deployment engines (local domain
allocation part). All of these are REST
based interactions, the access to the first two
are in local domain and the third one could be
in local or any other domain, which hosts the
selected IE, across the continuum.

Overlay management

Service within aerOS domain
which undertakes the management
of networks available, and
networks allocated within the
domain. The range is configurable
and can be set at service initiation,
e.g., 10.13.0.0/16 means that it
will provide a “slice” like
10.13.1.0/24 or 10.13.2.0/24 for
each service which overlay
hosting is provided by this
domain.

Exposes APl which is consumed by HLO
Deployment Engine (Cross domain
Allocator) to provide an available subnet.

HLO Deployment
Engine (Local domain
Allocator)

In each aerOS domain selected to
host a service component. Based
on descriptors received from the
step above, creates the needed
configuration objects, which
include networking information,
and reaches the suitable LLO for

Exposes, REST based, APl which is
consumed by the HLO Deployment Engine
(Cross domain Allocator) of the domain
which received the service deployment
request by the user (10T developer).

It calls, REST based, LLO API to provide
any CR needed for the deployment of the

Version 1.0 — 17-MAR-2025 - aerOS®- Page 30 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

the IEs that will host each service
component. It submits to the LLO
the final descriptive resource
needed by LLO to enforce service
component instantiation including
connectivity to the overlay.

service including connection to the

networking overlay.

Orion-LD

Keeps part of the information
needed for the networking
configuration objects (public key
and public IP port of the domain
which will provide networking
overlay). Keeps also information
needed to track the domain that
provides server for network
overlay for each service. This is
updated once the service is
deployed.

Exposes NGSI-LD, a REST based API, to
provide information regarding data needed to
build the overlay connectivity.

LLO

Guides and enforces service
components deployment in the
selected IEs, including
deployment of WireGuard client
that connects to server and thus
registers service component to the
overlay.

Exposes, REST APl which is accessed by
HLO Deployment Engine (Local domain
Allocator) to submit the deployment
descriptor (CR) for the selected IE.

Proceeds to deploy component to selected IE
(API based interaction).

WireGuard Server

Provides secure overlay (VPN)
and name resolution needed for
service components to reach one
another.

Receives configuration from HLO
Deployment Engine (Cross domain
Allocator). This is done in two steps. First is
the update of the configuration objects and
the second is access to an internal (to HLO)
API which abstracts operations to WireGuard
server and thus updates configuration and re-
initiates the wireguard service.

Receives handshake requests from wireguard
clients, which accompany each service
component. This interaction is based on
WireGuard protocol.

WireGuard client

Runs as a complimentary service
(side car) to each service
component, proceeds to handshake
to register to the network overlay
and takes over all the network
connectivity.

Deployed by LLO as part of the allocation of
the service component on the selected IE and
reaches to WireGuard server on the domain
which hosts the service wireguard server to
perform handshake and then route traffic.
This interaction is based on wireguard
protocol.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 31 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

—aer0S

| S—

Component

OpenCAPIF

[\ o
J—@—

Third Party

e Authentication/Validation

aerOS

aerOS standardized
APls

Exposing all aerOS Apis
to OpenCAPIF

Third Party
authenticate/validate

Discovering
and consuming
aerOS APls

Figure 16. aerOS integration with OpenCAPIF.

Table 2. Open Network Exposure for Standardized AP1 Access

Description

Interactions

aerOS APIs

aerOS domain, including APIs
for orchestration services, for
federation across the continuum.

All APIs exposed by every

OpenCAPIF registers these APIs and every

third-party application which discovers
aerOS APIs might access them. All interactions
are REST based.

OpenCAPIF

Implementation of CAPIF
specification, which provides
APIs discoverability and
exposure, and thus access to
underlying offered services.

Interacts with aerOS API to register and
expose it (REST). Interacts with third-party
applications to expose aerOS APIs and provide
the means for a subsequent direct secure
connectivity.

Third-Party

An external application which
would like to consume aerOS
domain services as exposed by
the APIs.

Interacts with openCAPIF to query APIs
offered and get security keys for subsequent
access. REST based interaction. Access aerOS
APIs, which again is a REST based interaction.

___Hosting premises

aerOS domain

Trigger

gy ONOS Flow

ONOS SDN

Manager
REST

C-L-[-1-}
. .

Controller

Switch

/

Figure 17. aerOS aux service for SDN.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 32 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

—aer0S

Component
ONOS Flow Manager

Description

aerOS service capable of
transforming, user or component
provided, guidelines into ONOS
commands, including network
setup instructions, and sending
them to an ONOS SDN controller.

Interactions

Exposes REST API to actors who want to
access it.

Interacts with ONOS SDN using its exposed
REST APIs

ONOS SDN Controller

SDN controller managing network
operations. Processing high-level
instructions, and translates them
into flow rules, for a dynamic
configuration of the network.

Receives network application requests from
ONOS FlowManager (REST API).

OpenFlow protocol-based interaction with
managed network switches.

Network Switch

Enforce decisions received by
ONOS flow rules enabling flexible
and programmable network
behaviour.

Interaction with ONOS SDN controller over
OpenFlow protocol.

3.1.3. Technologies and standards deployed in MVP

Technology/Standard

Description

Justification

Wireguard

Lightweight, high-performance
VPN protocol that uses modern
cryptography to provide secure,
fast, and simple point-to-point
encrypted network connections.

Addresses the requirement to build a secure,
isolated subnet overlay which provides
networking to all service components of a
service.

dnsmasq

Lightweight DNS forwarder,
DHCP server, and TFTP server
designed for small networks,
providing caching, name
resolution, and IP address
management with minimal
resource usage.

Addresses the requirement of service
components to be able to resolve and reach
one another based on a defined name which
corresponds to routable IP (within the service
isolated overlay).

Curve2551

High-performance elliptic curve
used for secure key exchange,
offering strong cryptographic
security, efficiency, and resistance
to common attacks while enabling

Instrumented, with the support of wg tool
(genkey option), to provide secure keys to be
used for service components to handshake
and register in network overlay.

ETSI OpenCAPIF

fast and secure encryption
protocols like WireGuard and
TLS 1.3.

An open-source implementation
of 3GPP CAPIF, developed
within ETSI. It provides a
reference implementation to
facilitate CAPIF adoption,

allowing developers and telecom
operators to integrate CAPIF-

Provide the means to demonstrate for aerOS
possibilities to integrate within telco
operators’ environments.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 33 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

compliant APl exposure and
management into their networks.

3GPP CAPIF A standardized APl framework
defined by 3GPP (TS 23.222) to
provide a unified, secure, and
controlled way for network
functions and third-party
applications to expose and
consume APIs within 5G and
telecom networks. It includes API
exposure, authentication,
authorization, and monitoring.

3.2. Communication services and APIs

In the dynamic and interconnected world of cloud-to-edge computing, the role of communication services and
APIs has become increasingly pivotal. These services and APIs are the cornerstones in the aerOS ecosystem,
enabling standardized, secure, and efficient interactions among various software entities. At their core, APIs
act as facilitators, exchanging information and commands while adhering to predefined protocols and data
contracts. The next sub-chapter summarizes the API concepts, guidelines and best practices adopted in aerOS,
which were thoroughly reported in D3.2. The following sub-chapters delve deeply into the provisioned APIs
from the different core aerOS services (covering OpenAPI and AsyncAPI) and into low-code tools such as
Node-RED and Behaviour trees and generation of skills from AsyncAPI for low-code tools.

3.2.1. API concepts, guidelines and best practices proposed in D3.2

In deliverable D3.2 it was reported the APl concepts, guidelines, and best practices, particularly in the context
of REST APIs. The main insights provided on that report are the following:

e The absence of standardized procedures for creating endpoints, encoding body payloads, or defining
return codes for both successful and erroneous invocations was highlighted, emphasizing the need for
use-case/domain-specific guidelines. The report referenced efforts by organizations like ETSI to
establish principles for mobile edge services APIs and discussed how existing guidelines can be found
across cloud providers and technical articles, although they often pivoted around common ideas but
differed slightly in recommendations.

e Best practices for URI design, including the use of valid URIs following the IETF RFC 3986 standard
was also outlined. These URIs should be combined with verbs representing HTTP methods and nouns
for collections of objects, with plural names preferred in URIs. It also introduced pagination
techniques to optimize resource access, suggested versioning methods to support multiple API
versions, and detailed the use of HTTP status codes to indicate the outcome of client requests. Further,
it advised including error details in API responses, modelled as JSON objects with properties like
"error" and "description” to aid client-side error handling. Asynchronous operations were addressed,
recommending the use of a "202 Accepted" status code for operations requiring longer processing
time, alongside a status endpoint for clients to check operation status. Hypermedia As The Engine Of
Application State, a technique using hypermedia links in response contents, fostering APl evolution
without client logic breaking, was also mentioned.

e The maturity in API design was discussed by making use of the Richardson Maturity Model, which
evaluates the maturity of web services based on their adherence to REST principles. It comprises four
levels:

o Level 0, which involved basic service-oriented applications without using URIs or HTTP
verbs

Level 1, introducing URI usage for resource access but not fully utilizing HTTP verbs
Level 2, achieving significant maturity by employing HTTP verbs and URIs

Version 1.0 — 17-MAR-2025 - aerOS®- Page 34 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

o Level 3, the highest level, incorporating HATEOAS to enhance discoverability and self-
descriptiveness.

3.2.2. aerOS OpenAPI

aerOS commitment to foster a standardized approach in CEI continuum led project partners to embrace
OpenAPI Specifications (OAS)?!, a specification for HTTP APIs that defines the structure and syntax in a
technology agnostic way. These specifications are typically formalized using YAML or JSON, allowing for
their easy sharing and consumption. There are two OpenAPI design methodologies: API First (first creating
the OAS, and then create the code), or Code First (first writing code and annotating it to automatically
generate the OAS). The aerOS OpenAPI lifecycle was structured in phases, beginning with requirements
elicitation, where the desired functionalities of the API for its consumers are defined. This moves into the
design phase, where an initial OAS document is outlined, incorporating industry-standard schemas and
allowing for rigorous source control as a preparatory step for development. During configuration, the focus
shifts to adapting the IT infrastructure to accommodate the API's needs, such as gateways or security
requirements. The publishing phase then follows, which involves generating APl documentation using tools
like Swagger Ul to be hosted on a basic HTML server for easy access. Development translates the OAS into a
functional API, with tools available across programming languages to construct essential API structures. The
testing phase leverages the OAS to verify the consistency and security of the APl implementation, ensuring
alignment with the initial design contracts. Finally, deployment integrates output from the publishing and
development processes to roll out the fully tested API to end-users, marking its readiness for real-world
application. In D3.2 it was informed about two methodologies for OpenAPI code generation, and the openapi-
generator run locally was chosen for its broader applicability.

Task T3.2 has focused on the development and preparation of OpenAPI specifications for both the aerOS
domain and the Infrastructure Elements (IEs), as can be seen in the next figure.

aerOS Domain é
OpenAPI L
P:ife
HLO APTs

Web-based tool (5
LLO APIs
for OpenAPI

Data Fabric APIs

DPMAPIs (ex. SwaggerUL/Redoc)

CI/CD (\

- visualize and document
APIs User

Exposed APIs

aerOS Domain XX

aerOS IE
OpenAPI %

Exposcd APIs e AL - Qenerate code for
File clients and servers
aerO8 TE XX \ Self-APIs

In that sense, core/basic aerOS services have exposed their APIs via OpenAPI specifications. Task 3.2 has
collected and consolidated all individual specs to provide a unified interface with all declared methods. The
following sections briefly introduce them.

1 https://www.openapis.org

Version 1.0 — 17-MAR-2025 - aerOS®- Page 35 of 97

https://www.openapis.org/

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

3.2.2.1. Context Broker API

This aerOS contextual information is managed by the Context Brokers, which store the most recent value of
the attributes of NGSI-LD entities of the continuum, i.e., IE, services, etc. The NGSI-LD Context Broker
choice for aerOS has been the FIWARE Orion-LD?. It contains an official repository of ORION-LD API that
provides comprehensive documentation of the API3. Regarding aerOS approach, there are 4 main sections or
paths to be considered: Context Information Provision, Context Information Consumption, Context
Information Subscription, and Context Source Registration Subscription.

Context Information Provision

|m Jentities Entity creation

lm Jfentities/{entityId} Entity deletion byid

PATCH fentities/{entityId} Entity merge byid

fentities/{entityId} Entity replacementbyid

|m Jfentities/{entityId}/attrs Append Attributes to Entity

PATCH Jentities/{entityId}/attrs Update Auributes of an Entity

/fentities/{entityId}/attrs/{attrId} Partial Attribute Update

lm Jfentities/{entityId}/attrs/{attrId} Atribute delete

Jfentities/{entityId}/attrs/{attrId} Attribute replace

|m /entityOperations/create Batch Entity Creation

|m /entityOperations/upsert Batch Entity Creation or Update (Upsert)

|m /entityOperations/update Batch Entity Update

|m /entityOperations/delete Batch Entity Delete

|m /entityOperations/merge Batch Entity Merge

Context Information Consumption

‘“ fentities Queryentities

‘ﬂ Jentities/{entityId} Entity retrieval by id

‘m JentityOperations/query Query entities based on POST

‘ ﬂ /types Retrisve available entity types

‘“ /types/{type} Demmils about available entity type

‘“ Jattributes Available amributes

‘ﬂ Jfattributes/{attrId} Detailsabout available attribute

Figure 19. ContextBroker API inside aerOS OpenAPI

2 https://github.com/FIWARE/context.Orion-LD

3 https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-1d-

api.yaml

Version 1.0 — 17-MAR-2025 - aerOS®- Page 36 of 97

https://github.com/FIWARE/context.Orion-LD
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

Context Information Subscription N

lm /subscriptions Create Subscription]
|“ /subscriptions Retrieve list of Subscriptions ‘

|ﬂ /subscriptions/{subscriptionId} Subscription retrieval by id ‘

/subscriptions/{subscriptionId} Subscription update byid

lm /subscriptions/{subscriptionId} Subscription deletion by id]

Context Source Registration Subscription 4

lm /csourceSubscriptions Create subscription to Csource registration l

| ﬂ /csourceSubscriptions Retrieval of list of subscriptions to Csource registrations |

|ﬂ /csourceSubscriptions/{subscriptionId} Csource registration subscription update by id |

PATCH /csourceSubscriptions/{subscriptionId} Csource registration subscription update by id

lm /csourceSubscriptions/{subscriptionId} Csource registration subscription deletion by id l

Figure 20. ContextBroker API inside aerOS OpenAPI (2)

3.2.2.2. Federator API

The Federator facilitates the bidirectional exchange of information with other domains of the aerOS
continuum. To do so, a central registry located in the entrypoint domain keeps an inventory of all integrated
domains and promote new domains registration and connection with those that are already part of the
continuum, by means of the Federator API.

Federator APl REST API to manage aerOS Domain Federation ”~
| GET /vl/domains Retrieves all the federated domains of the continuum v ‘
| m /v1l/domains Handles the notification of a new domain 92 ‘
| GET /v1l/domains/local Retrieves the local domain v ‘
lm /v1/domains/local Handles the nofification of a domain removal v]
[/v1/domains/{domainName} Handles the notification of a domain removal 4]
[m /v1/domains/{domainName}/spread (Onlyenabled in the Entrypoint Domain) Starts the spreading process of a domain removal v]

Figure 21. Federator API inside aerOS OpenAPI

3.2.2.3. HLO API

The HLO APIs are designed to facilitate complex orchestration tasks at a high level of abstraction, allowing
for robust interaction and management across various aerOS services. It can be accessed from two different
components, FrontEnd (HLO-FE), and Deployment engine (HLO-AL).

hlo-fe-engine ~
‘m /hlo_fe/services/{service_id} GetService Status v ‘
‘. /hlo_fe/services/{service_id} Allocate Service ~ ‘
PUT /hlo_fe/services/{service_id} Change Semice Allocation Paramters v
[m /hle_fe/services/{service_id} Deallocate Service N]

Figure 22. HLO API inside aerOS OpenAPI

Version 1.0 — 17-MAR-2025 - aerOS®- Page 37 of 97

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

hlo-deplyment-engine ~
| /hlo_al/services/{service_id} Allocate Service Component N ‘
| GET /hlo_al/services/{service_id}/service_. ts/{service_comp it_id} GetScomponent Parameters ~ ‘
PUT /hlo_al/services/{service_id}/service_ ts/{service_comp t_id} Update Scomponent Parameters v
I /hlo_al/services/{service_id}/service_ ts/{service_comp t_id} Deallocat its HV]
I /hlo_al/services/{service_id}/overlay Destroy Service Overlay N]

Figure 23. HLO API inside aerOS OpenAPI

3.2.2.4. LLO API

LLO provides granular control over specific functionalities, enabling precise manipulation of the underlying
systems through the LLO API:

LLO APl REST API to list, update, delete and create K8s Custom Resources managed by aerOS LLO Operators. AN
‘ /vl/service-components Retrieves all the deployed Service Components v |
‘ m /vl/service-components Deploys a Service Component v |
PUT /vl/service-components Replace a Service Component v
‘ GET /vl/service-components/{scName} Retrieves a deployed Service Component v |
PATCH /vl/service-components/{scName} Updates a Service Component v
[/vl/service-components/{scName} Deletes a deployed Service Component v l

Figure 24. LLO API inside aerOS OpenAPI

3.2.2.5. Data Fabric API

The Data Fabric paradigm introduces a metadata-driven architecture that automates the integration of data
from heterogenous sources and enables uniform access to the data through a standard interface. Hence, it is
integral to the efficient handling and integration of data across the aerOS platform, ensuring seamless data
flow and accessibility. Two main OpenAPI paths are available: Data Catalog Service and Data Security
Service.

