

D3.3 – Final distributed compute

infrastructure specification and

implementation

Deliverable No. D3.3 Due Date 28-FEB-2025*

Type Other Dissemination Level Public

Version 1.0 WP WP3

Description Final specification and final version of implementation of components*The due date

has been requested to be shifted to M31(31-MAR-2025) in the on-going amendment to the Grant

Agreement.

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement No.

101069732

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 2 of 97

Copyright

Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA ES

NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL

ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES

TTCONTROL GMBH AT

TTTECH COMPUTERTECHNIK AG (third linked party) AT

SIEMENS AKTIENGESELLSCHAFT DE

FIWARE FOUNDATION EV DE

TELEFONICA INVESTIGACION Y DESARROLLO SA ES

ORGANISMOS TILEPIKOINONION TIS ELLADOS OTE AE - HELLENIC TELECOMMUNICATIONS

ORGANIZATION SA
EL

EIGHT BELLS LTD CY

INQBIT INNOVATIONS SRL RO

FOGUS INNOVATIONS & SERVICES P.C. EL

L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL

ICTFICIAL OY FI

INFOLYSIS P.C. EL

PRODEVELOP SL ES

EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY

TECHNOLOGIKO PANEPISTIMIO KYPROU CY

DS TECH SRL IT

GRUPO S 21SEC GESTION SA ES

JOHN DEERE GMBH & CO. KG*JD DE

CLOUDFERRO SP ZOO PL

ELECTRUM SP ZOO PL

POLITECNICO DI MILANO IT

MADE SCARL IT

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES

SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer
This document contains material, which is the copyright of certain aerOS consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the aerOS

Consortium (including the Commission Services) and may not be disclosed except in accordance with the

Consortium Agreement. The commercial use of any information contained in this document may require a

license from the proprietor of that information. Neither the Project Consortium as a whole nor a certain party

of the Consortium warrant that the information contained in this document is capable of use, nor that use of

the information is free from risk and accepts no liability for loss or damage suffered by any person using this

information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 3 of 97

Authors
Name Partner e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Raúl San Julián P01 UPV rausanga@upv.es

Rafael Vaño P01 UPV ravagar2@upv.es

Salvador Cuñat P01 UPV salcuane@upv.es

Fernando Boronat P01 UPV fboronat@dcom.upv.es

Dr. Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr

Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

George Makropoulos P02 NCSRD gmakropoulos@iit.demokritos.gr

Andreas Sakellaropoulos P02 NCSRD asakellaropoulos@iit.demokritos.gr

Renzo Bazan P05 SIEMENS renzo.bazan.ext@siemens.com

Florian Gramß P05 SIEMENS florian.gramss@siemens.com

Amparo Sancho Arellano P05 SIEMENS amparo.sancho-arellano@siemens.com

Philippe Buschmann P05 SIEMENS philippe.buschmann@siemens.com

Korbinian Pfab P05 SIEMENS korbinian.pfab@siemens.com

Ioannis Makropodis P10 IQB giannis.makropodis@inqbit.io

Vasiliki Maria Sampazioti P10 IQB vasiliki.maria.sampazioti@inqbit.io

Aristeidis Farao P10 IQB aris.farao@inqbit.io

Christos Milarokostas P11 FOGUS milarokostas@fogus.gr

Alexandros Kakyris P11 FOGUS akakyris@fogus.gr

Katerina Giannopoulou P11 FOGUS kgiannopoulou@fogus.gr

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Tarik Zakaria Benmerar P14 ICTFI tarik.benmerar@ictficial.com

Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Yan Chen P14 ICTFI yan.chen@ictficial.com

Masoud Shokrnezhad P14 ICTFI masoud.shokrnezhad@ictficial.com

Hao Yu P14 ICTFI hao.yu@ictficial.com

Qize Guo P14 ICTFI qize.guo@ictficial.com

George Koumaras P15 INF gkoumaras@infolysis.gr

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Alvaro Martinez Romero P16 PRO amromero@prodevelop.es

Eduardo Garro P16 PRO egarro@prodevelop.es

Francesco De Angelis P19 DST f.deangelis@dstech.it

mailto:iglaub@upv.es
mailto:rausanga@upv.es
mailto:ravagar2@upv.es
mailto:salcuane@upv.es
mailto:fboronat@dcom.upv.es
mailto:koumaras@iit.demokritos.gr
mailto:vpitsilis@iit.demokritos.gr

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 4 of 97

Riccardo Leoni P19 DST r.leoni@dstech.it

Oscar Lopez P20 S21SEC olopez@s21sec.com

Ramiro Torres P20 S21SEC rtorres@s21sec.com

Jon Egaña P20 S21SEC jegana@s21sec.com

History
Date Version Change

26-11-2024 0.1 Final Table of Contents

21-01-2025 0.2 First round of contributions

04-02-2025 0.5 Merged document with first round of contributions. Start final round of

contributions

18-02-2025 0.6 Collection of final round of contributions.

04-03-2025 0.7 Merged document with the final round of contributions.

06-03-2025 0.75 Complete the document check from the lead editor

12-03-2025 0.8 Receive comments from IR and start addressing them.

14-03-2025 0.85 Check on final version after IR

17-03-2025 0.9 Submission to Project Coordination

17-03-2025 1.0 Final version for submission

Key Data
Keywords Decentralized orchestration, smart networking, security, edge-cloud continuum,

self-*, Monitoring, Common API, and Identity and Access Managements, Mini-

mum Valuable Product.
Lead Editor Amparo Sancho Arellano (Siemens), Vivek Kulkarni (Siemens)

Internal Reviewer(s) Eduardo Garro (PRO), Nikolaos Zombakis (8Bells)

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 5 of 97

Executive Summary
The document is contextualized to the works in aerOS’ WP3: aerOS secure, scalable and decentralized com-

pute infrastructure. The present deliverable is the third and final version of WP3 deliverables planned for

M30. The deliverable is based on the aerOS module definitions presented in D3.1 (initial distributed compute

infrastructure specification and implementation), D3.2 (intermediate distributed compute infrastructure speci-

fication and implementation), D2.6 (aerOS architecture definition (1)) and D2.7 (aerOS architecture definition

(2)); and depicts final version of WP3 activities presenting the relevant components of the aerOS architecture

composed from the following tasks:

• T3.1: Smart networking for infrastructure element connectivity.

• T3.2: Communication services and APIs.

• T3.3: aerOS service and resource orchestration.

• T3.4: Cybersecurity components.

• T3.5: Node's self-* and monitoring tools.