Data Catalog Service - REST AP| €2 &

default ~

SR /4ataproducts Regster Data Product v

Data Security Service - REST AP| €9 &

Read ~
PSRN /eoticies cetpoices -
BN /poticies/(policy_id) et Poicy Contert ~
Create ~
m /policies Registar Policy =
Update ~
/policies/{policy_id} Update Policy W
Delete ~
|@ /policies/{policy_id} Delete Poiicy v

Figure 25. Data Fabric API inside aerOS OpenAPI

Version 1.0 — 17-MAR-2025 - aerOS®- Page 38 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

3.2.2.6. Data Product Manager API

The aerOS Data Fabric, by means of the Data Product Manager, exposes an interface towards data owners to
onboard new data products and orchestrate the pipeline that turns raw datasets into data products. Thus, it is
an essential part of the data fabric for managing the lifecycle of data products, underpinning the platform's
data governance and utilization strategies.

Data Product Manager - REST AP| €2

Read ~
GET /dataProducts GetData Products v
GET /dataProducts/{data_product_id} Get Data Product N

Create ~
POST /dataProducts Post Data Product v

Delete ~

[22848 /dataProducts Delete Data Products v]
[(0583158 /dataProducts/{data_product_id} Delete Data Product N }

3.2.2.7. Self-Capabilities API

They are crucial for the self-reporting and autonomous operation of the infrastructure components. As
explained in previous WP2-WP3 deliverables, there are multiple operations, which are accessible through the
Self-API component. It includes Self-orchestrator, Self-security, Self-Optimization, Self-scaling, Self-healing,
and Self-Configurator. At the time of writing this deliverable, the latest version of the first four already
included their swagger OpenAPI in their artifacts. The remaining two will be integrated before the project
ends.

Orchestrator rules ~
GET /rules Getall rules v
POST /rules Create anew rule v
[@ /rules Delete all rules -
GET /rule Get a specific rule by name v
/rule Update a specific rule v
[/rule Delete a specific rule by name v

Security Events A

GET /security/events Get security events v

Version 1.0 — 17-MAR-2025 - aerOS®- Page 39 of 97

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

Optimization rules ~
‘m /anomaly/parameters/{type} Getanomaly parameters v ‘
‘ /anomaly/parameters/{type} Update anomaly parameters v ‘
‘ﬂ /anomaly/models Getanomaly models o ‘
‘m /sampling/parameters/{type} Getsampling parameters v ‘
‘m /sampling/parameters/{type} Update sampling parameters v ‘

‘m /sampling/models Getsampling models g ‘

‘ /Joptimize Optimize resources v ‘

‘ /optimize/powerConsumption Optimize power consumption v ‘
Scaling Enablers management ~
‘m /scaling/enablers Update managed enablers and components v ‘
" GET /scaling/enablers Return managed enablers and components I\/ ‘
Scaling Training ~
‘m /scaling/train-values Update train values v ‘
" /scaling/train-values Return frain values v ‘
" GET /scaling/train Execute training v ‘
Scaling ~
" /scaling/inference Execute inference v ‘
" GET /version Getversion v ‘
" /scaling/health Get health status v ‘
" GET /scaling/api-export Get OpenAPIdocumentation v ‘

Figure 28. Self-Capabilities API inside aerOS OpenAPI (2)

3.2.2.8. IdM

A key component of the aerOS cyber security system is the aerOS Identity Management (IdM), whose ability
is to register and evaluate policies for resource and data access. It utilizes Keycloak 1dM#, which provides
comprehensive functions to strengthen cybersecurity, by managing the authentication and authorization of
aerOS clients with a non-official but thoroughly documented Open API specifications®. The most relevant
paths used in aerOS are presented below:

4 https://www.keycloak.org/
5 https://github.com/ccouzens/keycloak-openapi

Version 1.0 — 17-MAR-2025 - aerOS®- Page 40 of 97

https://www.keycloak.org/

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

Clients ~
‘m /{realm}/clients sV ‘
‘m /{realm}/clients i v ‘
‘m /{realm}/clients/{id} "V ‘

PUT /{realm}/clients/{id} N
[/{realm}/clients/{id} &~]
‘m /{realm}/clients/{id}/client-secret ﬁ v ‘
‘m /{realm}/clients/{id}/client-secret ﬁ v ‘

Client Initial Access ~
‘ GET /{realm}/clients-initial-access a v ‘
‘m /{realm}/clients-initial-access 2 ‘
[/{realm}/clients-initial-access/{id} oV]

Figure 29. IdM API inside aerOS OpenAPI

aerOS 1dM has been integrated with OpenLDAP® in order to enhance the adoption of aerOS IAM by
stakeholders, facilitating the automatic federation of user information from the LDAP directory. This
eliminates the need for manual transfer of user data to aerOS IdM, streamlining user management and group
associations.

Identity Providers ~
‘ /{realm}/identity-provider/import-config & v ‘
‘m /{realm}/identity-provider/instances 8V ‘
‘ /{realm}/identity-provider/instances 8V ‘

Figure 30. IdM API inside aerOS OpenAPI (2)

aerOS implements a system of precise control and management over resources, which is seen in the
establishment of different roles. Each role is associated with specific access rights within the aerOS services
environment and linked to a corresponding group in OpenLDAP.

Roles ~
‘m /{realm}/clients/{id}/roles &~ ‘
‘m /{realm}/clients/{id}/roles i g ‘
‘m /{realm}/clients/{id}/roles/{role-name} i v ‘

PUT /{realm}/clients/{id}/roles/{role-name} & v
[/{realm}/clients/{id}/roles/{role-name} @ v }

Figure 31. IdM API inside aerOS OpenAPI (3)

6 https://www.openldap.org/doc/admin26/OpenL DAP-Admin-Guide.pdf

Version 1.0 — 17-MAR-2025 - aerOS®- Page 41 of 97

https://www.openldap.org/doc/admin26/OpenLDAP-Admin-Guide.pdf

D3.3 - Final distributed compute infrastructure specification and implementation =2er0s

Groups ~
‘m /{realm}/groups ﬂ N |
‘m /{realm}/groups -V |
‘m /{realm}/groups/count & v |
‘m /{realm}/groups/{id} & v |

/{realm}/groups/{id} 5 v
[/{realm}/groups/{id} B l

Figure 32. IIMAPI inside aerOS OpenAPI (4)

In turn, users group provide methods required to handle the lifecycle of user profiles via IdM.

Users ~
‘ /{realm}/users &V ‘
‘m /{realm}/users & v ‘
‘ /{realm}/users/count & v ‘
‘ /{realm}/users/profile ﬂ h ‘

/{realm}/users/profile ﬂ v
‘ /{realm}/users/profile/metadata i 7 ‘
‘ GET /{realm}/users/{id} 8V ‘

/{realm}/users/{id} @ v
[/{realm}/users/{id} & v]

Figure 33. IdM API inside aerOS OpenAPI (5)

3.2.2.9. IOTA

One of the ways leveraged in aerOS to achieve trust is by taking advantage of open-source edge technologies
such as IOTA’s distributed ledger Tangle framework’. The Tangle is a data structure replicated across a
network of nodes (IE’s in the aerOS continuum) that contains all the information necessary to track messages
and ensure traceability of the payloads distributed across the network. A brief extract of the official IOTA
Open API documentation® is listed below:

7 https://wiki.iota.org/get-started/introduction/iota/introduction/
8 https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/T1P-0025/core-rest-api.yaml

Version 1.0 — 17-MAR-2025 - aerOS®- Page 42 of 97

https://wiki.iota.org/get-started/introduction/iota/introduction/
https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/TIP-0025/core-rest-api.yaml

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

node Everything about the node itself. VS
/health Returns the health of the node. N
/api/routes Returns the available API route groups of the node v
/api/core/v2/info Retums general information about the node N2

tangle Everything about the tangle itself. 7~
/api/core/v2/tips Retums tips that are ideal for attaching a block v

blocks Everything about blocks. N
/api/core/v2/blocks Submita block v
/api/core/v2/blocks/{blockId} Returnsblock dataas JSON by its identifier. v
/api/core/v2/blocks/{blockId}/metadata Find the metadata of a given block v

3.2.3. aerOS AsyncAPI

OpenAPI is a widely adopted industry standard in software engineering, playing a pivotal role in defining
standardized specifications for REST-based interfaces. However, as technology evolves, there is a growing
need for standardized specifications of asynchronous interfaces, a capability OpenAPI does not inherently
provide. The rise of asynchronous interfaces and protocols is driven by the desire to move away from
monolithic systems towards more distributed architectures, often termed "event-driven™ or "reactive." This
shift aims to enhance system efficiency, scalability, and fault tolerance.

To address the limitations of OpenAPI in the asynchronous realm, the AsyncAPI initiative has emerged,
seeking to establish an industrial standard for specifying asynchronous interfaces. Unlike OpenAPI,
AsyncAPI goes beyond by offering comprehensive support for various communication protocols such as
MQTT and Kafka. This flexibility allows it to accommodate the diverse requirements of distributed systems.

The following figure illustrates the followed approach in aerOS to embrace the benefits that AsyncAPI can
provide in the project needs. The following subsections detailed the AsyncAPI services implemented in the
context of this task.

¥

AsyncAPI |_D
|
¥MT

DDS

I*'—'ife
IoTs OPC UA

Y

¥

3.2.3.1. Advancing AsyncAPI with Industry-standard Protocols

AsyncAPI currently serves as a crucial tool for specifying asynchronous interfaces. However, there is
significant potential for enhancement by integrating additional industry-standard protocols such as Data
Distribution Service (DDS)°, ROS2°, OPC UA!, and the publish/subscribe protocol Zenoh!?. Incorporating

9 https://www.dds-foundation.org/what-is-dds-3/
10 https://www.ros.org/

Version 1.0 — 17-MAR-2025 - aerOS®- Page 43 of 97

https://www.dds-foundation.org/what-is-dds-3/
https://www.ros.org/

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

these protocols into the AsyncAPI framework would expand its applicability, promoting adoption across
embedded systems and edge computing environments. This expansion is oriented to drive the development of
solutions specifically tailored to industrial contexts, particularly in terms of automated interface integration.
Such advancements would streamline application development within industrial automation systems, fostering
innovation and efficiency in this vital sector.

Integrating any protocol or standard into the AsyncAPI framework requires addressing two primary
challenges. Firstly, there is the need to map the primitives of the protocol specification—such as DDS's topics,
data readers, data writers, subscribers, and publishers—to AsyncAPI concepts like channels, operations, and
messages. Secondly, features unique to the protocol that do not directly correspond to an AsyncAPI concept
necessitate the definition of a binding. This binding provides protocol-specific information pertaining to
servers, messages, channels, and operations.

We briefly recap the core concepts of AsyncAPI v3.0.0:

e Message: A message is the unit of data exchanged between senders and receivers through a server.
Messages follow a well-defined schema and fall in one of three classes: an event, a query, or a
command.

e Server: A server represents a message broker or a messaging system that facilitates the exchange of
messages between senders and receivers via channels. It's the infrastructure that handles the routing
and delivery of messages.

o Channel: A channel is a named communication pathway within an AsyncAPI server that acts as the
destination and source of messages or events.

e Operation: An operation specifies how messages between components are communicated. AsyncAPI
differentiates between send and receive operations of messages on a channel. Additionally, operations
support a reply semantic.

3.2.3.2. AsyncAPI for DDS

DDS is an open standard for real-time, scalable, and interoperable data distribution middleware. Developed by
the Object Management Group (OMG), DDS is designed to facilitate seamless communication and data
exchange in distributed systems that demand real-time capabilities. There are several implementations of
DDS, such as OpenDDS or Cyclone DDS. DDS is a publish/subscribe data distribution middleware
comparable to MQTT. However, DDS operates decentralized and offers more capabilities for edge-focused
applications and IoT environments.

When considering the AsyncAPI and DDS specifications side by side, it becomes apparent that many core
concepts of AsyncAPI map directly to primitives in the DDS specification, i.e., AsyncAPI write operations
map to data writers in DDS, AsyncAPI read operations map to data readers in DDS, and AsyncAPI channels
map to DDS topics. However, there are core concepts in DDS especially concerning the specification of
quality-of-service requirements that have no direct counterpart in AsyncAPI and demand a DDS AsyncAPI
binding.

3.2.3.2.1. An Experimental AsyncAPI Binding for DDS

In this section, it is described an experimental DDS binding for messages, server, channels, and operations
that enables specifying DDS event-driven applications in AsyncAPI.

An AsyncAPI Message is the only concept that directly maps to DDS without the need for a binding. The
supported data types available in AsyncAPI specification and the DDS IDL map directly so that each
key/value pair in the payload of a message directly map to a key/value pair of a data class in DDS.

In contrast, the concept of a Server present within the AsyncAPI specification has no direct application in a
decentralized data distribution middleware such as DDS. However, in the AsyncAPI specification the host
field is mandatory so that we can use it to specify a DDS peer discovery host that discovery packets are sent to

11 https://opcfoundation.org/about/opc-technologies/opc-ua/
12 https://zenoh.io/

Version 1.0 — 17-MAR-2025 - aerOS®- Page 44 of 97

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://zenoh.io/

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

in addition to the default multicast address. In DDS every communication between a data writer and a data
reader requires the specification of a domain. A domain represents a subsection of the DDS network that is
uniquely identified by a 32-bit unsigned integer. We introduce a domain object in the AsyncAPI DDS server
binding that allows configuring various aspects of the DDS domain specification as summarized in Table 1.
The DDS domain object in turn supports the specification of a discovery object containing options to
configure the detection of domain participants. The discovery object and related ports and interfaces objects
are summarized in Tables 2, 3, and 4. Lastly, the DDS server binding allows to specify a quality of service
(QoS) provider that allows specifying a path from where the DDS application described by the specification at
hand loads available QoS policies.

Field Name

DDS Versions

Description

id integer 14 The identifier of the DDS domain, a 32-bit un-
signed integer.

discovery object 1.4 Discovery options for the domain.

allowMulticast string 1.4 Whether multicast discovery is allowed. Com-
ma-separated list of: false, spdp, asm, ssm, true,
default.

dontRoute boolean 1.4 Allows setting the SO_DONTROUTE socket
option.

enableMulticas- boolean 1.4 Must be true for intra-node multicast communi-

tLoopback cation.

entityAutoNaming string 1.4 Specifies the entity auto naming mode. Either
empty (default) or fancy.

externalNetwork- string 1.4 Explicitly overrule the network address DDS

Address advertises in the discovery protocol which de-
faults to the address of the preferred network
interface. It can be used to allow DDS to com-
municate across network address translation
devices.

externalNetwork- string 1.4 Specify the network mask of the external net-

Mask work address. The default value is 0.0.0.0.

fragmentSize integer 1.4 The size of a DDSI fragment. The default is
1334 B.

interfaces object 1.4 The network interfaces used for discovery and
user traffic.

maxMessageSize integer 14 The maximum size of UDP payload.

maxRexmitMes- integer 1.4 The maximum size of a retransmitted message.

sageSize

multicastRecvNet- string 14 A comma-separated list of network interface

work addresses to receive unicast traffic on. Alterna-

InterfaceAddresses tively, one of the following: all (listen on all
multicast-capable interfaces), any (listen for
multicast on the operating system default inter-
face), preferred (listen on interface with highest
priority), or none (listen on no interfaces).

multicastTimeToLive integer 1.4 The time-to-live value for multicast packets. The
default is 32.

redundantNetwork- boolean 1.4 Whether to enable redundant networking on

Version 1.0 — 17-MAR-2025 - aerOS®- Page 45 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

ing selected network interfaces.

transport string 1.4 The transport to use for DDSI traffic: default,
udp, udpé, tcp, tcp6, raweth.

uselPv6 boolean 1.4 Whether to use IPv6 for DDS traffic.

Field Name
DSGracePeriod

string

DDS Versions

14

Description

Controls how long discovered endpoints will

survive after the discovery service disappears.
This allows reconnection without loss of data if
the discovery service restarts. The default is 30
s. Recognized units are day, hr (hours), min
(minutes), s (seconds), ms (milliseconds), us
(microseconds), and ns (nanoseconds).

defaultMulti-
castAddress

string

14

The multicast address used for all traffic except
for participant discovery. Defaults to the Simple
Participant Discovery Protocol (SPDP) address
239.255.0.1.

enableTopicDiscover-
yEndpoints

boolean

14

Whether to enable the use of topic discovery
endpoints. The default is false.

externalDomainld

string

14

An override for the domain id is used to discov-
ery and determine the port number mapping.
The value default disables the override.

leaseDuration

string

14

The duration of the lease for the domain partici-
pant. The default is 10 s. Recognized units are
day, hr (hours), min (minutes), s (seconds), ms
(milliseconds), us (microseconds), and ns (nano-
seconds).

maxAutoParticipant-
Index

integer

14

This element specifies the maximum DDSI par-

ticipant index if the participantlndex is “auto”.
The default is 9.

participantindex

string

14

The participant index used for discovery. The
value auto selects the index automatically. The
default is default using none if multicast discov-
ery is used or else auto.

ports

object

1.4

The port numbers used for discovery and user
traffic.

SPDPInterval

string

14

The interval at which SPDP messages are sent.
The default corresponds to about 80% of the
participant lease duration with a maximum of 30
s. Recognized units are day, hr (hours), min
(minutes), s (seconds), ms (milliseconds), us
(microseconds), and ns (nanoseconds).

SPDPMulti-
castAddress

string

1.4

The multicast address used for participant dis-
covery. Defaults to the SPDP address
239.255.0.1.

tag

string

1.4

A tag that domain participants to be discovered
must match in addition to the domain ID.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 46 of 97

D3.3 - Final distributed compute infrastructure specification and implementation =2er0s

Field Name DDS Versions Description

base integer 1.4 The base port number. The default is 7400.

domainGain integer 14 The gain applied to the domain id to determine
the port number. The default is 250.

multicastDataOffset integer 1.4 The offset applied to the base port number to
determine the multicast data port number. The
default is 1.

multicastMetaOffset integer 14 The offset applied to the base port number to
determine the multicast meta port number. The
default is O.

participantGain integer 1.4 The gain applied to the participant index to de-
termine the port number. The default is 2.

unicastDataOffset integer 1.4 The offset applied to the base port number to
determine the unicast data port number. The
default is 11.

unicastMetaOffset integer 1.4 The offset applied to the base port number to
determine the unicast meta port number. The
default is 10.

Field Name DDS Versions Description

autodetermine boolean 1.4 Whether to let DDS determine the network in-
terfaces automatically. The default is true.

address string 1.4 The address of the interface to use.

name string 1.4 The name of the interface to use. If both address

and name are provided the address must match
the interface name.

allow_multicast string 1.4 A comma-separated list controlling of some of
the following keywords: “spdp”, “asm”, “ssm”,
or either of “false” or “true”, or “default” to

control if DDS uses multicast on the interface.

multicast string 1.4 If set to default it will use the value as returned
by the operating system. If set to true it will
enable multicast on the interface regardless of
the operating system state.

preferMulticast boolean 1.4 Whether to prefer multicast over unicast when
unicast would suffice.

presenceRequired boolean 1.4 Whether the interface must be present.

priority integer 1.4 The priority of the interface. The default is 0.

In summary, the DDS binding in the AsyncAPI server specification has been used to configure all aspects of
the DDS domain the event-driven application participates in.

A communication between participants is described by an AsyncAPI Channel that maps to DDS topic(s). The
DDS channel binding extends the channel specification by a QoS policies object. A full list of applicable QoS
policies can be found in the DDS specification v1.4 and each QoS policy should be provided as part of the
DDS binding to enable their proper configuration. Furthermore, each AsyncAPI channel is associated with a
set of messages that correspond to DDS data types. In contrast to an AsyncAPI channel, a DDS topic only

Version 1.0 — 17-MAR-2025 - aerOS®- Page 47 of 97

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

supports a single data type thus if an AsyncAPI specification describes an application with several messages
per channel, we must ensure that the DDS binding and supporting tools (e.g. the code generator) map each
valid combination of AsyncAPI channel and message to a distinct DDS topic.

Table 9. DDS Operation Binding Object

Field Name Type DDS Versions ‘ Description

gosPolicies list 1.4 Defines QoS policies for the operation. Find a list of appli-
cable QoS policies below. If the DataReader or DataWriter
inherits the QoS settings from their Publisher or Subscrib-
er, respectively, the QoS policies are not required.

publishers list 14 The publisher objects the DataWriter belonging to a send
operation is associated with.
subscribers list 14 The subscriber objects the DataReader belonging to a re-

ceive operation is associated with.

Table 10. DDS Publisher Object

Field Name Type DDS Versions ‘ Description

name string 1.4 The name of the publisher object the DataWriter is associ-
ated with.

gosPolicies list 14 QoS policies applied to the Publisher.

Table 11. DDS Subscriber Object

Field Name Type DDS Versions ‘ Description

name string 14 The name of the subscriber object the DataReader is asso-
ciated with.

gosPolicies list 1.4 QoS policies applied to the Subscriber.

Table 12. Subset of DDS QoS Policy Objects
QoS Policy Field Name Type DDS Versions Description
kind string 1.4 One of best_effort or reliable.

The maximum blocking time. The default is
100 ms. Recognized units are day, hr
string 14 (hours), min (minutes), s (seconds), ms
(milliseconds), us (microseconds), and ns
(nanoseconds).

The period of the deadline. The default is
INFINITE. Recognized units are day, hr
Deadline period string 14 (hours), min (minutes), s (seconds), ms
(milliseconds), us (microseconds), and ns
(nanoseconds).

Reliability | max_blocking
_time

One of volatile, transient_local, transient, or

Durability kind string 14 persistent,

Version 1.0 — 17-MAR-2025 - aerOS®- Page 48 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Participants of a DDS domain communicate using read/write operations between data writers and data
readers. AsyncAPI operations and their send and receive actions map directly to DDS data writers and data
readers. In addition, DDS data writers and data readers may be associated with a DDS Publisher or DDS
Subscriber, respectively, and may inherit the QoS settings of their Publisher and Subscriber or set their own
QoS policies. As a result, the DDS operations binding (c.f. Table 5) allows us to define a list of QoS policies
per operation or specify a DDS publisher object (c.f. Table 6) for write operations and a DDS subscriber
object (c.f. Table 7) for read operations. Table 8 highlights the specification of a subset of available QoS
policies available to DDS publishers and subscribers.

Figure 1 provides an example of using the experimental DDS binding (indicated by x-*) to specify a reliable
service that receives sensor readings and actuator status variables of a robot and publishes its predicted
trajectory every 20ms.

An AsyncAPI specification using the described DDS bindings can be processed by existing tooling, e.g. by
AsyncAPI Studio to generate documentation, by using the extension mechanism. We further validate the
correctness and functionality of resulting DDS applications by providing a rudimentary code generator for
CycloneDDS and python.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 49 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

3.2.3.2.2. CycloneDDS code generator for AsyncAPI
Note: This development is not endorsed in the software attachment due to privacy concerns.

The AsyncAPI React template rendering engine has been leveraged to implement a code generation solution
capable of producing Python code utilizing the CycloneDDS framework. This code generator is built upon the
experimental DDS binding of the AsyncAPI specification, validating the soundness of the mapping between
DDS concepts and AsyncAPI primitives by yielding functional CycloneDDS applications from an interface
specification. The organization's efforts have focused on implementing and validating the representation of
fundamental DDS concepts, including topics, data writers/readers, publishers, subscribers, and a subset of
quality-of-service objects within the AsyncAPI binding. The AsyncAPI React generator SDK facilitates the
implementation of code generators by parsing a specification and providing a straightforward API*® to interact
with the parsed AsyncAPI objects, such as messages, channels, operations, and bindings.

cyclonedds.pub.Publisher cyclonedds.sub.Subscriber
participant: cyclonedds.domain.DomainParticipant participant: cyclonedds.domain.DomainParticipant
gos: cyclonedds.core.Qos gos: cyclonedds.core.Qos
JaN N
RobotGyro RobotlLocator RobotMotor X -
RobotTrajectoryPredictor
publish publish publish
1.n 1.n| 1.n
1.n| 1.n 1.n| 1.n 1.n| 1.n) .
. instantiate
instantiate
instantiate
instantiate
1 1 1
cyclonedds.pub.DataWriter cyclonedds.topic.Topic cyclonedds.sub.DataReader
1

RobotTrajectoryPredictorListener

robotTrajectoryPredictor: RobotTrajectoryPredictor

)

cyclonedds.core.Listener

on_data_available

The CycloneDDS generator creates a python data class per AsyncAPI message and associates each DDS topic
with a unique tuple of AsyncAPl channel and message. For each AsyncAPI send/receive operation, the
generator instantiates a data writer/reader and associates each data writer/reader with a publisher/subscriber
using the operations DDS binding. In addition, for each data reader of a subscriber, the generator sets up a
DDS listener. The DDS listener implements a callback that triggers when new data is available on the topic of
the corresponding data reader. Optionally, the CycloneDDS generator associates receive operations’ reply
objects with a data writer that enables data readers to send a response on a defined topic.

A functional python CycloneDDS application from the robot trajectory example has been generated. The
resulting application publishes a robots position, orientation, and speed on corresponding topics and a
trajectory predictor component subscribes to the topics to use the received messages to calculate and publish
the predicted trajectory of the robot. All send and receive operations are specified to be reliable, messages

13 https://github.com/asyncapi/parser-api/blob/master/docs/api.md

Version 1.0 — 17-MAR-2025 - aerOS®- Page 50 of 97

https://github.com/asyncapi/parser-api/blob/master/docs/api.md

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

being volatile, and occurring periodically with a deadline. The corresponding QoS policies are automatically
added to the publisher and subscriber and applied to the data writers and data readers. showcases a
UML class diagram of the resulting DDS publishers and the RobotTrajectoryPredictor DDS subscriber and its
DDS Listener that is activated when a data reader has messages ready.

When the CycloneDDS application executes it creates a thread per publisher and subscriber and reads/writes
data as specified in the QoS policies. The resulting output can be seen in

Note how the RobotTrajectoryPredictor receives twice as many RobotStateSpeed and RobotStatePosition
messages than RobotStateOrientation message since their periods in the Deadline QoS policy as shown in the
specification differ by a factor of two.

3.2.3.3. AsyncAPI for ROS 2

Robot Operating System 2 (ROS 2) is an open-source middleware framework designed for real-time, scalable
communication in robotic systems. It builds on standards like DDS and Zenoh to facilitate effective data
exchange crucial for complex robotic architectures. Supported by a vibrant community, ROS2 provides access
to thousands of ready-to-use, community-driven libraries, making it an indispensable tool for rapid
prototyping and deployment across various sectors—from industrial automation to autonomous vehicles. Its
robust features enable efficient multi-robot interactions and seamless cross-platform operations, contributing
significantly to its widespread adoption.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 51 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Integrating ROS2 with AsyncAPI presents an exciting opportunity to standardize interface specifications in
robotic applications. With ROS2’s topics aligning naturally with AsyncAPI channels, and its publishers and
subscribers corresponding to AsyncAPI’s send and receive operations, there is a strong foundation for
synergy. However, integration must address ROS2-specific Quality of Service (QoS) settings, which lack
direct AsyncAPI equivalents. Developing an AsyncAPI-ROS2 binding would effectively encapsulate these
QoS parameters, facilitating precise and reliable system configurations. This integration not only promises to
streamline the specification process but also enhances interoperability and innovation within the robotics
community.

3.2.3.3.1. An Experimental AsyncAPI Binding for ROS 2

We describe an experimental binding for messages, servers, channels, and operations that enables specifying
event-driven applications in AsyncAPI. This binding is particularly relevant for ROS 2, which can use either
DDS or Zenoh as its middleware.

Server Binding Object

In ROS 2, the server binding object contains information about the server representation. Since ROS 2 can use
decentralized middleware with no central server, the host field can be set to localhost. When using Zenoh, the
host field specifies the Zenoh Router IP address.

ROS 2
Field Name Versions Description
rmwlimplemen- | string all Specifies the ROS 2 middleware implementation to be used. Valid
tation values include rmw_fastrtps_cpp (Fast
DDS), rmw_cyclonedds_cpp (Cyclone
DDS), rmw_connext_cpp (RTI Connext),

and rmw_zenoh_cpp (Zenoh). This determines the underlying mid-
dleware implementation that handles communication.

domainld inte- all All ROS 2 nodes use domain ID 0 by default. To prevent interfer-
ger ence between different groups of computers running ROS 2 on the
same network, a group can be set with a unique domain ID. Must
be a non-negative integer less than 232.

Servers:
ros2:

protocol:
protocolVersion: humble

bindings:
ros2:
rmwImplementation: rmw_
domainId: 8

Operation and Channels Binding Object

AsyncAPI operations, with their send and receive actions, map directly to ROS 2 subscribers, publishers,
actions, or services:

e send -> publisher, action_client, service_client
e receive -> subscriber, action_server, service_server

Version 1.0 — 17-MAR-2025 - aerOS®- Page 52 of 97

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

Unlike DDS, which only maps send/receive operations to publishers and subscribers, ROS 2 also includes
request and response operations, encompassing services and actions. Each operation binding maps to a
channel object with a ROS 2 role, node, and QoS policy object:

Table 14. ROS 2 Operation Binding Object

ROS 2

Field Name Type Versions Description

role string all Specifies the ROS 2 type of the node for this operation. Valid
values are: publisher, subscriber, service client ser-
vice_server, action_client, action_server. This defines how the
node will interact with the associated topic or action.

node string all The name of the ROS 2 node that implements this operation.

gosPolicies object all Quality of Service (QoS) for the topic.

Table 15. ROS 2 Quality of Service Object

ORW

Field Name Versions Description

reliability string all One of best_effort or reliable. More information here: ROS 2
QoS

history string all One of keep_last, keep_all or unknown. More information
here: ROS 2 QoS

durability string all One of transient_local or volatile. More information here: ROS
2 QoS

lifespan integer all The maximum amount of time between the publishing and the

reception of a message without the message being considered
stale or expired. -1 means infinite.

deadline integer all The expected maximum amount of time between subsequent
messages being published to a topic. -1 means infinite.

liveliness string all One of automaticor manual. More information here: ROS 2
QoS
leaseDuration integer all The maximum period of time a publisher has to indicate that it

is alive before the system considers it to have lost liveliness. -
1 means infinite.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 53 of 97

https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

receiveCmdvel:
action: re
channel:

$ret:
bindings:
ros2:
role: subscriber
node: /turtl
qosPolicies:
history: unk
reliability: r ble
durability: volatile
lifespan: -1
deadline: -1
liveliness: automatic
leaseDuration: -1

Message Binding Object

ROS 2 message types, defined in .msg, .srv, or .action files, are mapped to AsyncAPI message payloads. The
following table describes how to map ROS 2 type to AsyncAPI types and format:

ROS 2 Type AsyncAPI Type AsyncAPI Format
bool boolean boolean
byte string octet
char integer uint8
float32 number float
float64 number double
int8 integer int8
uint8 integer uint8
int16 integer int16
uintl6 integer uintl6
int32 integer int32
uint32 integer uint32
int64 integer int64
uint64 integer uint64
string string string
array array --

3.2.3.3.2. ROS 2 code generator for AsyncAPI

Note: The software associated to this development is not included in the compressed file since it is undergoing
its own open-sourcing process (SIEMENS). It will be available in due time for the community.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 54 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

The primary objective of our code generator is to utilize AsyncAPI tools equipped with ROS2 bindings to
systematically transform the specified information into ROS2 interface definition files, including .msg, .srv,
and .action files, as illustrated in

These generated ROS?2 files, supplemented with additional details from AsyncAPI, serve as the foundation for
deploying a comprehensive ROS2 application. The code generator is specifically optimized for integration
with low-code tools, as discussed in Chapter 4.2.1.3. It extracts key elements such as topic names, interface
descriptions, and Quality of Service (QoS) settings from the AsyncAPI specifications. Utilizing this
information, the tool generates C++ code for ROS2 components, including subscribers, publishers, action
clients, and service clients.

The application of this generated code for low code tools facilitates efficient development workflows,
enabling rapid prototyping and deployment of ROS2 applications. Detailed usage and benefits of this
approach are further elaborated in the subsequent sub-chapter.

3.2.4. Low-code tools

The integration of low-code tools into the aerOS project represents a significant step towards democratizing
the development process and enhancing the system's flexibility. At the heart of this integration lies the
implementation of behaviour trees, a graphical low-code application that do not directly orchestrate services
within the aerOS domains, but instead function as a graphical low-code interface that triggers functionalities
within already running applications with different parameters.The behaviour trees enable users to define
triggers that activate specific services' functionalities, without initiating or terminating the services
themselves. This approach ensures a user-friendly method for modifying the operational logic, where users
can interactively change the services to be triggered and adjust their parameters with ease.

aerOS Domain 1

Behavior Trees
e}

= aerOS

Service]l [Service 2 Domain 2

‘

In this illustrative example of the application of behavior trees within the aerOS framework, showcasing their
role in triggering functionalities across different aerOS domains. The behavior tree was strategically
configured to initiate specific functionalities of service 1 within aerOS domain 1, as well as trigger

Version 1.0 — 17-MAR-2025 - aerOS®- Page 55 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

functionalities in service 2, which could be executed in an external aerOS domain 2. This cross-domain
interaction demonstrated the interoperable design of the aerOS system and the flexible nature of the behaviour
trees.

In addition to the integration of behavior trees, Node-RED flows have been employed as another low-code
tool within the aerOS project. Node-RED is a graphical programming tool that allows users to create and
deploy applications through a browser-based interface. The integration of Node-RED flows into the aerOS
system further enhances the system's flexibility and ease of use, complementing the capabilities provided by
the behavior trees.

Users will be able to leverage the intuitive, drag-and-drop interface of Node-RED to define custom workflows
and integrate various functionalities within the aerOS ecosystem.

This low-code approach will empower system administrators and users to rapidly configure and adapt the
system's behavior without the need for extensive programming knowledge.

aerOS Domain 1

nodeRED
- Service 1
] e 0S
Al e
ice .
P T Domain 2

As in the behavior tree’s example, the role of Node-RED is to trigger functionalities across different aerOS
domains. This tool has been used within the MVP, as discussed in Chapter 3.2.5.

The incorporation of behaviour trees and Node-RED thus represents a nuanced enhancement of the aerOS
system's responsiveness and adaptability, providing users with powerful tools to influence the system
behaviour dynamically while leaving the core orchestration responsibilities to the HLO and LLO.

3.2.4.1. Generate skills from AsyncAPI for Low Code tools

Within aerOS’ scope, two low-code tools were employed: Node-RED and Behavior Trees. Both platforms
offer intuitive GUIs that facilitate the integration of interfaces and the management of data transmission using
protocols such as ROS2, REST, MQTT, and other industrial standards. Code generators can be utilized to
create specific blocks within these tools, significantly enhancing usability and streamlining development

processes.
\ Eap——
s
ROS2 AsyncAPI

DDs specification
Node-RED

OPC-UA

As can be seen in Figure 44, an AsyncAPI specification for the machine acts as the blueprint for generating
these skills or blocks. This specification is transformed into C++ code for Behavior Trees or JavaScript code

Version 1.0 — 17-MAR-2025 - aerOS®- Page 56 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

for Node-RED. The generated blocks in the low-code tools represent specific robotic skills. Users can connect
these skills or blocks via the GUI, efficiently deploying robust applications.