D3.3 is structured in a manner that clearly provides the methodological and technological advances for every

task in the context of the aerOS decentralized infrastructure and performed since D3.2.

IMPORTANT: This deliverable is of type OTHER. This means that D3.3 is mostly a software deliverable.

While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be understood

together with the software release that is uploaded alongside it.

Until mid-term, WP3 smart-networking architecture focused on a highly integrated service mesh using intra-

and inter-domain strategies. Key technologies included eBPF (via Cilium) for packet management, OpenFlow

for network adaptability, and RESTful APIs with Kafka and FIWARE IoT agents for cloud-to-edge

communication. Scalable orchestration is achieved with Kubernetes operators, Kafka, and ML tools like

Kubeflow and MLFlow. Security is enforced through KrakenD, Keycloak, and OpenID Connect for API

protection and IAM. Autonomous node monitoring and self-orchestration leverage PowerTOP, psutil, json-

rules-engine, and KubeEdge, enhancing resilience and efficiency in edge computing.

After mid-term, the transition from MVPv1 (M18) to MVPv2 (M30) highlights the continuous improvements

made in:

• Networking and service orchestration, ensuring seamless deployment across domains.

• Cybersecurity mechanisms, enforcing secure access and trust management.

• Self- capabilities*, enabling autonomous optimization and failure recovery.

The iterative development model allowed aerOS to refine its architecture based on real-world use cases,

ensuring practical applicability and robust performance. By integrating cutting-edge cloud-native

technologies, AI-driven orchestration, and secure networking solutions, aerOS positions itself as a future-

ready platform for managing distributed compute environments. Overall, MVPv2 successfully validates the

aerOS concept, paving the way for its deployment in industrial, IoT, and cloud-edge scenarios.

The final implementation of WP3 components marks the culmination of extensive research and development,

establishing it as a fully functional, decentralized, and scalable compute infrastructure for distributed IoT-

edge-cloud environments. Key advancements include:

• Smart Networking: Secure, scalable, and real-time connectivity across domains using service mesh,

WireGuard, ONOS, and dynamic networking solutions.

• Communication Services & APIs: Standardized API exposure (OpenAPI, AsyncAPI) improves

interoperability, while low-code tools simplify integration and automation.

• Orchestration & Resource Management: AI-driven decision-making, ML-powered monitoring, and

dynamic workload balancing optimize system performance.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 6 of 97

• Cybersecurity Reinforcements: Strong IAM via Keycloak and KrakenD ensures secure access, with

RBAC and OpenID Connect enhancing data protection.

• Autonomous Operations: Self-monitoring, anomaly detection, and self-healing reduce human

intervention and maximize reliability.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 7 of 97

Table of contents

Table of contents ... 7

List of tables .. 8

List of figures .. 8

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 13

1.3. Outcomes of the deliverable... 13

1.4. Version-specific notes .. 13

2. MVP Overview .. 15

3. Final Implementation ... 20

3.1. Advancements in Smart networking for Infrastructure Element connectivity 20

3.1.1. Updated description and main functionalities .. 20

3.1.2. Updated Structure diagram .. 30

3.1.3. Technologies and standards deployed in MVP .. 33

3.2. Communication services and APIs .. 34

3.2.1. API concepts, guidelines and best practices proposed in D3.2 .. 34

3.2.2. aerOS OpenAPI ... 35

3.2.3. aerOS AsyncAPI .. 43

3.2.4. Low-code tools .. 55

3.2.5. Technologies and standards deployed in MVP .. 57

3.3. aerOS service and resource orchestration .. 57

3.3.1. Main functionalities ... 57

3.3.2. Structure diagram ... 65

3.3.3. Technologies and standards deployed in MVP .. 69

3.4. Cybersecurity components ... 71

3.4.1. Main functionalities ... 71

3.4.2. Structure diagram ... 75

3.4.3. Technologies and standards deployed in MVP .. 76

3.5. Node’s self-x and monitoring tools .. 77

3.5.1. Main functionalities ... 78

3.5.2. Structure diagram ... 83

3.5.3. Technologies and standards deployed in MVP .. 94

4. Conclusions ... 97

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 8 of 97

List of tables
Table 1. Network mesh for real time cross-domain service communication .. 30
Table 2. Open Network Exposure for Standardized API Access .. 32
Table 3. ONOS OpenFlow Manager ... 33
Table 4. Technologies and standards for aerOS networking implementation ... 33
Table 5. DDS Domain Object ... 45
Table 6. DDS Discovery Object .. 46
Table 7. DDS Ports Object .. 47
Table 8. DDS Interfaces Object ... 47
Table 9. DDS Operation Binding Object... 48
Table 10. DDS Publisher Object ... 48
Table 11. DDS Subscriber Object ... 48
Table 12. Subset of DDS QoS Policy Objects ... 48
Table 13. ROS 2 Server Binding Object ... 52
Table 14. ROS 2 Operation Binding Object .. 53
Table 15. ROS 2 Quality of Service Object .. 53
Table 16. ROS 2 type map to AsyncAPI types and format ... 54
Table 17. Technologies and standards deployed in MVP ... 57
Table 18. aerOS High-Level Orchestration Components’ description .. 65
Table 19. aerOS Multi Low-Level Orchestration Components’ description... 69
Table 20. Technologies and standards deployed in MVP ... 69
Table 21. List of cybersecurity tools ... 76
Table 22. Tools deployed in the MVP ... 77
Table 23. Self-* capabilities components, description and interactions .. 84
Table 24. Self-* capabilities technologies/standards, descriptions and justifications deployed in MVP 94

List of figures

Figure 1. Software release of D3.3 .. 14
Figure 2. Building blocks of WP3 ... 16
Figure 3. Wireguard server configuration in aerOS .. 22
Figure 4. Wireguard client configuration in aerOS ... 22
Figure 5. Dnsmasq server configuration in aerOS .. 22
Figure 6. Left: aerOS continuum “Domain” entity including public key. Right: secret with private key. 23
Figure 7. aerOS continuum “Service” entity including information of domain providing the overlay service 23
Figure 8. Object of the orchestration process including information for connecting to the networking overlay

 ... 24
Figure 9. Server configuration object, including clients’ information .. 25
Figure 10. Service components connected to the overlay. Data from WireGuard server shell 26
Figure 11. Dnsmasq configuration associating service components with service name 26
Figure 12. Overlay connectivity and service names resolution. Network operations within a service

component shell ... 27
Figure 13. aerOS overlay diagram. .. 28
Figure 14. aerOS cross-domain overlay orchestration sequence flow detail. .. 28
Figure 15. aerOS cross-domain network overlay provision during service orchestration. 30
Figure 16. aerOS integration with OpenCAPIF. ... 32
Figure 17. aerOS aux service for SDN. ... 32
Figure 18. aerOS communications and services through OpenAPI .. 35
Figure 19. ContextBroker API inside aerOS OpenAPI ... 36
Figure 20. ContextBroker API inside aerOS OpenAPI (2) ... 37
Figure 21. Federator API inside aerOS OpenAPI ... 37
Figure 22. HLO API inside aerOS OpenAPI .. 37

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 9 of 97

Figure 23. HLO API inside aerOS OpenAPI .. 38
Figure 24. LLO API inside aerOS OpenAPI ... 38
Figure 25. Data Fabric API inside aerOS OpenAPI .. 38
Figure 26. Data Product Manager API inside aerOS OpenAPI ... 39
Figure 27. Self-Capabilities API inside aerOS OpenAPI .. 39
Figure 28. Self-Capabilities API inside aerOS OpenAPI (2) .. 40
Figure 29. IdM API inside aerOS OpenAPI .. 41
Figure 30. IdM API inside aerOS OpenAPI (2) .. 41
Figure 31. IdM API inside aerOS OpenAPI (3) .. 41
Figure 32. IdMAPI inside aerOS OpenAPI (4) ... 42
Figure 33. IdM API inside aerOS OpenAPI (5) .. 42
Figure 34. IOTA API inside aerOS OpenAPI ... 43
Figure 35. aerOS communications and services through AsyncAPI ... 43
Figure 36. AsyncAPI specification of a reliable service using the DDS binding .. 49
Figure 37. UML class diagram of generated CycloneDDS python code .. 50
Figure 38. Output of code generator and exemplary CycloneDDS application .. 51
Figure 39. Example ROS 2 server binding object ... 52
Figure 40. Example ROS 2 operation binding object .. 54
Figure 41. ROS 2 interfaces represented left as the AsyncAPI specification file format and right as a .msg

ROS 2 file format .. 55
Figure 42. Behavior trees in aerOS. .. 55
Figure 43. Node-RED in aerOS ... 56
Figure 44. Flow to generate low-code skills.. 56
Figure 45. MLOps inference pipeline structure for the HLO Allocator AI algorithm. 60
Figure 46. Deep Reinforcement Learning of the HLO Allocation Engine. ... 61
Figure 47. aerOS High-Level Orchestration Components .. 65
Figure 48. aerOS Multi Low-Level Orchestration Components ... 68
Figure 49. Synchronisation of OpenLDAP users in Keycloak. ... 72
Figure 50. Groups generated for 2nd MVP in OpenLDAP (and federated in Keycloak) 73
Figure 51. Roles generated for 2nd MVP in OpenLDAP (and federated in Keycloak) 73
Figure 52. Users generated for MVPv2 in OpenLDAP (and federated in Keycloak) 74
Figure 53. KrakenD and its capabilities .. 75
Figure 54. aerOS Authentication, authorization, and access control ... 75
Figure 55. KrakenD retrieving access token from Keycloak .. 76
Figure 56. Deploying token to access an aerOS API... 77
Figure 36. Hardware info sub-module running on a test cluster of infrastructure ... 78
Figure 37. Power consumption sub-module running on a test cluster of infrastructure 79
Figure 38. Self-orchestrator module running on a test cluster of infrastructure .. 80
Figure 60. Self-security alert example ... 80
Figure 61. Self-API module running on node-8 of test K8s cluster-2 of infrastructure 81
Figure 62. Example of JSON alert from self-healing to Trust Manager ... 81
Figure 63. Example of JSON alerts from self-healing to self-API .. 82
Figure 64. Self-realtimeness relocating real-time workload with bad time-utility from node 1 to node 2 (2) .. 82
Figure 44. Relationships between the different self-* capabilities of an IE .. 83
Figure 45. Self-awareness schema... 84
Figure 46. Self-orchestrator schema .. 85
Figure 47. Self-security schema .. 86
Figure 69. Self-API schema .. 87
Figure 70. Self-scaling schema .. 87
Figure 71. Self-configuration schema ... 88
Figure 50. Self-healing schema ... 90
Figure 73. Link Quality Issue scenario .. 91
Figure 74. Network Protocol Violation scenario ... 91
Figure 53. Self-optimisation and adaptation components schema .. 92
Figure 76. Schema of Anomaly Detection Model ... 92

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 10 of 97

Figure 77. Schema of Sampling Model ... 93

List of acronyms

Acronym Explanation

AAA Authentication, Authorisation, Accountability

ACNC Adaptable Computing-Network Convergence

API Application Programming Interface

BLE Bluetooth Low Energy

BS Base Station

CBAC Context-Based Access Control

CEI Cloud-Edge-IoT

CIDR Classless Inter-Domain Routing

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CRD Custom Resource Definition

CRUD Create, Read, Update, and Delete

DDS Data Distribution Service

DDQL-GNN Double-Deep Q-Learning-Generative Neural Network

DevOps Development and Operations

DevPrivSecOps Development, Privacy, Security and Operations

DRL Deep Reinforcement Learning

ETL Extract, Transform, Load

ETSI European Telecommunications Standards Institute

eBPF Extended Berkeley Packet Filter

FaaS Function-as-a-Service

GNN Generative Neural Network

HATEOAS Hypermedia As The Engine Of Application State

HLO High Level Orchestrator

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IdM Identity Management

IE Infrastructure Element

IoT Internet of Things

K8s Kubernetes

LCM LifeCycle Management

LDAP Lightweight Directory Access Protocol

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 11 of 97

LLO Low Level Orchestrator

MANO Management and Orchestration

MDP Markov-Decision Process

MILP Mixed Integer Lineal Programming

ML Machine Learning

MQTT Message Queue Telemetry Transport

MVP Minimum Viable Product

NFV Network Function Virtualization

NGSI-LD Next Generation Service Interface – Lined Data

NS Network Service

NSD Network Service Descriptor

NSM Network Service Manager

OAS Open API Specifications

OIDC OpenID Connect

OMG Object Management Group

OPC UA Open Platform Communications – Unified Architecture

OSM Open Source MANO

PIRA Placement, Instance Assignment, Request Prioritization, and Allocation

PPO Proximal Policy Optimization

QoE / QoS Quality of Experience / Service

RBAC Role-based access control

ROS / ROS2 Robot Operating System

SDK Software Development Kit

SDN Software-Defined Network

SLA Service Level Agreement

SSO Single-Sign On

TOSCA Topology and Orchestration Specification for Cloud Applications

TSDB TimeSeries DataBase

TSN Time-Sensitive Networking

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VPN Virtual Private Network

VPP Vector Packet Processor

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 12 of 97

1. About this document

Deliverable D3.3 presents a concrete view of the final methodological specification and technological imple-

mentation of the components that constitute the aerOS decentralised infrastructure from WP2, which is an

essential part of the aerOS Meta-OS. It builds up on the candidate technologies that thoroughly described in

D3.1, D3.2 and elaborates on the final state of the composing components and their interactions. This deliver-

able is the final blueprint of the aerOS infrastructure and the components that developed in WP3 and posed to

be integrated in aerOS use cases as detailed in WP5 deliverables.