To further streamline the process, AsyncAPI specifications for machines can be auto generated, offering
significant benefits, particularly in brownfield environments where manually documenting existing interfaces
in an AsyncAPI YAML file is both time-consuming and labour-intensive. For instance, in machines utilizing
ROS2, the AsyncAPI specification can be automatically created using ROS2 interface files (.msg, .srv,
.action), as detailed in the previous subchapter. Alternatively, information can be extracted from live
monitoring tools, although this approach necessitates an operational machine to accurately capture real-time

interface dynamics.

3.2.5. Technologies and standards deployed in MVP

Description

Justification

Technology/Standard

OpenAPI A specification for building and | Enables clear, standard-based documentation,
documenting RESTful APIs. simplifies API development, and increases
interoperability.
Web-based tool for | Tools that provide visualization | Facilitates easy access to APl documentation
OpenAPI (e.g., | and interaction with OpenAPI | for developers, promoting easy testing and

SwaggerUI/Redoc)

documents.

reducing time for

developers.

onboarding new

Code Generator (e.g.,

Automated code generation tools

Speeds up the development process by

Swagger Codegen) that produce client and server generating boilerplate code for the MVP,
code from an OpenAPI specifica- | allowing developers to focus on
tion. implementing unique business logic and

speeding up time-to-market.

Node-RED Graphical programming tool that | It provides a Ul to send commands to a

allows users to create and deploy
applications through a browser-
based, low-code interface.

service and automatically publish the
outcome of those commands into an IOTA
block.

3.3. aerOS service and resource orchestration

3.3.1. Main functionalities

3.3.1.1. aerOS continuum ontology entities as a single source of truth

The aerOS continuum ontology described in section 3.1.3.1 of D4.2 has been designed having into
consideration two essentials pillars in the aerOS architecture: (i) Domain federation and continuum
management; and (ii) Decentralized orchestration. When it comes to aerOS orchestration, this ontology tries
to facilitate the complex orchestration process in a distributed and decentralized environment such as the 10T-
Edge-Cloud computing continuum, so the initial Intention Blueprint (in TOSCA format), which includes
information of the service orchestration requested by a user through the Management Portal, is translated into
several NGSI-LD entities so as to avoid the requirement of deploying additional databases for storing these
TOSCA files in each domain, leveraging the stablished aerOS Federation and Data Fabric to store and share
these entities in a decentralized way. This conceptual data model will be enhanced to describe more important
data that is being identified as the project moves further, such as advanced network or communication links
among services, or storage requirements needed by services components.

In the first iteration of the continuum conceptual data model, Service entities (e.g. an 10T service) are linked to
a set of ServiceComponents (e.g. the 10T Edge and Central Cloud service components), which indeed are the
core entities of the orchestration as the whole orchestration process is performed independently for each

Version 1.0 — 17-MAR-2025 - aerOS®- Page 57 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

ServiceComponent. In addition, these entities contain specific attributes that will be later used by the
orchestrator components: location requirements, Service Level Agreements, execution information, etc.

Moving to the specific interaction of aerOS orchestrator components (see section 4.3.2) with the ontology,
HLO Data Aggregator uses the IErequirement attribute value to perform a preliminary filtering to select the
candidate IEs that are able to run the component of a service in terms of computing resources, location, real-
time capabilities, ... Furthermore, the monitoring data of the IEs status is retrieved (IE entities) and sent to
the HLO Allocation Engine, along with additional ServiceComponent running requirements (e.g. custom
SLAs), to feed the Allocation Al Algorithm. After the allocation decision of this algorithm, the
Implementation Blueprint (as a K8s Custom Resource) is sent to the selected LLO, which retrieves the
execution information (container image, cli arguments, environment variables, network ports, ...) included in
the ServiceComponentArtifacts entity of the ServiceComponent to deploy the requested workload in the
selected IE. Finally, the ServiceComponent entity is updated with the result of the orchestration process
(deployed IE, status, ...) to allow its further monitoring.

3.3.1.2. High-level Orchestration components decomposition

As described in deliverable D3.1, the High-level Orchestration part in the multi-level orchestration
architecture is responsible for the smart placement of the services inside the federated domains taking into
account the services requirements and the infrastructure constraints. It interacts with the Low-level
Orchestration to communicate the final decision.

Considering its complexity and the engagements of many partners in its development, the high-level
orchestration has been decomposed into different components illustrated in Figure 9. Each component is
responsible for specific duties of this orchestration level.

The HLO Storage Engine is responsible for converting the user service definition in TOSCA format and
transforms it into a set of data entities to be stored using NGSI-LD endpoint.

The HLO Data Aggregation and Alert system is responsible for aggregating all the required data for the
smart allocation. It also triggers the remaining stages in the placement process.

The HLO Allocation Engine is responsible for the Al part in the HLO. It receives the services requirements
and infrastructure elements constraints to provide the allocation decision.

The HLO Deployment Engine is the component interacting with LLO and transforms the allocation decision
from the HLO Allocation Engine and converts into a deployment request to the LLO.

3.3.1.3. Multi-Low Level Orchestrators support for multiple resource
orchestrators

In the aerOS architecture, different types of infrastructure elements are considered to support rich types of
compute resources such as Kubernetes clusters, limited compute modules such as Raspberry Pls etc. From the
D3.1 deliverable, Operators watching an aerOS-specific custom resource in the Low Level Orchestrator
handle the actual deployments of so-called Service Components in these compute resources.

The support of such resources requires flexibility and decoupling in the development of these operators.
Depending on the containerization runtime deployed in the infrastructure element defining its type, a
corresponding operator manages the deployment of service components.

The components constituting two types of low-level orchestrators (dockerd and K8S) have been described in
previous deliverables. It is important to note that each operator watches a different set of Service Components
Custom Resources. To allow such separation, different kinds of Custom Resources Definitions are provided
for each low-level orchestrator type but are consistent in their schemas.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 58 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

3.3.1.4. Connectivity and energy support orchestration in aerOS continuum
ontology

The aerOS continuum ontology has provided the modelling tools for the internal functioning of the aerOS
orchestration system. Nevertheless, certain models were missing but are important for the optimization of the
allocations of Service Components into the IEs. In this regard, two modelling aspects were added. The first
one being the connectivity, Network Link and Network Port have been added to the continuum ontology. They
allow to model how Service Components in the current topology are connected, creating a network overlay
that is automatically orchestrated as part of aerOS. These added concepts can also be augmented with
optimization constraints such as latency and bandwidth. These allows further adaptation to the application
nature of the user. The second one, related to energy ontologies have been added to accommodate two
modelling needs. Energy efficiency has been integrated as part of the IE requirements and defines the required
compromise between computation and energy of the running IE. The Energy Source ontology independently
defines the percentage of green energy supplied to the infrastructure. The user can provide a minimum green
energy requirement in the application blueprint.

3.3.1.5. High-level Orchestration Allocator Al algorithm

As part of the architecture of the HLO, the Al algorithms constitute the core of the smart mechanisms in the
allocation of the services resources and deployed in the HLO Allocator. Any proposed Al algorithmic
approach passes through different steps before final integration.

1- Design of an Al algorithm for the continuum.

2- Test and validation with simulation data.

3- Input and Output adaptation for the HLO Allocator data formats.
4- Final deployments and tests.

In the context of aerQS, different algorithms have been designed, then tested and validated. However, due to
the current stage of the project, only some of them have been able to be deployed over real data (those used in
the MVPv2). Others have been developed and tested over simulated data (compliant with aerOS data models
and structure).

In the next pages, a summary of the algorithmic approaches developed can be found.

- A Deep Reinforcement Learning (DRL) Allocator

This has been the algorithm used in the MVPv2 validation of aerOS. Therefore, it has been the only one
applied over a real, functional aerOS continuum (composed of three domains: CloudFerro (entrypoint),
NCSRD and mobile domain).

In this case, the development of a HLO Allocator Al Algorithm utilizing a Deep Reinforcement Learning
(DRL) approach based on the stable-baselines3 framework was performed. The work encompasses the
creation of a synthetic dataset for training the DRL model, the integration of the allocator into the HLO, and a
performance comparison with a Mixed Integer Linear Programming (MILP) approach, which has been
identified as significantly slower. The development adheres strictly to Machine Learning Operations
(MLOps) best practices to ensure scalability, reproducibility, and maintainability.

The decision to employ a DRL algorithm stems from the need for an efficient and scalable solution to the
allocation problem within the HLO. DRL offers the ability to learn complex policies that can generalize over a
wide range of scenarios, making it suitable for dynamic and diverse environments. Unlike traditional
approaches such as Mixed Integer Linear Programming (MILP), which re-calculate the optimal allocation for
every request, DRL shifts the computational overhead from online calculation to offline training through
back-propagation. During inference, the allocation action is computed using a neural network, resulting in
significantly reduced computational effort for each allocation request.

In the context of the aerOS federation, which supports large networks and distributed systems across multiple
domains, scalability is a crucial requirement. DRL enables higher scalability on a per-request basis, allowing
for a larger number of devices within the same domain. For example, while a MILP approach with similar
objectives requires approximately one minute to compute allocations for a network with 60 devices, our DRL

Version 1.0 — 17-MAR-2025 - aerOS®- Page 59 of 97

https://stable-baselines3.readthedocs.io/

D3.3 — Final distributed compute infrastructure specification and implementation =2er0s

approach requires less than one second. This translates to a saving of approximately 59 seconds per allocation
request compared to MILP.

The HLO Allocation Engine receives as input the service component to be placed and a pre-filtered list
of IE candidates from the HLO Data Aggregation and Alert System, as defined in the protobuf message
format. The DRL approach utilizes the service component definition, including its constraints, and the
resources of an IE, such as memory usage, to minimize the expected latency between service components and
the overall power consumption. The output of the HLO Allocation Engine is an allocation mapping between
the service component and an IE, and optionally, the previous IE if the service was deployed previously.

d)
)

Image registry

Required meta services

Divors

CICD Runner

ML Foundation ML Core ML Auxiliaries
$rid
ﬁ; o_o0
Ancmal Anomaly
data —| handier Redpanda
> broker
2 a
Q= Redpanda ” "!3"”‘3" Sane raw Input Input Model
0= Data raction fl, Data modelier Data data d, Feature data d Data valldator 222 9t ~ Mode! output doc | Oulput post-
Q-1 Aggregator Raw schemer engineerer inferencer processor
o EP data d,

As illustrated in Figure 45, the HLO Allocation Engine based on an MLOps pipeline structure to ensure future
scalability and maintainability has been implemented. The approach is divided into three main parts, each
subcategorized into specific functions:

- ML Foundation:

o Redpanda Data Aggregator Endpoint: Collects data from the HLO Data Aggregation and
Alert System.
o Data Modeller: Structures and models the incoming data.
o Data Schemer: Defines and manages the schema of the data for consistency.
- ML Core:
o Anomaly Handler: Detects and handles anomalies in the data.
o Feature Engineer: Processes and transforms raw data into meaningful features for the model
inference.
o Data Validator: Ensures data quality and validity.
o Model Inferencer: Performs inference using the trained DRL model.
o Output Post Processor: Refines and formats the model output for downstream applications.
- ML Auxiliaries:
o Output API / Redpanda Broker: Manages communication and data exchange between HLO

Allocator Engine and HLO Deployment Engine.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 60 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

State
(—n - e
Rnsnurcns

Agent
Environment | MaskablePPO)
IFS::r*-.-'ic:-Js A b Critic
- -_DB: |'_Eerlver; antend— l Reward '<:.'.=§f:'.:.' e
L | S J:“—I’ aeds into R !
: & N
i i trains
i I|r|ES- 5.__ -\':I% T H
i 1.‘!‘,2‘*3#" e :? . Dt - -
s (4 * R
. o
J >,

N -
.
Aﬂtmn
influence selects
|Ssr'u'ar -a- g

In DRL, an agent learns to make decisions in a complex environment by interacting with it and receiving
rewards or penalties for its actions, as shown in Figure 46. The goal is to learn a policy that maximizes the
cumulative reward over time. The MaskablePPO algorithm is employed, a variant of Proximal Policy
Optimization (PPO), which is a popular model-free, on-policy DRL algorithm.

Concrete Example of DRL in HLO Allocation

In the aerOS DRL approach, the action during inference is the selection of an IE for a given service
component. For instance, the agent might select "IE 2" for the service component "Server". To prevent the
selection of unsuitable IEs, such as those exceeding certain resource thresholds (e.g., IEs larger than "5"),
action masking to exclude these possibilities is employed. The reward function is defined as:

Reward = —Acost
The cost includes factors such as:

e Latency between service components.
o Estimated power consumption of the service component on the IE.
e Penalty for CPU overload if the allocation would exceed the IE's CPU capacity.

Since DRL algorithms aim to maximize the reward, multiplying the cost by -1 effectively turns the problem
into a cost minimization task. The state and reward are used by the critic to train the actor neural network,
which then selects the actions. By continuously interacting with the environment and receiving feedback
through rewards, the agent improves its policy over time.

Svynthetic Dataset Generation for Training

Although the environment is fixed and could, in theory, generate random states, training can be improved both
in efficiency and time by using a pre-defined dataset that resembles real-world scenarios. To achieve this, a
synthetic dataset with different-sized networks in a hierarchical form and services with one or more
interdependent service components was generated. This dataset contains:

- One hundred samples for each network size between 1 and 100.

- Zero to 200 samples for services with 1 to 30 interdependent service components.

By matching services with networks in the dataset, we can train the DRL model effectively. The pre-trained
network can then be used for inference on actual allocation requests.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 61 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Multi-Tenancy Gaming approach from Slice Resource Provisioning perspective (theoretical)

aerOS consortium suggested the investigation of the maximization of total profit for all users through a Profit-
aware Slicing Resource Provisioning approach with Multi-Tenancy Gaming (PS-MTG) algorithm, towards
the orchestration of microservices across aerOS domains. In this context, the microservices are considered as
Slicing Resource Provisioning due to its direct connection with mobile communications domain.

The results of this work have been published in the article: “Profit-Aware Proactive Slicing Resource
Provisioning with Traffic Uncertainty ”

A summary of this work is as follows:

The proposed approach consists of two main steps. First, a Slicing Request Pre-Check Algorithm is developed
to verify whether the slicing satisfies predefined conditions related to anticipated bandwidth requirements,
slots, and wavelengths. After the pre-check, the set of slice requests that can be served by the tenant is
determined. Next, the Slice-Tenant Matching for Credible Prediction Algorithm begins, involving a loop that
matches tenants with users. Each user selects the most profitable tenant. If network congestion occurs after
serving a user, the algorithm updates resource information and costs for all tenants before finalizing the match
and updating the related costs, profits, and paths.

The proposed profit-aware resource provisioning algorithm using a 14-node network was elevated. For this
evaluation, 200 services are generated by intercepting and scaling real-world data, with the sliced data traffic
constrained to a range of 0-10 Gbps. The delay for each slice is randomly selected within the range of 40 ms
to 100 ms, with 10 ms intervals. Al-based (GRU-based) prediction, as discussed in (1), is used to make
predictions and assess the credibility of the results. The experiment spans 24 consecutive time steps. The PS-
MTG algorithm achieved an overall accuracy of 7.26%, slightly trailing behind the FIX algorithm at 7.95%.
However, PS-MTG offers a marginal advantage in terms of overall user benefit accuracy. Additionally, the
refusal rate of sliced services across the different schemes was assessed. To highlight the algorithm's
effectiveness, the services were intentionally overloaded, which resulted in a higher rejection ratio. Notably,
the PS-MTG algorithm demonstrates the lowest service rejection rate, while the FULL algorithm consistently
shows a high rejection ratio. In contrast, the FIX algorithm exhibits a fluctuating rejection rate, peaking at
23%.

- Adaptable Computing and Network Convergence algorithmic approach (theoretical)

aerOS consortium proposed a fundamental framework called Adaptable Computing-Network Convergence
(ACNC), designed to address the challenges of autonomous orchestration of cloud and network resources.
ACNC is an ML-aided framework that integrates computing and networking resources to efficiently manage
dynamic and voluminous user requests with stringent QoS requirements. Even though this algorithm has not
been able to be deployed over aerOS infrastructure (due to several reasons), it is being further explored and
has been tested over certain 6G infrastructure conditions.

The results of this work have been published as a pre-print in arXiv: “Towards a Dynamic Future with
Adaptable Computing and Network Convergence (ACNC)”

A summary of this work is as follows:
ACNC comprises several key components:

» State Recognition and Context Detection: ACNC employs dimension reduction techniques to
generate live, holistic, and abstract system states in a hierarchical structure. Continual Learning
(CL) is used to classify these system states into contexts, each managed by dedicated ML agents.

» Resource Orchestration: The framework includes an end-to-end orchestrator that collaborates with
domain orchestrators (network and computing) to allocate resources efficiently. The orchestration
process is closed loop, ensuring that resources are dynamically adjusted to meet changing
demands.

As the system size increases, ACNC has demonstrated over a simulated environment optimal performance in
terms of energy consumption and total profit. The DDQL-GNN approach in ACNC, which uses Graph Neural
Networks (GNNs), outperforms the standard Double-Deep Q-Learning (DDQL) approach, indicating the
effectiveness of incorporating graph-shaped system states in decision-making..

Version 1.0 — 17-MAR-2025 - aerOS®- Page 62 of 97

https://ieeexplore.ieee.org/document/10622595
https://ieeexplore.ieee.org/document/10622595
https://arxiv.org/abs/2403.07573
https://arxiv.org/abs/2403.07573

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Predicting Network Metrics for Managing Mobility and Reallocation (theoretical)

aerOS consortium proposed a prediction-based intelligent network analytics framework so that the allocation
of microservices can be done based on the forecasted behaviour of the network. Anticipating user demand and
network conditions, would enable proactive adjustments by HLO in aerOS whenever deploying services.
Since this approach has not been validated over real aerOS continuums, the demonstration is supported over
6G theoretical infrastructure, including historical data.