1.1. Deliverable context

Item Description

Objectives O1 (Design, implementation and validation of aerOS for optimal orchestration): Final

implementation of the components related to aerOS orchestration capabilities.

O2 (Intelligent realisation of smart network functions for aerOS): Final implementation of

the smart-networking components.

O3 (Definition and implementation of decentralised security, privacy and trust): Final

implmentation of the aerOS cybersecurity components related to authentication,

authorization, and secure access to aerOS APIs.

O5 (Specification and implementation of a Data Autonomy strategy for the IoT edge-cloud

continuum): Final implementation of the NGSI-LD module and its integration with other

aerOS communication services and APIs.

Work plan D3.3 content is based on the definitions and technologies specified in tasks:

• T2.1 state of the art. The development of the aerOS components that presented in this

deliverable are based on the recorded state of the art.

• T2.2 use cases and requirements. The development of the aerOS components that

presented in this deliverable consider the requirements for the different use cases.

• T2.4 DevPrivSecOps. The development of the aerOS components that presented in

this deliverable take into account the DevPrivSecOps methodology.

• T2.5 aerOS architecture. The components that developed and presented in D3.2 are

defined in the aerOS architecture.

The content of D3.3 is the result of the following tasks activities:

• T3.1 Smart networking for infrastructure element connectivity.

• T3.2 Communication services and APIs.

• T3.3 aerOS service and resource orchestration.

• T3.4 Cybersecurity components.

• T3.5 Node's self-* and monitoring tools.

D3.3 presents the final integration of components defined by WP3 tasks within the

decentralized infrastructure. The final development of the D3.3 components are contributing

to WP5 integration and use case deployments tasks.

Milestones This deliverable is the final step from WP3 towards the achievement of the milestone MS7 –

Final software components release (M30).

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 13 of 97

Deliverables D3.3 is based on the components that are described in D2.6 and D2.7, and the candidate

technologies analysed in D3.1 (Initial distributed compute infrastructure specification and

implementation) and their intermediate development and integration as described in D3.2

(Intermediate distributed compute infrastructure implementation). Additionally, this

deliverable is coordinated with deliverable D4.3, which is delivered at the same time.

1.2. The rationale behind the structure
D3.3 details the final development and integration of the functional components in the context of the five

WP3 tasks and formalize the work package’s activities as well as elaborates on the actions that performed in

the context of WP3 to finalize the Minimum Viable Product version 2 (MVPv2). Hence, the deliverable

unfolds in five sections. Section 1 provides basic information about the deliverable. Section 2 contains a brief

introduction of the context and current status of aerOS. Section 3 presents an overview of the MVPv2, while

Section 4 elaborates on the advancements of the five WP3 tasks, detailed in separate subsections that follow

the same formal structure. More specifically, the subsections 4.1-4.5 begin with an updated description of the

main functionalities of the WP3 components to the ones described in D3.2. Later, they provide the updated

structure diagrams along with a description of each component, and concludes with the technologies and

standards that employed in the MVPv2. Finally, Section 5 concludes the deliverable.

1.3. Outcomes of the deliverable
This deliverable aims at providing the final version of the aerOS infrastructure components with the work

done in WP3 to accomplish the MVPv2. As in D3.1 and D3.2, the components descriptions are abstracted at

the start of each subsection of section 4 (4.1-4.5), and updated advancements of those components considering

the five different domains that each of the WP3’s tasks focus.

The aerOS smart-networking represents the functional components responsible for attaining networking

efficiency, agility and performance across the aerOS infrastructure elements.

The aerOS communication services and APIs produce the functional components responsible for effortless,

efficient, and continuous communication of the aerOS services across the whole IoT edge-cloud continuum.

The aerOS service and resource orchestration develops the functional components aiming to deploy, manage,

and federate services, responsible for delivering the aerOS functionalities. Moreover, it prepares the functional

components essential to properly allocate and evenly deploy various resources to meet the requirements of

vertical IoT services employed on top of aerOS.

The aerOS cybersecurity components provides Identity and Access Management (IAM) services focusing on

registering and authenticating users in aerOS, managing their access to aerOS elements, as well as providing

secure access to computerized resources (APIs, infrastructure elements or domains) by linking users’ roles and

restrictions with registered identities.

The aerOS node’s self and monitoring tools develop the functional self-* components to enhance

Infrastructure Elements (IEs), deploying automated procedures that minimizes the human interaction during

all the operations of IEs. To accomplish this, several functional and runtime parameters, such as health and

security status, are provided.

1.4. Version-specific notes
As mentioned above, this deliverable is of type OTHER. This means that D3.3 is mostly a software

deliverable. While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be

understood together with the software release that is uploaded alongside it.

In the compressed file that is downloaded when accessing this deliverable, the reader will be able to find two

main artefacts: (i) this very document, that reflects in a narrative way the progresses achieved, and (ii) a

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 14 of 97

compressed file that is, in turn, composed of several compressed GitLab repositories corresponding to the

code development progress by M30.

In particular, and in order to facilitate the readability of the technical delivery, here below there is an

indication of the repositories that have been included in the submission. They are structured following the task

reporting that is used in this document (D3.3). This schema is also used in the submitted file. The directories

contain the current advances, alongside an explanatory README.MD in each of them in order to describe

their purpose and content.

Figure 1. Software release of D3.3

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 15 of 97

2. MVP Overview

Over the course of its realization, aerOS has carefully designed an architecture aimed at providing IoT

developers with a coherent environment to leverage distributed capabilities across the entire continuum. This

architecture delivers a unified execution environment to support the deployment and reuse of IoT services

seamlessly. With a vision to functionally unify a diverse range of computing and network resources—from

cloud to edge and even IoT devices—the project has employed and integrated numerous state-of-the-art

concepts and technologies.

Building upon the foundational architecture, significant advancements beyond the state of the art have been

achieved by M30 through research, development, and implementation in key technical domains. These

include advancements in compute and network fabric, service fabric, and data fabric, which collectively

underpinned the development of new components and additional functionalities. Extending the initial MVPv1,

which was delivered by M18, MVPv2 (delivered in M30) consolidated recent project advancements and

addressed various development and integration complexities, providing an enhanced platform which can

validate and demonstrate the final technological achievements of aerOS.

The MVPv2 has been structured in different flows, which demonstration has been recorded and will be

uploaded to aerOS’ official YouTube channel as soon as the post-editing activities are finalized.

aerOS Meta-OS encompasses a wide area of technologies in the field of programmable networks for enhanced

connectivity, resources and service management and orchestration, resilient and self-adapting runtime layers

that need to be employed in order to provide the minimum for the execution environment that aerOS requires.

Additionally, cybersecurity tools and trust management are essential to ensure private and secure

communications and access to services over all the aerOS continuum. All IEs and aerOS domains seamlessly

expose APIs for fully defined communication among components and services. Respectively, Data Fabric

technologies and integrated components are designed to support the transition from heterogeneous IoT data to

a unified Data Dabric, and while monitoring capabilities should extract all information produced and needed

for the self-adaptation of the ecosystem, analytics are foreseen to support events recognition and healing

processes’ triggering. Even more, AI tasks are designed to run over different IEs in the continuum with

optional use of frugality techniques and inclusion of explainability and interpretability.

Above mentioned technologies represent the primary aerOS technologies and tools employed to realize the

continuum and all these are implemented encompassing assimilable cloud native practices to enable

stakeholders to design, deploy, and operate scalable and resilient applications over the aerOS Meta-OS. The

goal is to encompass cloud-native techniques naturally in continuum deployments, where infrastructure

(physical and virtualized) ranges from IoT devices all the way up to cloud data centers (and not only the latter,

which is the usual cloud-native case). The complex nature of the above tasks and the integration of so many

diverse technologies and implementing components introduced the requirement for an iterative development

which would consider and integrate early implementation evaluations, and which should optimize

functionalities based on feedback emerging both from development teams and from targeted audience, i.e. IoT

developers

It is worthwhile mentioning that addressing all the complexities and successfully achieving the project’s goals

could not be accomplished in a single stage. Thus, following the agile methodology of the project, a clear,

staged strategy was defined and implemented. Initially, the aerOS team developed a Minimum Viable Product

(MVP) by M18 to integrate the aforementioned technologies and tools into a functional prototype. By month

30, this approach has evolved further, leading to the completion of MVPv2. Building upon the insights gained

from the initial MVP, the aerOS team refined the architecture concepts and expanded the platform’s

capabilities, addressing new use cases and challenges. MVPv2 not only realizes all the core functionalities of

a Meta-OS for continuum, as designed by aerOS, but also introduces additional components and features that

enhance the overall system’s performance and scalability. Throughout this process, aerOS has maintained a

focus on resource efficiency, validating with MVPv2 that the aerOS remains a lightweight implementation

while preserving the platform's core functionalities. MVPv2 also includes advanced safeguards and

mitigations, enabling seamless deployment to pilot locations and allowing the team to validate and fine-tune

real-world scenarios. This iterative development approach has proven invaluable in demonstrating the

feasibility, viability, and effectiveness of aerOS’s architecture in real and diverse environments.

https://www.youtube.com/@aeros-project

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 16 of 97

While the initial MVP encompassed the most compelling -first version of- aerOS functionalities, MVPv2

integrates all components of architecture building blocks and is thus a valuable ecosystem for demonstrating

core concepts of aerOS architecture for a continuum Meta-OS. MVPv2 integrates two aerOS domains, which

are deployed in two distinct locations, in geographic and administration terms, to demonstrate its functionality

over the public cloud. Additionally, a mobile domain, although it is not a part of the continuous development

and deployment process, is ad-hoc integrated when we need to exhibit the process, and the simplicity of this

process, of integrating new infrastructure and extending the continuum.

One of the core two domains is designed to be the entrypoint domain, while the other stands as a plain aerOS

domain, which could be deployed anywhere across the continuum. The entrypoint domain is located in the

common development and integration infrastructure of the project (a space provided by the partner, cloud

provider, CloudFerro), while the plain one resides in the premises of the Technical Coordinator - NCSRD.

This diverse topology of the MVP allows the evaluation of aerOS federation mechanisms for expanding in an

agile way the aerOS continuum domains with additional/new ones, and this is the purpose of supporting a

third one mobile domain which is provided with minimal legacy equipment from UPV.

Like its predecessor, MVPv2 builds upon outcomes from both WP3 and WP4 which constitute the two

technical work packages of the aerOS project. WP3 works on providing the required infrastructure

components, based on the aerOS architecture, needed to enable scalable and secure IoT edge-cloud continuum

aiming to support the resources and services orchestration across the continuum. WP3 encompasses several

technologies and is related to several components in the aerOS stack. As already presented in D3.1 and D3.2,

the figure below represents the building blocks which WP3 addresses.

Figure 2. Building blocks of WP3

Distributed over 5 tasks, many diverse technologies are addressed within WP3. Each task further breaks down

to a set of relevant technologies related to its domain of interest. While first MVP version, prioritized

components which were considered to provide functionalities prominent in establishing a prototype to

demonstrate aerOS continuum, MVPv2 integrated many more functionalities that unleash the potential of an

efficient management of resources and services for continuum actors in various industry verticals from edge to

cloud.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 17 of 97

With the target of supporting, through the deployment of MVPv2, a fully integrated environment that

demonstrates advanced federated orchestration capabilities—managing a variety of services across diverse

heterogeneous resources—WP3 has focused on providing the underlying mechanisms to enable this process.

These mechanisms have been further refined and validated by month 30, ensuring their seamless integration

into existing isolated computing infrastructures and their smooth transformation into aerOS-capable domains,

as exemplified by the aerOS pilot sites.

While tasks T3.1-T3.5 have devoted to completing the established formal goals, the efforts required to

materialise the MVPv2 have been directed, mostly, to:

• Network programmability and automated connectivity management, targeting cross-domain

overlay connections built over public networks, interaction with network devices external to

aerOS ecosystem, and providing binds with telco NFV standards.

• API development and standardization based on industry specifications, which can boost

interoperability, security, and automation.

• Low code tools integration for introducing streamlined data exchange and enabling easy users

interaction.

• Extended orchestration capabilities, incorporating networking isolation, AI-driven decision-

making with explainability, and energy-aware resource selection.

• Complete security and access control mechanisms, including IAM, RBAC, and secure API

gateways, ensuring controlled access to aerOS services, alongside secure development pipelines

for component integration.