The results of this work have been published as a scientific article: “Network Slice Mobility for 6G Networks
by Exploiting User and Network Prediction ”

A summary of this work is as follows:

The work exposed operated within a distributed Cloud-edge-loT environment, where resource predictions
guide decisions on scaling, migrating, or reallocating services. By prioritizing high-value services and
leveraging complementary load profiles across servers, the approach ensures that resources are utilized
efficiently while reducing the costs associated with mobility/reallocation. It assumes a time-slotted system and
uses traffic prediction methods to obtain accurate prediction information. The scheme prioritizes based on
their importance and uses the prediction information to decide on scaling up/down or migrating slices to
different servers.

Anomaly Prediction and Resource Allocation (theoretical)

aerOS consortium proposed a framework to locate the potential microservices/slices anomalies and decide the
resource allocation strategies simultaneously by predicting the users’ future requests. Although departing from
a slice-only perspective, the alignment with aerOS was permeated across this effort, so that the inner dynamic
adjustment (e.qg., slice splitting, merging, and scaling) can be applied.

Also, building on top of the work n T3.5 of aerOS (self-awareness), this approach, by monitoring the running
status of physical/virtual nodes, the connectivity of physical/virtual links, and the latencies of different service
function chains in the sub-slices level and slice level, slice anomaly detection can improve the users’ quality
of service/experience (QoS/QoE) by ensuring users’ specific requests for resources, service latencies,
computing capacities, and content availabilities.

The results of this work have been published as a scientific article: “User Request Provisioning Oriented Slice
Anomaly Prediction and Resource Allocation in 6G Networks

Markov-Decision Process as the based for joint Service Migration and Resource Allocation in
Edge 10T System (theoretical)

aerOS team also proposed a comprehensive approach to address the joint optimization of service migration
and resource allocation in Cloud-Edge-loT computing continuums. Here, the approach had as main target to is
to minimize access delay while maintaining service continuity for 10T users in a dynamic environment
characterized by user mobility and constrained edge server resources.

The results of this work have been published as a scientific article: “Joint Service Migration and Resource
Allocation in Edge 10T System Based on Deep Reinforcement Learning ”

. The proposed methodology relies on a deep reinforcement learning (DRL)-based algorithm to dynamically
adapt to changes in system conditions and user requirements. The problem of allocation is formulated as a
Markov Decision Process (MDP) with defined states, actions, and a reward function. The state includes
information about predicted user locations, edge server resource availability, and user-server associations. The
actions consist of binary migration decisions and continuous resource allocation parameters. The reward is
designed to incentivize minimizing total task processing delays. The algorithm offers a scalable and intelligent
solution for optimizing service migration and resource allocation in aerOS computing continuums. Its
integration of mobility prediction, hybrid action space handling, and DRL-based optimization ensures
enhanced service continuity, reduced delays, and improved resource utilization.

A Priority-Aware Energy-Efficient Approach for Latency-Sensitive Applications (theoretical)

Version 1.0 — 17-MAR-2025 - aerOS®- Page 63 of 97

https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10317883
https://ieeexplore.ieee.org/document/10317883

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

aerOS consortium proposed a priority-aware solution for the autonomous orchestration of cloud and network
resources that had as basis the configuration of 6G networks. Applicability to aerOS would be demonstrated in
a future initiative.

The results of this work have been published as a pre-print in arXiv: “ORIENT: A Priority-Aware Energy-
Efficient Approach for Latency-Sensitive Applications in 6G”

A summary of this work is as follows:

The approach is designed to address the joint problem of service instance placement and assignment, path
selection, and request prioritization, collectively referred to as PIRA (Placement, Instance Assignment,
Request Prioritization, and Allocation). The primary objective is to maximize the system's overall profit,
defined as a function of the number of concurrently supported requests, while minimizing energy consumption
over time. This is achieved while considering end-to-end latency requirements and resource capacity
constraints. The proposed approach leverages a combination of Double Dueling Deep Q-Learning (D3QL)
and GNNSs to encode the state of the system and make optimal resource allocation decisions. The solution is
particularly suited for latency-sensitive applications in 6G, where stringent QoS requirements must be met
efficiently, however, as mentioned, it would be for interest in the regular aerOS implementation cases.

Customizable Hybrid Isolation for Vertical Slicing approach (theoretical)

aerOS consortium proposed a novel flexible hybrid isolation model and addresses challenges in slice resource
provisioning with uncertain traffic in transport networks. After this scientific work under task T3.3 of aerOS,
that targets resource (mobile network slices) allocation, a dynamic programming algorithm efficiently handles
grouping, and an iterative adjustment algorithm fine-tunes resource allocation based on probabilistic analysis.

The results of this work have been published as a scientific article: “Probabilistic-Assured Resource
Provisioning With Customizable Hybrid Isolation for Vertical Industrial Slicing ”

Multi-Agent Actor-Critic (MAAC) algorithm for Heterogeneous Edge Caching Learning with
Attention Mechanism Aiding approach (theoretical)

aerOS consortium proposed a novel multi-agent, neighbour-aware actor-critic (NAC) framework, inspired by
the Multi-Agent Actor-Critic (MAAC) algorithm was developed in order to optimize edge caching strategies.
The work uses an attention-based multi-agent caching replacement strategy. Agents can learn from
neighbouring Base Stations (BSs), improving caching decisions through shared knowledge. Consequently,
caching states can be exchanged between BSs, facilitating better information sharing, such as content size and
type. In this approach, both time and space factors were incorporated as observations to analyse the influence
between BSs through the critic network, using an attention mechanism. Each BS, acting as an agent, has its
own critic network and can observe the historical caching states of neighbouring BSs. This process combines
distributed local training with centralized global learning.

The results of this work have been published as a scientific article: “Heterogeneous Edge Caching Based on
Actor-Critic Learning With Attention Mechanism Aiding ”

Joint Network Slicing, Routing, and In-Network Computing approach (theoretical)

aerOS consortium proposed a slicing-based solution for the autonomous orchestration of computing
continuum network resources, particularised in next-generation mobile networks.. The solution involves
formulating a Mixed-Integer Linear Programming (MILP) problem that considers end-to-end capacity and
QoS constraints. Given the NP-hard nature of the problem, a heuristic algorithm is proposed, WF-JSRIN
(Water Filling-based Joint Slicing, Routing, and In-Network Computing), which provides near-optimal
solutions with significantly reduced execution times compared to optimal approaches. This makes it highly
suitable for practical real-world applications, particularly in the context of autonomous resource orchestration.
The goal was to align with aerOS principles and to maximize the number of accepted users while minimizing
energy consumption, thereby ensuring sustainable and efficient network operations

The results of this work have been published as a scientific article: “Joint Network Slicing, Routing, and In-
Network Computing for Energy-Efficient 6G

Version 1.0 — 17-MAR-2025 - aerOS®- Page 64 of 97

https://arxiv.org/abs/2402.06931
https://arxiv.org/abs/2402.06931
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10571186
https://ieeexplore.ieee.org/document/10571186

D3.3 — Final distributed compute infrastructure specification and implementation =aer0S

3.3.2. Structure diagram

-

self-orchestration

Management Portal

sync

Organization Domain 1

Details removed
for brevity

Organization Domain 2

Figure 47. aerOS High-Level Orchestration Components

Table 18. aerOS High-Level Orchestration Components’ description

Component

HLO Storage Engine

Description

Component of the High-Level
Orchestrator (HLO) exposing a
REST endpoint responsible for
receiving 10T service LCM
(deployment, update, delete)
requests. These requests originate

Interactions

Management portal, located in entrypoint
domain. Receives TOSCA descriptor through
REST endpoints.

Orion CB, to which it pushes (using ngsi-Id
API) service requirements.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 65 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

from the aerOS entrypoint domain
in TOSCA format and are
translated into the internal aerOS
data model, represented in NGSI-
LD format.

Internal breakdown includes,
HLO FE EP (HLO Front end
endpoint) is exposing REST API
and HLO FE Handler
implements the business logic of
this component, including data
validation, translation, storage.

Data Aggregator is triggered to proceed
with the orchestration pipeline, utilizing the
Redpanda message broker with protobuf
formatted data.

HLO Data
Aggregation and Alert
System

Component of the High-Level
Orchestrator (HLO) responsible to
receive service deployment or
migration requests and
subsequently filter and retrieve,
from data fabric, all computing
resources (aerOS IEs) capable to
support service requirements.

Internal breakdown includes Data
Aggregator, which is responsible
to receive service requirements,
filter and retrieve capable IE
information and forwards all this
information to HLO Allocation
engine.

IE resource alert end point,
responsible to receive alerts from
IEs self-orchestration component
regarding service component
migration.

IE resource alerts handler,
responsible to forward service
component, that needs to be
migrated, id to Data aggregator
(again using Redpanda and
protobuf format).

HLO Storage Engine, from which it
receives service deployment request, when
event is triggered through Redpanda message
broker (with protobuf formatted payload).

Self-orchestration component which triggers
event, also through Redpanda message broker
with protobuf formatted payload, with
information of service component that needs
to be migrated to other aerOS computing
resource (IE).

Local Orion-CB (part of aerOS data
federation) is queried using filtered requests
based on service component requirements, to
retrieve IEs, across all aerOS continuum,
capable to host newly deployed (or migrated)
service component.

HLO Allocation Engine to which it
forwards service components requirements
and list of IE capable to host each
component. This information is conveyed
using Redpanda message broker in a protobuf
formatted message.

HLO Allocation
Engine

Component of the High-Level
Orchestrator (HLO) implementing
smart algorithm which enables the
most efficient allocation of each
service component to the most
suitable aerOS IE and forwarding
decision to next orchestration
level.

Since all input and output is going
through Redpanda message broker
and is modeled using protobuf
formatted messages, a variety of
implementations may exist, and

HLO Data Aggregation and Alert System
(specifically Data Aggregator sub-
component) is contacting, asynchronously,
HLO Allocation Engine using Redpanda and
submitting protobuf formatted messages
including information about service
components and candidate IEs for each of
them.

HL O Deployment engine is contacted, from
HLO Allocation Engine, using Redpanda and
submitting protobuf formatted messages
which include selected IE id, LLO id, service
component id.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 66 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

internal components (e.g. data
engineering, feature cleaning,
specific Al algorithm, etc.) are
specific to each of them.

HLO Deployment
Engine

Component of the High-Level
Orchestrator (HLO) receiving (de-
)allocation decision, and which
can identify and addressing LLO
which is responsible to access
selected IE.

If a link between referenced IE
and service component exists, it is
identified as a delete request
otherwise it is a deploy request.

If LLO, responsible for selected
IE, is located internally, to current
aerOS domain, request is
forwarded to local domain
allocator otherwise it is sent to the
aerOS domain to which LLO,
responsible for the selected IE, is
located. So LCM requests arrive
through Redpanda (message
broker) and then allocation request
is submitted in REST API, also
exposed by this component. This
API can be accessed either
internally for local deployments,
or from other domains for
deployments (or migrations)
decided in other domains of the
continuum.

All updates regarding IEs and
service components decisions
(de)allocations are sent to local
CB to keep aerOS continuum state
updated.

Based on the above functional
description, the components
internal to HLO Deployment
Engine are:

Inter-domain
Allocation/Migration Manager,
which is the sub-component
receiving decision from HLO
Allocation Engine, accessing
Deployment API (either locally or
to external domain) and updates
state of local domain by
submitting Orion-CB ngsi-ld API.

HLO Allocation EP, which

HLO Allocation Engine, is sending selected
IE for specific service component and related
LLO information, elaborating Redpanda
message broker and protobuf formatted
messages.

Exposed HLO Deployment Engine API
(HLO Allocation EP) is accessed from
Inter-domain Allocation/Migration
Manager (either form local or a remote one)
receiving IE and LLO id and service
component data.

LLO, is receiving, from HLO Deployment
Engine, service definition template (CRD).

Orion-CB Rest AP, is accessed from HLO
Deployment Engine, for updating domain
status based on decisions and LCM
performed.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 67 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

exposes Rest API for LCM actions
on indicated service component
and connected IE.

Local Allocation Manager,
responsible to transform service
requests to CR and forward this to
the proper LLO which is
connected with the selected IE.

IE LLO (Low Level
Operators)

This component acts as a thin
layer abstracting all heterogeneous
computing resources (aerOS IE)
access.

Low level orchestrators have the
knowledge of accessing specific
selected computing resources (IES)
within each aerOS domain. Upon
receiving service definition
templates, they access actual
computing resources for
workloads LCM activities (create,
destroy, update).

Receive Service Definition Templates
(CRDs) from HLO Deployment Engine.

Receives Implementation Blueprints
custom K8s resources from HLO
Deployment Engine. Depending on the
information included in these blueprints
and on the LLO type (K8s, Docker, ...) it
will deploy the requested workloads in the
selected IEs,

Access computing resources (1Es) for
workloads (service component deployments).

Manager

Local Allocation

Submitting Service Component Custom Resources
to orchestrators with different infrastracture elements types

Custom Custom
Custom Custom
Resource Resource Resource Resource
- 7 Service Service
Service
Compor?gg\{gfckem 1 ComponentDockerd 2 ComponentK8s 1 ComponentK8s 2

dockerd
Operator

K8s
Operator

dockerd Low-Level
QOrchestrator

Deploy Service Component to an
infrastructure element

k8s Low-Level
Orchestrator

Deploy Service Component to a
85 infrastructure element

IE_dockerdl IE_dockerd2 IE_K8S1 IE_K8S2

dockerd infrastructure
elements

k8s infrastructure
elements

Version 1.0 — 17-MAR-2025 - aerOS®- Page 68 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

—aer0S

Component Description Interactions
The Local Allocation Manager The Local Allocation Manager interacts
Local Allocation sits ber_]ind the HLC_) Allocation with the Operator inside _th_e Low Level
Manager Endpoints and receive requests Orchestrator _ by submlttln_g Cust(_)m
from the Inter-domain Resources of different types to it, depending
Allocation/Migration Manager. | on the target infrastructure element for the
Its role is to manage the allocation | deployment.
of the service components in a
specific infrastructure element of
the domain.
Low Level At the Low Level Orchestrator, The Operator inside the Low Level
Orchestrator different deployments requests for | Orchestrator watches the Service
the target infrastructure element | Components Custom Resources of the
type are received from the Local corresponding type.
é:gf:rgogezﬂoirr]ig:;ljg:r??sg?on The Ope_ra_ttor t_hen manages the deployments
' by submitting different types of requests to
Depending on Custom Resources | the corresponding infrastructure element.
data, deployment requests to target
infrastructure element type are
generated.
Infrastructure Depending on the type of N/A
Element infrastructure element (e.g.

dockerd or K8s), it receives
compatible service components
deployments requests from the
corresponding operator.

3.3.3. Technologies and standards deployed in MVP

Technology/Standard

Description

Justification

Protobuf

A language-agnostic data
serialization format developed by
Google. It's a binary serialization
format used to efficiently serialize
and deserialize structured data and
it is commonly wused for
communication between different
services or systems.

It has been chosen for the communication of
HLO components as it provides:

Efficiency and performance benefits, as a
binary format is more compact than JSON,
XML and other human readable commonly
used formats making it less demanding in
transfer and faster in processing.

It is language agnostic; message structures
are defined wusing a neutral interface
description language.

Code generation is automated with the use
of available tools for every programming
language.

It is easily extensible also without breaking
existing implementations if fields are added

Version 1.0 — 17-MAR-2025 - aerOS®- Page 69 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

providing thus compatibility.

The main benefit, based on all the above, is
that it provides independence in components
development, so all partners working on all
HLO/LLO different components can work
without waiting one another or having to get
informed about APIs.

Redpanda
streaming platform.

event

Platform which provides high-
performance distributed event
streaming capabilities, enabling
messaging and data streaming
based on a defined API.

Offers the capability to trigger events and
stream data that should be processed when
these events rise.

It provides a well-known and defined API for
clients to stream or receive events and data.
Development language neutral as all
programming languages offer their
implementing libraries. Light implementation
as compared to Kafka.

Decouples components and provides the
capability to later expand the list of
components that might need to subscribe to
events and act accordingly. The choice of
Redpanda provides to the development
teams, working on different HLO/LLO
components, to proceed independently and
bind components dynamically.

Python Fastapi

A web framework for building
APIs with Python based on
standard Python type hints. It is
designed to be easy to use,
efficient, and to provide automatic
validation and documentation of
API endpoints.

It is used for the implementation
of HLO REST APIs as needed in
HLO FE EP and HLO
Allocation EP components.

Provides support for fast REST endpoints
implementation.

Natively provides asynchronous support.

Enables strong typing and validation for
input and output data.

Produces automatic APl documentation, by
generating interactive OpenAPI and JSON
Schema documentation based on the Python
type hints used within code, enabling thus
testing and understanding.

confluent-kafka-
python

confluent-kafka-python provides a
high-level Producer, Consumer
and AdminClient compatible with
all Apache Kafka brokers >=v0.8.

Confluent-Kafka python is backed by
counfluent which is the leading company
regarding Kafka, also it is good for redpanda
cause it’s 100% Kafka compatible, also
another important aspect is the community
and documentation, because it is the most
used library in python regarding interacting
with Kafka/redpanda.

Operator SDK

Go is a simple and efficient
programming language developed
by Google, which is used in most
of the cloud-native developments
(e.g. Kubernetes is written in Go).
The Operator SDK is an open-
source toolkit for Go to manage
(build, test and package)

Low level orchestrators are based on
Kubernetes operators, so the most used and
mature framework for developing them
should be tested and used, among other
alternatives. Furthermore, it uses Go, which
is the most common language for building
K8s native applications.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 70 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Kubernetes Operators.

Orion-LD Open-source implementation of | Federated instances of Orion-LD will be in
an NGSI-LD Context Broker. | charge of retrieving all the needed data in the
This component is responsible for | orchestration process from the continuum.
managing and providing real-time
contextual information about
various entities and their
environments. In aerQOS, the
continuum will be represented and
monitored through this contextual
information.