• Self-* capabilities, enhancing IE monitoring, anomaly detection, self-optimization, self-healing,

and real-time status updates, which can support dynamic and resilient service orchestration across

the continuum

The following paragraphs provide a summary of the outcomes of each task, of WP3, which have been

delivered and included in MVPv2 realization. Additionally, their relevance in establishing aerOS continuum

establishment, is roughly presented.

The first release of MVP (v1) established the foundations for network integration in a connected continuum.

Inter-domain connectivity and service exposure were, thus, already ensured by M18. For MVPv2 focus shifted

towards advancing the programmability and automation of network connectivity. The crucial point was to

ensure the automated connection between service components (isolated pieces forming a service flow). For

doing so, cross-domain overlay connections were needed. Now, every time that such flow is orchestrated,

isolated components can automatically and securely connect among each other, regardless their location.

Components that can interact with external networking infrastructure, based on programmability of external

OpenFlow capable devices, were investigated with the goal to provide a close binding with hosting premises.

Additionally, identifying the advantages of aligning with industry-standard frameworks, in this period aerOS

networking capabilities were integrated with key telco domain and NFV technologies. This includes the task

to integrate with openCAPIF, which implements the CAPIF (Common API Framework) specification,

developed by ETSI, with the aim to facilitate interoperability with telecom networks. By aligning with

CAPIF, the programmability and automation of aerOS network is enhanced, enabling seamless service

orchestration and integration across diverse environments. This effort is part of a broader goal to bridge cloud-

native networking with traditional telecom infrastructure, ensuring compatibility with future NFV and telecom

standards.

In terms of service intertwining and API establishment, the foundational aspects of API development are

shaped within the aerOS ecosystem, focusing on API guidelines and best practices, and API specifications and

tooling. As this task has been instrumental in establishing comprehensive guidelines for API design, ensuring

consistency, scalability, and security across the system, it has greatly contributed to MVP since by embracing

industry-standard specifications like OpenAPI, aerOS did not only streamline API documentation but also

facilitated their integration across diverse tools and platforms. Additionally, the adoption of the low-code tool

Node-RED has been pivotal in enhancing user interactions within the aerOS ecosystem. It has enabled the

creation of a user-friendly UI interface that allows users to effortlessly send data to Orion-LD and

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 18 of 97

automatically publish information in IOTA, further enriching the system's interoperability and data handling

capabilities. The adoption of code generators under this task has further expedited the development process,

enhancing the ecosystem’s versatility and interoperability. These efforts collectively form a crucial part of the

aerOS infrastructure, setting a robust framework for efficient communication within aerOS MVPv2.

The capacity of orchestrating microservice applications across heterogeneous Infrastructure Elements of an

aerOS continuum is one of the most prominent innovations of the project. While in MPVv1 the foundational

components that can ensure structured orchestration were successfully developed and validated, in the second

period, capabilities with a special focus on network automation sere advanced. These include, among others,

AI-driven decision-making, and enhanced resource efficiency. Developments in first period (M18), come up

with a double layer orchestration process. HLO and LLO layers are key components of aerOS, enabling

efficient service deployment across the continuum. LLO provided orchestration for Kubernetes (K8s),

container, and Docker-based workloads, while HLO managed IE selection, requirement processing, and

deployment coordination. Now within this period and for MVPv2, automated networking capabilities were

integrated to enable dynamic connectivity management, and HLO and LLO components were extended to

support isolated overlay subnets allocation per service, improving segmentation and security. HLO was

further enhanced with energy-aware selection criteria, optimizing deployments for power efficiency.

Additionally, we expanded AI-driven decision-making in HLO with explainability mechanisms, increasing

transparency in IE selection and orchestration decisions. To support these advancements, continuum models

were extended, such as internal protobuf messaging, and topology descriptors (TOSCA) that incorporate these

new parameters, ensuring a more intelligent, adaptive, and efficient orchestration framework.

Secure and controlled access to resources is critical, therefore, all processes related to aerOS Cybersecurity

have been finalized and incorporated into the second version of the MVP to demonstrate their integration with

the entire aerOS Meta-OS. As a result, the authentication, authorization, and access control capabilities of

aerOS are deployed and showcased in MVPv2, demonstrating how users with different access rights can be

effectively managed by the aerOS IAM system using the RBAC mechanism and the KrakenD secure gateway.

The combination of these tools enables the blocking or allowing of access to aerOS APIs (e.g., NGSI-LD

endpoints). For the second version of the MVP, regarding the aerOS secure API Gateway, additional

functionalities were introduced over time as different components required extra endpoints. Moreover, IAM

facilitates authorized access to the aerOS Management Portal (for more details, refer to D4.3), ensuring

restricted access to different domains within the portal based on user roles and groups. Since the initial version

of the MVP, which was iterated on throughout the project, these roles and groups have been updated based on

project needs. Consequently, access to the registered resources and functionalities within the Management

Portal is tightly regulated and only allowed for authorized users. While the above features deal with securing

the aerOS runtime environment, aerOS development team has also put in place a foundational toolset to

support the development and secure integration of components, around the GitLab platform depicted from

task T2.4 with pipelines for secure code development and continuous integration. Although, this toolset is not

incorporated into MVPv2, it provides valuable functionality for securely developing and deploying aerOS

components.

Also, in the MVP, the most relevant self-* modules (those that live and act within the scope of a single IE)

have continued to be developed, improved, integrated and tested. It is worth mentioning that only a sub-set of

the self-* modules were incorporated into the MVPv2 due to functional reasons (some of the components

have very specific purposes to respond to particular cases that were not replicated in the demonstration flows

of MVPv2).

The self-awareness component has been included in MVPv2, as it automates the process of publishing IE

capabilities and updating, on real-time, running IE availability. For this new version of the MVP, the amount

of information that can be extracted from each IE in the continuum has been increased, the integration with

the rest of the self-* components has been improved, and the possibility of modifying the data sampling

frequency (via REST API) has been added to optimize the IE resource consumption. The information obtained

by the self-awareness module is modelled using aerOS data model for the continuum (WP4), and IE status is

propagated all across the continuum consisting thus a candidate for IoT service components deployment. The

self-orchestrator module has also been conveniently updated, increasing the amount and variety of

information capable of managing its rules engine or reducing its resource consumption, among other new

features. This component is in charge of sending re-orchestration alerts to the HLO as and when necessary.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 19 of 97

For protection and mitigation of IE intrusion events, self-security has improved its threat detection capabilities

and is now able to detect a wider variety of attacks towards an IE. Not only the MVPv1 self-* module

integrations have been reinstated and improved, but more self-* capabilities have been included. It is now

possible to handle critical situations in a more elegant, faster and efficient way. Based on the objective of

providing a complete set of functionalities, self-optimization and adaptation has also been developed to detect

anomalies based on the information received by self-awareness, and optimize IE resources by requesting early

re-orchestration to the self-orchestrator to avoid a saturation in IE resources. Self-healing has also been

planned and developed, to detect failures in both the IE and IoT devices connected to the node, through

different scenarios. The self-API (another implemented module) allows the connection with the internal APIs

of the self-* modules used. This results in a robust result that can be deployed in aerOS-compatible

continuums.