3.4. Cybersecurity components

The definition of aerOS AAA, namely Authentication, Authorisation, and Accountability, shows the
importance of creating a comprehensive security framework that ensures secure access, trust and transparency
in the project's resources. The embodiment of these concepts and their integration into the project was realized
through the technical implementations carried out in Task 3.4. More specifically, the terms Authentication and
Authorisation were covered by the aerOS IDM, while Accountability by the aerOS Secure API gateway. The
combination of these three concepts through the technical implementation enhance data security and ensures
operational integrity from insider threats or external attacks.

The following subsections describe the final result developed in task 3.4 since D3.2, namely during the
months M19-M30. More specifically there is a thorough description of the components, an architectural
diagram of aerOS AAA infrastructure which illustrates the relationships between the components, and a final
subsection which describes the technologies and protocols deployed in MVP v2,

3.4.1. Main functionalities

As aforementioned, the aerOS Identity Management (IdM) and aerOS API Gateway components are essential
for ensuring secure and efficient operation within the aerOS ecosystem, each serving a different purpose. The
main objective of the aerOS IdM is to provide secure and dependable authentication and authorization for
aerOS clients. Also, it prevents unauthorized access, by implementing advanced security mechanisms, such as
token-based authentication and Single Sign-On (SSO) through the usage of OpenlD Connect (OIDC).
Additionally, it enforces Role-Based Access Control (RBAC), assigning users specific roles that determine
their access to resources and data, thereby aligning access privileges with organizational policies.

The API Gateway is designed to provide a centralized entry point for all interactions with aerOS components.
Its purpose is to streamline communication, eliminate redundancy from multiple access points, and enforce
security policies. It applies access controls defined by the IdM system based on user roles and groups.
Additionally, the APl Gateway plays a critical role in safeguarding the aerOS Data Fabric by managing API-
level security and preventing unauthorized interactions, ensuring the integrity and confidentiality of the
system’s data.

The progress of aerOS 1dM and aerOS API Gateway is described in the following sub-sections.

3.4.1.1. aerOS ldentity and Access Management

The Identity and Access Management (IAM) of aerOS, as discussed in D3.1, has been based on Keycloak,
while the authentication and authorization has been performed using the OpenID Connect (OIDC) protocol
and access has been granted to aerOS users based on their roles (i.e., Role-based Access Control). Keycloak,

14 https://www.keycloak.org/

Version 1.0 — 17-MAR-2025 - aerOS®- Page 71 of 97

https://www.keycloak.org/

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

OIDC, and RBAC thoroughly presented in D3.1; hence, in D3.3 there is no further elaboration on these tools
and protocols.

In this deliverable, the advances in IAM are discussed presenting the intermediate implementation of
Keycloak, OIDC, and RBAC. Furthermore, enhancing the 1AM of aerOS the consortium decided to
implement Keycloak with OpenLDAP?® in order to enhance the adoption of aerOS IAM by stakeholders since
with this approach all the user information of an organization can be federated automatically from the LDAP
directory without needing to pass the user information to the aerOS IAM (e.g., Keycloak) manually, as it can
be seen in

”"L"gf“ﬁn > = @EKEYCLC
Home | Purge caches
y () Authenticate to server 5
® openlidap.default Successfully logged into serve
5 R0 Eed LOAD @ cowed cen -
o =php ‘
i LDAP con
‘:r [7 » General options RIS
Vend,
p) (
iis Connection and authentication settings
[n UR! d Iday
2 StartTl @
Use Trustst | \dar
Connectionp (o
Con

In the following it is described the setting up of Keycloak as well as the main functionalities of IAM such as
the authentication and authorization using OIDC protocol, the RBAC, and the federation with OpenLDAP.

The aerOS user roles that have been deployed so far to support the RBAC activities are the listed below (after
analysing the needs of the project, the users have been updated):

e Continuum administrator: can access all the aerOS services, generate new deployments, access all the
data (read only) and is able to generate new users.

e Data product owner: can create new data sources that will be integrated in the domain.

o Vertical deployer: can deploy new services in his domain.

e aerOS user: can consume the data of his domain, but it has not any permissions to create new data or
change the configuration of the domain.

In order to facilitate the installation of the aerOS IdM, a new version of OpenLDAP has been packaged in a
Helm chart where the default users defined in the project have been created. Once the first Keycloak
connection to the OpenLDAP has been set up, the new users/groups/roles are managed directly from the
Management Portal. shows the groups that have been generated in OpenLDAP and that can be
visualised in Keycloak by means of the federation that has been programmed. As the groups are generated
using the Management Portal, it has been decided to only generate a Default group in the first OpenLDAP
installation.

15 https://www.openldap.org/

Version 1.0 — 17-MAR-2025 - aerOS®- Page 72 of 97

https://www.openldap.org/

D3.3 — Final distributed compute infrastructure specification and implementation

[O 8 10281506
“2Foap
=admin

Home | Purge caches

8 openldap.default ©
B & e ¥ B @ a
et export logout

=@ cu-groups (1)
& cn-Default

Create naw entry here
cu=roles (4]

& cnmaer0s user
& on~Continuum administrator
& cn=Data product ownar
& enevertical deployer
Craate naw entry herg
=8 cumusers (4)
R cr=aer0S user 1
R cn~Continuum administrator 1
R en=Data product owner 1
‘ on=Vertical deployer 1
Create new entry here
Create naw entry here

shows the roles generated by default in the OpenLDAP image and the federation of the OpenLDAP

Authenticate to server
Successhully logged into server.

=ph
ElbaP

O Keycleak Adewustration Comse X +

D & 10281916

Agroup is a set of attributes and role mappings that can be applied to a user. You can create, edit, and delete groups and manage their
child-parent arganization,

=

» (@]

Create group

satdmin

Use the menu to the left to navigate

[Group name

Credits | Documentation | Donate

image in the Keycloak. In Figure 14 the same can be seen with the default generated users.

€ c 0 8 1028156

phe
L Sdin

Home | Purge caches.

M openldap.default ©
B = ®» 0 &

Legeed in agi en
= B domexample, de=org
=8 ou=groups (1)

& cn-Default

Create new entry here

=& ou=roles (4)

& cn-aer0S user

& cn=Contiruum administrator

H e 4a

=admi o

oort expert logont

X1

" () Authenticate to server
Successfully logged into server.

=ph
Efbap
zadmin

O Keyeloak Adminig

(o]

10281916

$FAKEYCLO

Realm roles

Realm roles are the roles that you define for use in the current realm. Leam more

=

Q Search role

[

& cn=Data product owner
B cn=vartical deployer
Create new entry here

Du=users (4)
R cr-aerts user 1
R cr=Contiruum administrator 1
R cn=Data product owner 1
R cr=vertical deployer 1

Create new entry here
Craate new entry here

Usi the menu to the kIt to navigats

Credts | Decumentation | Denate

Role name.

Compaosite

False

False

False

Description

Version 1.0 — 17-MAR-2025 - aerOS®- Page 73 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

g a

php
‘LblfP
~admin
Home | Purge caches
" () Authenticate to server
M openldap.default C Successfully logged into server Users
(=] R ® 0 L] B Q ’] Users are the users in the current realm. eal e

User list

Username Emait Lastname First name Status

3.4.1.2. Secure APl Gateway

aerOS is comprised by multiple APIs that form the innovative meta-OS that is designed and developed in the
project. However, these APIs do not incorporate security mechanism to tackle security threats, such as
unauthorized access. Thus, one of the most essential elements of the aerOS architecture is the Secure API
Gateway. The Secure APl Gateway simplifies the process of exposing the various aerOS APIs by providing a
unified exposing interface and offering advanced features for secure APl management and performance, such
as omitting unauthorized users from accessing the aerOS APIs. Based on these observations the KrakenD API
Gateway is employed in aerOS to both enhance the aerOS cybersecurity capabilities by ensuring the security
of all aerOS APIs. The rest of the section elaborates on the implementation of KrakenD in aerOS ecosystem
and provides insights about its integration with the other aerOS components.

KrakenD is a stateless, distributed, high-performance effective Open-Source APl Gateway written in GO that
is used to fill the architecture gap about the gateway. It is used in aerOS to provide security to the API’s that
may be exposed to the Internet as well as control which users have access to which API’s and which endpoints
in said API’s. This control is determined according to the roles and groups established in the Identity
Management component. Another objective of the gateway in the project is to homogenise the entry point to
access all the resources, so the different components can access all the API’s from the same place. KrakenD
was also chosen for its capability to modify the incoming and outgoing traffic to suit specific needs, as well as
making additional internal petitions and verifications with added scripting support. The following figure from
the KrakenD Community Edition Documentation website® showcases these features:

16 https://www.krakend.io/docs/overview/

Version 1.0 — 17-MAR-2025 - aerOS®- Page 74 of 97

https://www.krakend.io/docs/overview/

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Monitoring Security Throttling Proxy QoS
- Logging - SSL - Rate limiting - OAuth - Concurrent calls
- Stats - Security policies - User quota - Protocol Translation - Circuit Breaker Backend service
L 5 ices
- Load Balancing - Grained timeout

vz & @ @ e =

D /checkout

/stock

forders

=
nce.a
Cache Aggregation Manipulation Filtering Decoding
- Caching headers - Merge sources - Transform = From JSON, XML...

KrakenD has been successfully deployed in the entrypoint domain of the MVPv2, alongside with the
Keycloak IAM. The integration between Keycloak and KrakenD has been performed, as well as integration
between KrakenD and the backend elements (i.e., aerOS APIs). Furthermore, a federated OpenLDAP
database was agreed upon to act as the database for the IAM (see Section 4.4.1.1) and was subsequently
integrated into the Kubernetes cluster. KrakenD was expanded so only certain allowed testing roles are
allowed to access the backend, Ingress compatibility has also been installed in the cluster and KrakenD is
ready and could be exposed for testing. Additional functionalities were added as time went on and the
different components required extra endpoints such as the implementation with the federator, the aerOS Portal
and IOTA. A simplified installation process via helm charts has been integrated alongside the new installation
instructions. Connection to the Keycloak to retrieve user tokens is still necessary although token caching has
been implemented to reduce latency.

3.4.2. Structure diagram

Figure 16 illustrates the aerOS authentication, authorization, and access control procedure along with the
relevant components that are implemented. In the presented scenario, the client (e.g., a user) is authenticated
in the management portal that redirects the authentication request to Keycloak 1AM, which retrieves user
information from OpenLDAP. Afterwards, Keycloak responds with the ID token, which is deployed by the
client to request access to an aerOS API. The request pass through KrakenD that validates the ID token with
Keycloak and grants access to the API. In case that the ID token is invalid, namely the role of the client does
not allow access to the requested API, the access is blocked.

1. Pedirecting Authh
quest + Credenti

T € 5.
Access granted

4. Fezponzs + ID Token
Management - "
Client ID Token e & «evcLoak %penLDAP
—_—
4. Flaquest to access an APT + 2 Validata ID Token
ID Tokan

7. Forwarding requast to
access an APT +
ID Token

& KrakenD

Version 1.0 — 17-MAR-2025 - aerOS®- Page 75 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

Component Description Interactions

Client Any deployed element within the | The client obtains an ID token from
aerOS continuum that wants to | Keycloak and then makes the petition to the
access a protected endpoint. API using the ID token.

Keycloak (IAM) Responsible for implementing the | KrakenD GW API to validate the ID token.
authentication and authorization of | OpenLDAP to retrieve user information and
aerOS users. support user federation.

OpenLDAP (user Registry that contains user | Keycloak to send user/group/role

federation)

information.

information.

KrakenD (API GW)

Access control and management of
aerOS APIs.

Receives petitions from the client, verifies
the 1D token with Keycloak and if it is valid,
allows access to aerOS APIs.

API

An aerOS API, such as OrionLD,
HLO, etc.

KrakenD that manages the access to all
aerOS APIs.

3.4.3. Technologies and standards deployed in MVP

The aerOS AAA components have been deployed in the MVPV2 in order to demonstrate the cybersecurity
capabilities and protection mechanisms for a user that wants to access the OrionLD API. In this set up, all the
aerOS APIs are protected by the KrakenD API Gateway that validates the access requests and allows or
blocks the access based on the aerOS RBACs. In order to accomplish this, as presented in , KrakenD
retrieves the access token from the IAM, using its public IP, as well as the special APl endpoint created to get
the tokens.

Get Keycloak Token for CF federated user

http://64.225.138.36/keycloak/getToken

Body

none form-data ® x-www-form-urlencoded raw binary GraphQL

grant_type password
client_id aeros-test
usemname verticaluser
Body

Pretty

Afterwards, as depicted in Figure 56, the access token could be used to access an aerOS API, such as Orion-
LD endpoint.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 76 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Entities Federated User

hittp://64.225138.36/entities?typesIE

Authorization

Body

Pratty

1 [

Technology/Standard

Keycloak

eyJhbGciOlJSUzINIIsinR5cClgOiAISIdUliwk

Description
Detailed in D3.1.

Justification
Detailed in D3.1.

OpenlID Connect

Detailed in D3.1.

Detailed in D3.1.

OpenLDAP An open-source implementation | Free and open-source tool that can be
of the LDAP protocol. integrated with Keycloak provide user
federation capabilities.
KrakenD Detailed in D3.1. Detailed in D3.1.
RBAC Assigning permissions to aerOS | It is a well-known access control mechanism

entities based on the roles of
aerOS users.

that can be easily applied is aerOS due to its
distinct user roles.

3.5. Node’s self-x and monitoring tools

One of the main features of aerOS is the wide variety of IEs that exist across the computing continuum. This
variety depends on its physical components, its operating system, its capabilities and even its location on the
continuum. One of the objectives of aerOS is to achieve all these nodes autonomously, that is, they can func-
tion without human interaction. This particularity allows the IEs that exist in the continuum to execute actions
and decisions autonomously, in addition to being able to monitor their health status in real-time.

This section of the document describes the characteristics that the aerOS nodes shall have to be able to exe-
cute certain operations. These IEs are described by a set of attributes and are considered independent entities
in the continuum that can execute workloads and perform internal functionality to report or modify their state
towards the continuum. Making the IEs of the continuum more autonomous allows it to be more reliable in the
event of outages in part of the network or services.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 77 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

The following subsections describe the updated functionalities that have been designed for aerOS IEs, the
architectural diagram of a node's self-capabilities and relationships between components, and the technologies
and standards deployed in the MVP. This section corresponds to the evolution and developments carried out
in the aerOS task T3.5.

3.5.1. Main functionalities

To allow nodes that connect to the aerOS compute continuum to be autonomous, they need to have certain
capabilities. These features are offered through the aerOS self-* capabilities suite to all IEs that connect to the
continuum, which are:

Self-awareness: considered one of the main self-* capabilities of an autonomous system, this compo-
nent analyses and obtains information from the node, continuously monitoring its health status and
workload. Due to the need to offer real-time information on the status of the IE, this module is subdi-
vided into two components, which are executed continuously. One (power_consumption) is in charge
of obtaining the energy consumption of the node, which requires more computing time. The other
(hardware_info) is responsible for obtaining the rest of the parameters. The component that obtains
the power consumption needs an average of 20-25 seconds per execution to obtain new valid values
and the other only needs about 3-15 seconds to update its information, depending on the amount of in-
formation to be collected by the sub-module. This amount is specified by environment variables in the
sub-module deployment files. The purpose is to provide updated information to the rest of the self-*
capabilities as fast as possible to modify the operation of the IE, if necessary. Currently, this self-*
capability is able to obtain the following information from each node: hostname, addresses (internal
IP and MAC), CPU (architecture, number of cores, max frequency and current usage), RAM (total
capacity, available capacity and current usage), disk (type, total capacity, available capacity and cur-
rent usage), network (speed up, speed down, traffic up, traffic down and lost packages), power con-
sumption (current and average), capability to execute workloads in real-time and operating system. To
obtain all these parameters, both sub-modules use external packages and libraries such as PowerTOP,
iproute2, psutil, getmac or speedtest-cli, as detailed below. On the other hand, each sub-module has a
REST API that allows the sampling frequency of the information in each node to be set independent-
ly. This makes it possible to optimise the operation of the node within the domain to which it belongs
and reduce the consumption of resources. Below are screenshots of the two sub-modules running on
the continuous development and integration cloud infrastructure of the project (provided by partner
CF).

Name : self-awareness-hardwareinfo-9bfnp
Namespace: default

Lo}
Service Account: default
Node: aeros-2-jms6qnflylil-node-1/10.0.0.238
Start Time: Thu, 13 Feb 2025 11:20:53 +0100
Labels: app.k e nt=hardwareinfo
app. 2 s e=self-awareness
app.kube E by=Helm
app . kube Lf-awareness
app.k
controller-r
helm.sh/cha

Annotations: kubernetes.io/psp: magnum.privileged
Status: Running
IP: 10.0.0.238
IPs:

IP: 10.0.0.2
Controlled By: DaemonSet/self-awareness-hardwareinfo
Containers:

roject.eu/a ublic/common-deployments/self-awareness/hardware_info:1.4.0
istry.gitlab. s-project.eu/aeros-public/common-deployments/self-awareness/ha
9768eaddofs8bs 2ab6399%ed
8002/TCP
8002/TCP
Running
Thu, 13 Feb 2025 11:20:56 +0100
True
Restart Count: ©
Environment:

Version 1.0 — 17-MAR-2025 - aerOS®- Page 78 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

: self-awareness-powerconsumptionand64-mnmh9
Namespace: default

Priority:

Service Account:

eneration=1
Annotations: @ >sp: magnum.privileged

10.0.0.186
IPs:
IP: 10.0.0.186
Conllollcd Bv DaemonSet/self-awareness-powerconsumptionamd64

519c3905633eec3f02df3fafc8acs?2
lic/c de are s/power_cons Unplxon amd64:1.3.0
r pull]bl egis s-project.eu/aeros-public/common-de plovrnnt s/self-awareness/power_consu
0e0c2 dbDnﬂbb?/Oélb)bdhd30076clo?Bb77!0(1f?eeS?11aub1
TCP
8003/TCP
Running
Thu, 13 Feb 2025 11:20:55 +0100
True
)

Re
Environment:

e Self-orchestrator: considered one of the main self-* capabilities of an autonomous system, this com-
ponent is composed by a Rules Engine, a Facts Generator, a Trigger and wrapped by a REST API. It
is capable of managing facts, rules and alerts, obtaining information from the self-awareness, self-
realtimeness, self-healing and self-optimisation and adaptation modules to send warnings about prob-
lems in the IE to the aerOS EAT (Embedded Analytics Tool) of the domain, with the goal to improve
the management and coordination of their own workloads. This improves the scalability of tasks and
reduces the number of errors that occur during task execution. This self-* capability uses libraries
such as json-rules-engine or jsonschema, as detailed below.

In order to be able to manage the rules for detecting faults, malfunctions or anomalous situations
within a node, the module exposes a REST API that allows CRUD (Create, Read, Update and Delete)
operations to be performed on these rules. Moreover, by means of persistent storage in the node, this
module maintains an updated backup copy of the rules to restore them to their last state in case of
failure in the IE.

On the other hand, this REST API also allows to receive alerts in a predefined format coming from
other self-* modules in order to carry out the necessary corrective measures through the aerOS EAT.
In addition, when a rule is triggered or an alert is received at the corresponding REST API endpoint, a
message is sent to the domain's IOTA hornet node to register the event.

Below is a screenshot of the module running on the continuous development and integration cloud
infrastructure of the project (provided by partner CF).

Version 1.0 — 17-MAR-2025 - aerOS®- Page 79 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

Name: self-orchestrator-orchestrator-bédcv

Namespace: default

Priority: (¢}

Service Account: default

Node: aeros-2-jmséqnflylil-node-0/10.0.0.186

Start Time: Thu, 06 Feb 2025 10:51:54 +0100

Labels: app.kubernetes.io/component=orchestrator
app.kubernetes.io/instance=self-orchestrator
app.kubernetes.io/managed-by=Helm
app.kubernetes.io/name=self-orchestrator
app.kubernetes.io/version=1.2.0
controller-revision-hash=657c67c45c
helm.sh/chart=self-orchestrator-1.2.0
isMainInterface=yes
pod-template-generation=4
tier=self

Annotations: kubernetes.io/psp: magnum.privileged
Running
10.0.0.186

IP: 10.0.0.186
Controlled By: DaemonSet/self-orchestrator-orchestrator
Containers:
orchestrator:
Container ID: docker://27010fc4d52d8fd479f753a4bc79a9¢c05437a%9e153c46a1a869fbd8906bd0767
Image: registry.gitlab.aeros-project.eu/aeros-public/common-deployments/self-orchestrator:1.2.0
Image ID: docker-pullable://registry.gitlab.aeros-project.eu/aeros-public/common-deployments/self-d
a9be96591684151ebdde18e40ef720a6a662181259c4d0b2a2788496
Port: 8001/TCP
Host Port: 8001/TCP
State: Running
Started: Thu, 06 Feb 2025 10:51:55 +0100
Ready: True
Restart Count: ©
Environment:

Self-security: developed using Suricata (open-source network analysis and threat detection software),
it monitors traffic logs in real-time from the network card to detect threats and abnormal behaviours
through Log Monitoring module. The ETL (Extraction, Transformation, Load) processing module
then collects the security logs, converts them into structured JSON format and sends alerts to an end-
point (Trust Manager). These alerts allow to discover different types of network attacks to detect vul-
nerabilities and threats at the IE level. An API has also been created so that the Trust Manager can
make requests each week, with the intention of collecting the alerts for the whole week and saving
them in the history. The alerts generated by self-security are deleted once a week by a new service
with the intention of minimising the space that this component occupies on disk.

Below is an example of the alerts generated by the self-security running on the continuous
development and integration cloud infrastructure of the project (provided by partner CF).

@aeros-2ms6qn! g/suricata ubuntu@ubuntu-VirtualBox: ~/aer0s/self-security/k8s-infra/helm

> 10.0.6.238:30383

Self-API: this self-capability consists of a global API deployed in each IE of the aerOS continuum
that exposes the functions that can be executed on the rest of the self-* capabilities installed on the
node, controlling the input and output data flows.

Below is a screenshot of the self-API module running on the project's continuous development and
integration cloud infrastructure (provided by partner CF):

Version 1.0 — 17-MAR-2025 - aerOS®- Page 80 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

self-api-api-6ncos
default

Start Time:
Labels:

ation=1

Annotations: /psp: magnum.privileged
Runnin
1e.8.0

18.8.6.
DaemonSet;

:46:19 +B8100

Count:
nment :
PORT:
URL:
SELF_ORCHESTRATOR_IP:

SELF_ S
SELF_SECURI

_ N_IP:
SELF_OPTIMIZATION_PORT:
SELF_HEALING IP:
SELF_HEALING_PORT:

o Self-healing: capability of autonomously recovering affected parts of the system both at the hardware
and software level caused by failures or abnormal states. It also can restart the system to pre-
established routines scheduling, if necessary. This module detects and remedies abnormal states of the
network, outlier values of sensors connected to the IE, and issues with the IE’s power level. Since the
self-healing module detects abnormal states or outlier values, it generates a JSON alert message and
sends this message to the Trust Manager component for the health score calculation algorithm. The
following is an example of a POST JSON message:

"message" r rement d as an outlier. Exclude the sensor from the set of those that provide input to the system",
"mac_address

]

Furthermore, the module collects these alert messages generated from scenarios and exposes a GET
API endpoint, which is consumed by self-API component. An example of these JSON alerts is shown
below:

Version 1.0 — 17-MAR-2025 - aerOS®- Page 81 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

"alerts": [

"timestamp": '"2025-02-04T11:00:00",
"scenario": "sensor_failure",
"message'": "Sensor failure detected",
"mac_address'": "fa:16:3e:5e:25:ef"

"timestamp'": '"2025-02-04T11:00:00",
"scenario": "network_violation",
"message'": "Network duty cycle exceeded",
"mac_address'": "fa:16:3e:5e:25:ef"

e Self-scaling: possibility of horizontally increasing or decreasing the hardware resources dedicated to
workloads of a node running Kubernetes. These changes depend on the needs of each workload, are
executed in real-time, and are based on time series inference and custom logic.

o Self-configuration: ability to maintain the desired state of the system with the help of an abstract and
reactive management of its configuration. Both the configuration itself and its possible evolution can
be defined/represented based on the concepts such as “resource”, “requirement”, and action/reaction.
Development has focused on evolving an existing open source tool (originated in H2020 project AS-
SIST-10T), by integrating the innovative needs of aerOS and incorporating automated configuration.

e Self-optimisation and adaptation: ability to optimise the dissemination of the data and control the
performance of IE. On the one hand side, by using dynamic sampling techniques and the current
metric streams (i.e. the IE’s operational data obtained from self-awareness), the component suggests
optimal sampling periods, allowing control over the frequency of data monitoring by the self-
awareness component. On the other hand, it incorporates an estimation model monitoring the shifts in
the metric streams to detect data points with significant differences that may indicate potential
anomalies, aiming to prevent the overutilization and underutilization of IE resources.

e Self-realtimeness: an experimental capability that continuously monitors the performance of real-
time services using their time utility (TU) that degrades with the tardiness of deadline misses. The
component automatically adjust the CPU time (quota) granted to a real-time service every period to
trade-off CPU utilisation and TU achieved on an IE. If a real-time service’s TU degrades below a con-
figurable threshold self-realtimeness issues a re-orchestration request as illustrated in the following

figure:
Response Time - Node 1 Response Time - Node 2 =Deadline eTU
80000 « 5 100
(IS 1

& 60000 85
=
w Z
e =
= =
o 40000 70 3
= £
3 =
3
o 20000 55

0 e — - - — — 40

3,5 53,5 103,5 153,5 203,5 253,5
Time [s]

Version 1.0 — 17-MAR-2025 - aerOS®- Page 82 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

In the next subsection the relationships between the components and their interactions are described.

3.5.2. Structure diagram

The aerOS self-* capabilities set is comprised of 9 software components that act together and run on the nodes
connected to the computing continuum. Each module is considered an independent entity within an IE and
fulfils a specific function. However, to offer the described functionality they must interact with each other,
creating intertwined relationships. This means that some modules depend on the information generated by
others to complete their functionality and vice versa. Despite this, depending on the needs and performance of
the node, one or more modules will be installed, divided into two categories. Core components are those self-*
capabilities set tools that are always installed in an IE. Non-core components are those that are installed based
on the performance of the node and the needs of a specific deployment. The core modules are self-awareness,
self-orchestrator, self-security and self-API. The non-core modules are self-configuration, self-healing, self-
optimisation and adaptation, self-realtimeness and self-scaling. To offer a clearer vision of the set, a diagram
has been created that represents the interactions between the different components and tools of the set.

% assist-iot P

Self-scaling Self-orchestration
s
: Hmeincs Limx)
: imx
b KECel
Self-realtimeness | Self-optimisation
: (time-utility function) Self-adaptation

A
|
=2
Seff-secuity | Self-awareness Provides info (metrics)
J % assist-iot
(] Seit-healing ; [Self-configuration
... W emmerdeeeeseeeesesesssessssesssessssseeesssssssssseessssssesssstessssssesesssesessssesseneet
v
\—7

When an aerOS computing continuum node has loT peripheral devices connected, self-configuration and self-
healing modules can be installed in the IE. These systems continuously analyse the health status of these
devices, sending alerts to the self-orchestrator module in case of failure or malfunction so that it
communicates with the aerOS EAT in order to improve the management and coordination of the node's
workloads. The possibility of exposing node actions to the outside is done through the self-API, which will
include the necessary security layers. This security can be extended to the interior of the node thanks to self-
security. In order to improve its own orchestration and, therefore, that of the continuum, each node has the
self-orchestrator, which, fed through self-awareness, self-realtimeness, self-healing and self-optimisation and
adaptation, determines whether to send alerts to the aerOS EAT. The self-awareness module sends data on the
current state of the IE, the self-realtimeness sends alerts when the real-time characteristic is not met, and the
self-optimisation and adaptation (powered by self-awareness) sends warnings when it is expected that there
may be problems in the near future with the workload. Lastly, those IEs that are within a Kubernetes cluster,
through the self-scaling component, will be able to horizontally scale their resources up or down.

In the next table, the specific functionalities, details and interactions are further described:

Version 1.0 — 17-MAR-2025 - aerOS®- Page 83 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

Component

Self-awareness

Description

This is the self-* capability that allows to get real-time

information about the status of the IE. It gathers information
about the IE and submits it to the associated Data Fabric and
self-* components, and is divided into two sub-modules. This
module can:

e Obtain parameters such as hostname, addresses (inter-
nal IP and MAC), CPU (architecture, number of cores,
max frequency and current usage), RAM (total capaci-
ty, available capacity and current usage), disk (type,
total capacity, available capacity and current usage),
network (speed up, speed down, traffic up, traffic
down and lost packages), power consumption (current
and average), capability to execute workloads in real-
time and operating system.

e Define custom parameters such as Infrastructure Ele-
ment ID, Infrastructure Element Tier and Infrastruc-
ture Element Status.

e Works on Kubernetes clusters and Docker, on AMD64
and ARM®64 architectures and physical or virtual ma-
chines.

e It is capable of inform about their health status in "'re-
al-time".

e Sends data periodically (the sampling period may vary
through its API).

This is the current schema of the development carried out in
the module:

From the last iteration of this deliverable until M30 of the
project, the connection with the self-optimisation and

Data Fabric

Self-awareness

adaptation module has been carried out and tested, the amount
and type of information that the module is capable of capturing
in each installed IE has been extended, the data model used to
define an IE has been refined and adapted, and the option to
modify the sampling period through an exposed endpoint has
been added.

Interactions

It obtains information
about the state of the
node and directly feeds
the self-orchestrator and
the self-optimisation and
adaptation modules.
Additionally, it provides
context information to
the Context Broker
associated with that IE.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 84 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

Moreover, it has been tested in more types of different IE and
it has been deployed in several continuums (including those of
the Pilots of the project) to check the reliability and
performance of the module, as well as to determine that it is
free of faults. Currently, the module is finalised, unless bugs
are detected and need to be corrected due to the tests carried
out.

The next steps are to continue integrating the module into the
Pilots' domains to enable full synergy between self-awareness
and the other components of each of their domains.

Self-
orchestrator

This self-* capability allows to interact with aerOS Embedded
Analytics Tool. This module is composed of:

e Rules Engine: contains the rules and facts (rule activa-
tion thresholds) to be evaluated. These rules represent
the situations in which it is necessary to send an alert
to the aerOS EAT of the domain where the node is lo-
cated. The facts represent the current state of the IE
and the network, and are fed directly from the self-
awareness module.

e Facts Generator: allows to generate the activation
thresholds of the rules based on the information re-
ceived by the self-awareness module.

o REST API: allows to execute CRUD (Create, Read,
Update and Delete) actions dynamically on the rules
stored in the rules engine, insert facts and receive
alerts from other self-* modules.

e Trigger: generates alerts from the self-orchestrator and
sends them to the aerOS EAT of the domain where the
node is located.

This is the current schema of the development carried out in
the module:

aer0s EAT

Sel-APl | e

Self-orchestrator
Self-realtimeness

P
Trigger }(APy
LY
N :
Match \\ ™ Self-optimisation and adaptation | }
. H
A

[P - y

Self-healing
Rules Engine

‘ Facts Generator](oo AR — — Self-awareness

It obtains information
directly from four
components: (1) self-
awareness (values to
generate the facts), (2)
self-healing, (3) self-
realtimeness (to
determine if the node
meets the real-time

characteristics) and (4)
self-optimisation and
adaptation (to determine
whether future states of
the IE should trigger
corrective or
compensatory actions in
advance).

Version 1.0 — 17-MAR-2025

- aerOS®- Page 85 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

From the last iteration of this deliverable until M29 of the
project, the last pending functionalities of this module have
been carried out to complete its development. The REST API
has been refined to allow a common endpoint that can be used
by the rest of the self-* modules to send alerts to the domain's
aerOS EAT and the Facts Generator has been modified to
adapt it to the new data model of the Context Broker's
Infrastructure Element entity.

In addition, work has been done on the interactions between
the different self-* modules and the self-orchestrator, as well
as the integration and testing in the domains of the Pilots.

capabilities of each node, being the global API of each IE. It
will be able to retrieve certain aspects of management and will
allow, for example, dynamic rules to be parametrised in the
self-orchestrator module. In addition, it will be able to take the
form of an APl Gateway, being aligned with OpenAPI and
will have the capacity to control the volumes of information
that can enter and leave an IE.

This is the current structure of the development carried out in
the self-API module:

Self-security Adapted to work in Kubernetes and non-Kubernetes | Gets information from
environments, the three components that compose the module | the network card and
(Log Monitoring, ETL processing and the API) generate | sends alerts to the Trust-
cyber-intrusion alerts that are sent to the Trust-Manager. Manager via the ETL
Self-security is able to detect 3 types of network attacks: port ;r;grcil[:)le ar(1fo|0r Arlfl"’ll'tz%?
scan attack, denial of service attack (DoS) and brute force weekly alerts)
attack. It is expected to expand the portfolio of detected y '
attacks with specific attacks that can be performed on the
services installed in the Pilots.
This is the schema of the development carried out in the
module:
Kubernetes Cluster
))
Lche fNode LNode
&
I Node
Newtwork Traffic ‘ Self-Security \nlru?li':wdmert
= |) Loge — [=
L)
Self-API It allows to expose a single point of connection to the self-* | It will interact with all

the rest of self-*
capabilities in order to
manage their
configuration /
parameters / data.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 86 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

& &) &) &,
node-0 || node-1 || node-2 || node-3
[seif-api | [|[self-api ||| [selfapi |||[selfapi |

Network traffic

self-api

Self-scaling

A feature of an IE that allows it to adapt to the demand for
services and to be able to horizontally scale the resources
dedicated to a specific workload dynamically, based on time
series inference and custom logic. This is reserved for IEs
within Kubernetes environments. The progress up to M30 has
been the complete adaptation of the previously developed
component (TRL3, from the ASSIST-IoT project) to the data
model and the deployment configuration of the aerOS meta-
operating system through configurations according to services
and service components, in addition to an API to execute
processes in a non-sequential way and modify the default
parameters according to the needs of the user and the system.

This is the current schema of the development carried out in

the module:

Kubernetes
Autoscaling API

Respaonsible for
replicating pods

N

Kubernetes
Cluster Metrics

/Dala needed for
training and infering

Execute

Get current .
inference

data

Update pod

Managed .
replicas

components

Pod Resources IRSIGUIEEIE]
Controller

History
data

Predicted data Inference

module

Predicted
data

Execute train

\ \Se If-scaling

Training
module

-/

It interacts mainly with
the Kubernetes metrics
service and it is possible
to interact with its API
through the Self-API
component.

Self-
configuration

The self-configuration component can be used for reactive
configuration management of heterogeneous resources within
an aerOS deployment.

Using the REST interface the administrator/user is able to
define a multi-stage configuration structure using abstract
concepts, such as resource, functionality, action, and reaction,
and provide fallback configurations. Actions represent external
events and can trigger predefined reactions that may induce
configuration evolution, as well as communication with

This component is one of
the few that are be able to
operate autonomously,
without the need to
interact with other aerOS
self-* functions. It only
has to interact with
external resources.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 87 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

resources.