MVPv2 has served as the primary environment for validating the stability of architectural concepts and

evaluating the viability and synergy of components. The aerOS development team, composed of numerous

technical partners, has worked collaboratively to deliver seamlessly integrated components. While

development adhered to specifications, contracts, APIs, and data model definitions, MVPv2 provided the

necessary deployment environment for verifying the interaction and interworking of these components as an

integrated system. This environment has been instrumental in ensuring the seamless operation of aerOS as a

unified platform.

MVPv2 development has been the basis to plan and execute an enhanced demonstrator, with a detailed

scenario capable to showcase the project’s advancements and highlighting its capabilities in realistic

scenarios. aerOS’s iterative development phase has been critical, incorporating vertical stakeholders' feedback

to enhance existing features, resolve issues, and introduce new functionalities guided by real-world demand.

The above-mentioned outcomes are diverse and stem from distinct domains of expertise. It is the integration

of these components into MVPv2 that speaks about project's progress and refinement and ensures the

identification of tasks addressed at this stage. MVPv2 integrates, validates and concludes technical milestones

within the project lifecycle. In the initial design phase, the MVPv1 guided the prioritization of developments

by defining the minimal set of features required to make aerOS viable for its first set of internal users and

capable of demonstrating its foundational vision and functionalities. Subsequently, MVPv2 has built upon the

initial insights, refining the architecture concepts, introducing enhanced capabilities, and expanding

functionalities based on user feedback and evolving technical requirements.

At this final stage, MVPv2 serves as the foundation for deploying the aerOS stack across project pilot use

cases. The validation of core functionalities and system stability has paved the way for replicating aerOS

deployments in the five pilot locations. These pilots, while not all requiring the full stack, have selected and

are currently deploying the services most relevant to their specific needs and vertical domain purposes (for

more detail refer to deliverable D5.3). MVPv2 facilitates this selective deployment by enabling stakeholders

to understand the functionalities provided and choose those that align with their requirements.

It is important, at this point, to also mention aerOS DevPrivSecOps platform as a critical enabler of MVPv2’s

success. The aerOS development lifecycle is managed through an on-premises GitLab platform hosted by

UPV (https://gitlab.aeros-project.eu). This GitLab platform not only provided a unified development

environment but also ensures that every iteration, enhancement, and refinement to MVPv2 is systematically

documented and version controlled. GitLab streamlines workflows from coding and testing to deployment,

allowing real-time tracking of MVPv2’s evolution.

The software accompanying this deliverable, hosted in aerOS GitLab, is fully demonstrable within the aerOS

MVPv2.

https://gitlab.aeros-project.eu/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 20 of 97

3. Final Implementation

3.1. Advancements in Smart networking for Infrastructure

Element connectivity

3.1.1. Updated description and main functionalities

aerOS is designed as a Meta-OS, establishing the continuum as a network of interconnected aerOS domains.

Each domain is equipped with the same capabilities and is itself a network of connected IEs. Building around

this concept and encompassing a design which does not include components with a central controlling role,

with single point of presence, any domain can be self-contained and additionally can be easily integrated as a

peer in the continuum. This topology is reflected in aerOS networking. All network capabilities are built with

the goal to support self-contained functionality and at the same time to flexibly adapt to wide area

connectivity requirements once a domain joins aerOS continuum.

Task T3.1 aims to establish a fully functional network and compute fabric from edge to cloud. It ensures

connectivity for IEs, allowing them to register as part of the continuum and execute specific workloads during

IoT service deployment. Furthermore, WP3 lays the foundation for securely connecting domains and building

a federated ecosystem. At the same time, it enables overlay communication for service components

orchestrated across IEs in different administrative or geographical domains.

The research and development within WP3 were responsible for fulfilling these capabilities. As outlined in

architectural deliverables (D2.6 and D2.7), IEs publish their capabilities and offer computational resources by

integrating into administrative domains. These domains share a common set of core functionalities, and are

known as aerOS domains. The capability to network IEs within each domain and abstract their cross-domain

connectivity forms the foundational underlay required to establish the continuum. Ensuring programmable but

at the same time secure and controlled networking capabilities is crucial, particularly when operating over

public networks.

Basic network functionalities were part of previous developments. Building on these capabilities, IEs could

connect within aerOS domains, which securely exposed services. These domains integrated a networking

pipeline to control access, expose endpoints, and route requests to orchestration and federation services.

Orchestration decisions could securely route deployment requests to selected IEs across all aerOS domains

within the continuum. Additionally, IoT data could be federated across domains, enabling on-demand

consumption throughout the continuum. This functionality allowed the creation of applications capable of

interacting with each other by sharing application data seamlessly on top of data fabric federation capabilities.

These federation capabilities were enabled with the support of the network stack for aerOS services exposure

as described in D3.2. The period from M18 to M30, new advanced networking features were introduced,

including isolated network overlays establishment for direct IoT service chaining, enabling real-time

communication, when smart orchestration decisions dictate services placement on different IEs (thus,

domains) across the continuum. Additionally, advancements and integration with tools and technologies based

on open standards are developed and integrated with the aim to provide open exposure of aerOS capabilities to

third parties.

These, along with the refinement of network functions required to ensure secure exposure, load balancing, and

access to federated orchestration services across domains. The solutions developed go beyond simply

achieving network connectivity; they establish a robust framework for integrating technologies capable of

dynamically adapting network parameters, enabling programmability of network functionalities, and

supporting performance monitoring. These advancements build upon tools and technologies that emphasize

the separation of control and data planes, ensuring scalability and flexibility.

At a higher level of abstraction, workloads operating over physical or virtual resources, i.e., IEs, are designed

to remain agnostic of the underlying virtual networking infrastructure while addressing their own connectivity

requirements, including policies, security, load balancing, and other critical aspects. The research and

development conducted during this phase have gone beyond creating a connectivity layer for IEs, extending to

the connectivity of workloads distributed across different aerOS domains located across the continuum,

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 21 of 97

supported by the establishment of virtual overlays. This foundational layer integrates abstractions and

automation typical of Software-Defined Networking (SDN), providing seamless and adaptive integration of

resources. By doing so, it ensures that aerOS can effectively support heterogeneous and distributed

infrastructures, aligning with its overarching vision of a unified continuum environment.