4 ™
Self-Configurator :
Engine ¢

REST interface — configuration

A

Administrator / User

Resource

| I
——{ MM

Kafka interface — communication

¢
EventStore Lyl e
¢

Internally, the configuration is represented via a Directed
Acyclic Graph (DAG). Its vertices can be of two Kkinds:
resource and functionality, whereas edges represent the
“requires-to-function” relationship. Different labels can be
associated with each vertex, allowing categorization/grouping
of vertices, without changing the overall graph structure.
Taking numerical values — called “weights” — into account, the
self-configurator can autonomously decide which fallback
configurations should be applied to the system in case of an
error in any of the system components.

For the self-configurator to function, it must be able to
communicate with (external) resources. The communication is
done through connectors. Their duty is to perform direct
manipulation on the resource and inform the self-configurator
of the resource’s status.

Self-healing

This module periodically monitors the target metrics of an IE
in relation to certain analytics associated to sensors status.
Depending on the value obtained and the type of metric
analysed, the module determines whether the value is correct
or abnormal. If the value is not correct, the module is then able
to applies some recovery actions into the IE and to check if the
remediation attempt was successful. If the remediation is
successful, the IE resumes normal operation. Otherwise, it
retries a different remediation. If the number of remediation
attempts exceeds a threshold, the IE is considered permanently
down.

Here below there is a diagram flow that represent the
functioning of the module. Software-wise, there are custom
PoCs being developed to analyse the status of the IEs and to
identify abnormal status. The theoretical approach for certain
cases has been completed, and up to M18, such cases have
been replicated in a scenario with DHT22 Digital Humidity &
Temperature sensors and Raspberry Pi IEs.

To implement the self-healing capability, a suite of abnormal
scenarios has been defined, along with the proposed healing
actions to be taken:

1. Sensor Failure:

o Scenario: No measurement or measurement value
that indicates outlier.

In the case of detecting
abnormal states, or
healing actions to be
taken, this will feed the
health score of the IE.
The self-healing module
interacts with the self-
APl and the Trust-
Manager modules.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 88 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

o Healing: Alert messages to exclude sensor from
the set of those that provide input to the system.

2. Device Power Alert:

o Scenario: Power level of the device drops below a
threshold.

o Healing: Alert messages for battery replacement
or recharging.

3. Network Protocol Violation:

o Scenario: Protocol-specific violation, e.g., over-
whelming the radio resources (LoRa, Duty Cycle
violations).

o Healing: Enforce reconfiguration to the IE.
4. Link Quality Issues:
o Scenario: Radio values drop below a threshold.

o Healing: Report to self-orchestrator, instruct de-
vice to change link parameters.

5. Communication Failure Indication (no messages re-
ceived by IE):

o Scenario: Substantial amount of time without
message reception might be attributed to connec-
tion lost.

o Healing: Set up dedicated communication channel
and poll (check-alive) the target IE.

The general software flow of all self-healing scenarios is as
follows. The node is powered on and starts its normal
operation. There is a value of interest (specific to each
scenario) that is monitored. Once this value exceeds a
threshold, a remediation attempt takes place. The success of
the remediation attempt is evaluated either by the node itself or
by another node (this depends on the scenario).

Version 1.0 — 17-MAR-2025 - aerOS®- Page 89 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

initialise all
scenar o)
abnormal

counter = @

wake up

any
abnormal
counter

1207

.................. e

 Evalte Remadjation Success ¢
y /Ty get IE metric
N T
.
resediation’ l
uccessfal 7/ ™
[get sensor val
i prepare radie
packet
|)
T
scenar el send upLink I
abnormal packet '
counter = @ : T
! i
wait for ! take resediaticn
possible ! attespt
down Link 1

In order to meet its objectives, the module consists of three
main components: the normal operator, the abnormal detector
and the remediation evaluator. The flow may differ slightly
depending on the type and capabilities of the IE or the
execution scenario, however, the main flow always consists of
these three components and the corresponding operations.

After M18, enhanced versions of all defined scenarios have
been completed, and the custom software has been developed
and tested in more refined scenarios. The self-healing module
has been evaluated in an experimental environment and the
test cases of all scenarios have been replicated using DHT22
Digital Humidity & Temperature sensors and Raspberry Pi
IEs, demonstrating the improved capabilities and the resilience
of the module. Also, the module has been deployed in the
aerOS environment and the interactions with self-APl and
Trust-Manager components have been tested.

The following figures show the network related scenarios in
action, within this local experimental environment, with the
self-healing module successfully detecting network abnormal
states.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 90 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

aeros@raspbe. aerus@raspbe_ w4 Jtest_code.py - .. 1814

i \/;\\ test_gpio

S o)

File Edit Tabs Help

File Edit Tabs Help

Also, preparations are in progress for utilizing self-healing in
the appropriate aerOS’ pilots.

Self-
optimisation
/adaptation

The goal of this module is two-fold. First, it aims to react in
advance to potential scenarios when the IE would like to act
upon (e.g., overload, network down, demand peak...). Second,
it dynamically adjusts the sampling frequency of the self-
awareness to optimize the monitoring and data dissemination.
Ultimately, self-optimisation brings the
smart/predictive/proactive fashion to the self-* capabilities of
an IE in aerOS.

From the technical perspective, the module consists of the
following components:

e Collector/Parser: monitoring the metric streams ob-
tained from the self-awareness service and optionally
parsing them to the format acceptable by analytics
models.

e Sampling Model: model that computes the next opti-
mal sampling period.

e Shift/Anomaly Detection Model: model that returns
information indicating when the significant change in
a metric stream is detected and what type of anomalies
it may indicate.

e Recommender: component exposing computed infor-
mation for self-orchestrator and self-awareness.

There below is a summary of the flow that this module

Fed with data on the state
of the node via the self-
awareness module, it
sends alerts to the (1)
self-orchestrator module
about detected anomalies
and (2) self-awareness
about new optimal
sampling period.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 91 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

—aer0S

follows:

Self-awareness

A

IE OPERATIONAL
DATA

Collector/Parser
SELF-OPTIMIZATION/
ADAPTATION
PASS | PASS

e

Shift/Anomaly Sampling
Detection Model Model

|
pAI ss PASS
ANOMALY INFORMATION SAMPLING PERIOD

T S

PASS NEW

Déﬁ—ovnw. SAMPLING ——
PASS DETECTED PERIOD

ANOMALIES CODES

Fiaure 75. Self-optimisation and adaptation components schema

Its most important components are the Shift/Anomaly
Detection Model and Sampling Model.

The Shift/Anomaly Detection Model’s internal structure is
presented on the following diagram:

/ Shift/Anomaly m’:
Detection Model

ﬁm
<

Model Model
Parameters Config

Disk usage Power consumption

Current
params pkK, £k
Time,
S !
IE

&

Figure 76. Schema of Anomaly Detection Model

The component separates the detection of anomalies per each
type of IE’s operational data. Initially, only the types detecting
CPU, RAM and Disk usage-related anomalies have been
implemented and tested. However, due to the modular

Version 1.0 — 17-MAR-2025 - aerOS®- Page 92 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

structure, it is simple to extend this component to detect more
types of anomalies as well (e.g. power consumption-related).
Internally, each model uses a statistical-based (density-based)
approach to detect shifts in the metric stream obtained from
self-awareness. The sensitivity of the detection for each model
type is specified using configuration parameters that can be
seamlessly modified by the user on runtime. Before passing
the information of anomalies to the self-orchestrator, it is a
role of Recommender module to map them into their
respective codes recognizable by self-orchestrator.

The next component is the Sampling Model, which internal
structure is presented in the following diagram:

©

Sample

Sampling Model Stream
G Sampling __ Model
Data Entrypoint 4—Pammetm Config
|
Model
Input
Local
Adaptive Sampling Model Cache

-

Sampling %, 0

Period Tjq

o

This Sampling Model performs all computations in the
Adaptive Sampling Model internal component. It accepts the
IE’s operational data and for each relevant metric (CPU,
RAM, Disk usage) computes the optimal sampling period. The
computation of sampling period is done by estimating the
evolution of the metric stream using the PEWMA calculation.
Then, among different proposed sampling periods, the one
with the smallest value (i.e. signalling the need of the most
frequent monitoring) is selected as the optimal
recommendation. Similarly to the Shift/Anomaly Detection
Model, the performance of the module is controlled through
configuration parameters (e.g. maximal or minimal sampling
period) that can also be modified using exposed API
endpoints.

Both of the aforementioned components are resource-efficient
since they do not require performing complex operations and
need to store only individual variables in the local cache (no
need for storing historical data).

All of the presented components of self-optimisation and

Version 1.0 — 17-MAR-2025 - aerOS®- Page 93 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

adaptation have been implemented, successfully deployed and
tested with the integration of the remaining relevant self-*
modules. Moreover, internal experimental testing of the
performance of individual models was also completed on both
real IE operational data and external synthetic data set.

Self-
realtimeness

The self-realtimeness aims at controlling the real-time
performance of those containerised services (i.e., containers
running in an IE) that are tagged for that purpose.

It is composed of two components:
Modified kernel module:

Monitors performance of real-time services (periodic services
with a soft deadline) deployed on an IE by periodically
adjusting quota of containers based on the time utility and
tardiness of their tasks.

User space component:

Calculates each real-time service’s time utility from its
tardiness and issues a reorchestration if the tardiness drops
below a user-configurable threshold. The self-realtimeness
component relies on a patched Linux kernel version (v5.10)
that enables hierarchical container-based scheduling (HCBS).
We have evaluated the self-realtimeness component in an
experimental environment.

Figure 43 above shows the real-time performance of a
workload by means of its response time (left axis in light blue
and light green) and its derived time-utility (right axis in dark
blue). The time-utility is at 100 if a soft real-time workload’s
response time falls within its deadline (red) or degrades
(linearly, exponentially, or as a step function) with its
tardiness. We can see that the workload running on node 1
exhibits poor response times (light blue) and accordingly a
degraded time-utility. As a result, the self-realtimeness
component on node 1 issues a re-orchestration request so that
the workload is relocated to node 2. We observe an improved
response time and time-utility on node 1 (light green). This
highlights how the self-realtimeness component effectively
detects poor real-time performance of a workload on a node
and issues a relocation request resulting in improved real-time
performance as a result of a relocation of the affected
containerized workload.

In addition, we will evaluate the functionality, interoperability,
and effectiveness of the self-realtimeness components within
the controlled and closed environment of Pilot 3.

Modified
module:

kernel

Receives containers” TU
from user space
component via the /proc
filesystem.

User space component:

Reads real-time services
(containers) tardiness
from and writes updated
TUs to the kernel module
via the /proc filesystem.
Communicates with self-
orchestrator if relocation
of a real-time service is
required.

3.5.3. Technologies and standards deployed in MVP

Technology/Standard

Description Justification

iproute2

Set of utilities for
network connections

managing

It allows to obtain the desired information
and | about all physical interfaces of the aerOS

Version 1.0 — 17-MAR-2025 - aerOS®- Page 94 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

(self-awareness -
hardware info)

controlling and

outgoing traffic.

incoming

nodes. In addition, its small size after
installation makes the final Docker image a
contained size.

psutil

(self-awareness -
hardware info)

Cross-platform library for system
and process monitoring in Python.

The ease of use and different functions allow
for agile development and its speed allows
for very short execution times.

speedtest-cli

(self-awareness -

hardware info)

Cross-platform library for
measuring the upload and
download speeds of a node's
Internet connection.

It allows measurements to be carried out very
simply and efficiently with only a few lines
of code.

getmac

(self-awareness — both
hardware info and power
consumption)

Cross-platform library to obtain
the MAC address of a node.

It allows to easily obtain the network
interfaces of the node and its MAC address
with a single line of code.

quart

(self-awareness — both
hardware info and power
consumption)

Cross-platform framework for
creating asynchronous web
applications. It is an asynchronous
reimplementation of Flask.

It allows a REST APl to be executed
asynchronously in the same thread as the rest
of the module's functions. It also allows
extensions to be added for more specific
needs and functions.

requests

(self-awareness — both
hardware info and power
consumption, self-
healing and self-API)

Cross-platform library that allows
HTTP requests to be executed.

Allows HTTP requests to be executed in a
simple way, with error handling, response
codes, headers, data sending, etc.

PowerTOP

(self-awareness — power
consumption)

Open-source diagnostic tool that
provides energy consumption by
host and by process (per PID).

Allows experiment with various GNU/Linux
power management configurations and obtain
power consumptions from Intel, AMD, ARM
and UltraSPARC processors.

pandas

(self-awareness — power
consumption)

Cross-platform library that allows
to analyse and manipulate
structures and datasets easily and
quickly.

Used to analyse the results of PowerTOP, it
allows the management of possible missing
data in the resulting report, the use of column
sets to extract information or the analysis of
CSV files.

axios

(self-orchestrator)

JavaScript library to perform
HTTP requests (client side). It can
be considered the equivalent of
requests in Python.

It allows to execute HTTP requests with few
lines of code, use Node.js promises,
automatically ~ transform JSON data,
configure the HTTP request, easy response
and error handling, etc.

express

A flexible minimalist web
application suite that provides

It allows to create powerful, lightweight and
simple REST APIs. Its small size after

gﬁ;&%ﬁ;‘ estrator and functions for developing web | installation allows the final Docker image to
applications. have a contained size.
fs-extra JavaScript library that allows | It allows to delete all files in a single

(self-orchestrator)

extra functionality to be added to
the standard fs library.

directory with a single line of code, allowing
to quickly and efficiently complete the
functionality of the DELETE /rules self-
orchestrator endpoint.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 95 of 97

D3.3 — Final distributed compute infrastructure specification and implementation

aerOS

json-rules-engine

(self-orchestrator)

Rules engine and alert-based
system to trigger orchestration
requests to upper layers in the
domain.

The rules are generated through simple
schemas in JSON and is developed in
Node.js, which is fast and lightweight.

jsonschema

(self-orchestrator)

Library that allows easy
validation of JavaScript objects
using JSON schemas.

It allows in the self-orchestrator to create a
validator to validate the body of the requests
received in JSON format, add sub-schemas,
create recursive schemas, determine if there
are errors in the JSON received, etc.

Suricata
(self-security)

High performance, open-source
network analysis and threat
detection software.

It has been integrated with Kubernetes to
provide real-time security, efficiently
processes and analyses data, and enhances
network security and incident detection.

FastAPI
(self-healing)

Lightweight Python framework
for building APIs.

Enables fast and asynchronous API
development with automatic validation and
OpenAPI support.

getmac

(self-healing)

Cross-platform python library to
obtain the MAC address of a
node.

Provides a simple and efficient way to obtain
network interface details of the node and its
MAC address with minimal code.

Swagger / OAS
(self-API)

Widely adopted framework for
designing, building, documenting,
testing and consuming RESTful
APIs. It allows to define API
endpoints, request/response
models, and more in a structured
and standardised format using a
YAML or JSON specification.

Swagger aids in the automation of testing,
deployment, and monitoring of APIs. It
accelerates development cycles and reduces
human error, ensuring that any changes to
aerOS self-API are quickly validated and
deployed.

OAS s also supported by a rich ecosystem of
tools.

Custom development

Many of the self-* capabilities
incorporate custom developments
to achieve their functionality.

Lightweight languages and code are used.
Best practices coming from DevPrivSecOps
are used too.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 96 of 97

D3.3 - Final distributed compute infrastructure specification and implementation &aeros

4. Conclusions

The WP3 in aerOS project has made significant advances in developing a unified, scalable, and secure
distributed computing infrastructure that seamlessly integrates 10T, edge, and cloud resources. The journey
from the initial Minimum Viable Product (MVPv1) to the final implementation (MVPv2) has been marked by
continuous refinements in networking, orchestration, cybersecurity, and self-monitoring.

Key Outcomes and Advancements in WP3:

1. From MVP to MVPv2 — A Refined Execution Environment

a. The MVP, delivered at M18, provided the foundation for a Meta-Operating System (Meta-
0S), ensuring interoperability across diverse computing environments.

b. By M30, the MVPV2 introduced smarter networking, Al-driven orchestration, and stronger
security, making aerOS a robust and industry-ready platform.

2. Smart Networking & Communication Services

a. The final implementation refined network programmability, enhancing cross-domain
connectivity with technologies like WireGuard, ONOS SDN, and OpenCAPIF.

b. Standardized APIs (OpenAPI, AsyncAPI) ensured easy integration with telecom and loT
ecosystems, enabling interoperability across diverse platforms.

3. Al-Driven Orchestration & Automated Resource Management

a. The orchestration engine introduced energy-aware workload selection, federated
orchestration, and real-time monitoring, optimizing resource efficiency.
b. Al-powered self-* capabilities (self-awareness, self-healing) reduced manual intervention and
improved system resilience.
4. Cybersecurity & Access Control Enhancements
a. Stronger 1AM, RBAC, and secure APl gateways ensured controlled access to aerOS
resources.
b. Security mechanisms were tested and validated, making aerOS WP3 components reliable for
deployment in real-world scenarios.
5. Deployment in Pilots
a. The aerOS framework components of WP3 are now ready for large-scale deployment, with
real-world pilots validating its efficiency, adaptability, and security.
b. Continuous work will focus on integrating Al-driven orchestration, and further refining
security protocols showcasing in different pilots as part of WP5.
The final implementation of aerOS in WP3 transforms the initial MVP into a fully operational, federated
computing platform in MVPv2 capable of dynamically managing networking, orchestration, security, and
monitoring across distributed loT-edge-cloud environments.

With Al-driven automation, secure APIs, intelligent networking, and self-adaptive capabilities, aerOS
emerges as a scalable, efficient, and deployment-ready solution for 10T, smart cities, industrial automation,
and cloud computing.

Having completed final testing and validation of components developed in WP3, it enables WP5 for
deploying them in aerQOS pilots, driving digital transformation across various industries.

Version 1.0 — 17-MAR-2025 - aerOS®- Page 97 of 97