Task T3.1 efforts have been organized across seven key research lines:

1. Smart networking within the K8s context

2. Intra-domain network service mesh

3. Inter-domain network service mesh

4. Integration of Network Service Mesh with Service Mesh

5. Synergy between Network Service Mesh and SDN

6. Combining Network Service Mesh and NFV

7. TSN support for the aerOS continuum

By month M30, development efforts have further concentrated on tools and technologies that span multiple

research lines, aiming to refine and consolidate the innovations made thus far. It is worth noting that while all

research lines have progressed, their level of focus and advancement has varied depending on priorities and

the complexities of integration. Significant emphasis has been placed on ensuring seamless integration of

isolated overlays for cross-domain networking needed to support orchestration process decisions. This ensures

a seamless interoperability between the network service mesh, SDN, NFV concepts and the overall aerOS

architecture. In the following sections, the progress done within this final reporting period, for T3.1, regarding

networking functionalities, and topologies is presented.

3.1.1.1. Network mesh for real time cross-domain service communication

As explained above and detailed in D3.2, a full network stack was developed by M18, providing core aerOS

networking capabilities. Building on this foundation and the accessibility of aerOS services, application data

can now be shared using the federation functionality of the aerOS data fabric. This enables data produced in

one domain to be seamlessly shared and retrieved by consumer applications anywhere in the continuum via

aerOS federation. In this final period, a prominent goal for aerOS networking was to enable service

components—part of the same service deployment request but allocated across different IEs in multiple aerOS

domains—to resolve and securely access each other directly, regardless of their location across the continuum.

This functionality was implemented during this period based on a new functionality which provisions for the

deployment of an isolated overlay for each service. These overlays span from IE to IE, across remote

domains, but not fully routing IE to IE, but just connecting service components of the allocated service. This

means that IEs are not part of this overlay but just the hosted service components. So, an IE can host several

service components, constituents of different services each of them, and these service components can be part

of different, distinct and isolated overlays. Thus, the hosting IE is not itself part of any overlay, it is just

networked within the aerOS domain, but several workloads hosted in this IE can be, each one of them, part of

different overlays. Beyond direct connectivity, among workloads, the overlay also provides essential network

services such as secure and private networking and DNS resolution.

To explain this, one can consider a scenario of deployment of a service, initiated from aerOS portal, which

needs to perform end-to-end network performance testing, analyse the results, and visualize them. This could

require five service components: a server, a client, an orchestrator component to initiate procedures and

collect results, a time series database (TSDB), and an analytics function. While the client and server must be

positioned at opposite ends of the network for measurement, the remaining components can be placed

anywhere in the continuum. However, they all need to resolve and securely communicate with one another.

For instance, the orchestrator must be able to instruct the client to generate traffic, the client must reach the

server, the orchestrator must retrieve results from the server and push them to the TSDB, and the analytics

component must access and process the data. While such interactions are straightforward within a local

network, when service components are distributed across the continuum and deployed over different aerOS

domains, additional provisioning and a complex support process are required.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 22 of 97

This functionality has now been fully developed and integrated as part of aerOS networking capabilities. The

provisioning of such an isolated overlay is managed by the aerOS HLO but also involves multiple other aerOS

entities. Once the HLO determines the optimal placement for all service components across the continuum, an

additional step is performed: establishing an overlay network exclusively for that service. The two main

provisions of this networking functionality are secure connections—enabled by the domain WireGuard

server—and name resolution—provided by the accompanying Dnsmasq server. WireGuard and Dnsmasq are

part of the networking stack in every aerOS domain, as described in D3.2. While WireGuard was already

integrated, Dnsmasq was recently introduced to support this new functionality. These two components operate

as a bundle. Although each aerOS domain includes such a bundle, the one responsible for providing the

overlay for a deployed service is the domain that initially received the deployment request via its exposed

HLO API.

To develop this capability the following objects have been studied as information included in them needs to be

aligned within aerOS:

• WireGuard server configuration, which defines the parameters required for the server to expose

connectivity, authenticate and assign IP addresses to clients, and correctly forward and masquerade

traffic across the overlay.

Figure 3. Wireguard server configuration in aerOS

• WireGuard client configuration, which includes the necessary parameters for establishing secure

connectivity, such as the private key for encryption and authentication, the server’s URL and port, and

the assigned IP address within the overlay network.

Figure 4. Wireguard client configuration in aerOS

• Dnsmasq server configuration, which holds all the mapping of names to overlay IPs

Figure 5. Dnsmasq server configuration in aerOS

To establish an overlay per service—where service components can securely connect and resolve one

another—the necessary configuration objects must be generated during the orchestration process. The required

information should either be available within the continuum or dynamically created as needed. Finally, these

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 23 of 97

configuration objects must be properly assigned to the respective services to ensure seamless operation. The

following aerOS components have been extended, modified, or developed to manage and utilize this

information effectively:

• aerOS Domain Private and Public Key: The private key is used in the server configuration object,

while the public key is shared with all clients that need to connect. These keys are generated once per

domain (with the option to regenerate if necessary) by an initialization script running within a core

aerOS service. This service exposes internally API to manage domain keys. These keys are securely

stored within the domain, such as in a vault or a K8s secret when the domain is based on a Kubernetes

cluster. Additionally, the public key is included as an attribute of the “Domain” continuum entity,

enabling its retrieval across the continuum for seamless WireGuard client configuration.

Figure 6. Left: aerOS continuum “Domain” entity including public key. Right: secret with private key.

• aerOS continuum “Service” entity, is extended to include the information of the domain that hosts

the overlay server. The name provided to this attribute is “domainHandler” (see figure below).

Figure 7. aerOS continuum “Service” entity including information of domain providing the overlay service

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 24 of 97

• HLO deployment engine, has been massively extended so that along with the allocation requests (see

D3.2) it performs two more actions:

o Locally reconfigure WireGuard and Dnsmasq server and provide all information for the

clients that will be connected (allocated service components)

o Built configuration objects, which will be sent to the domains which host the selected IEs

where service components will be allocated, that will provide connectivity to the overlay to

the service components.

o Private-public keys pair generation per each service component, as these are part of above-

mentioned configuration objects, which are integrated in the private key on service

component configuration and the public in server configuration.

• LLO, is extended to be able to handle information about the overlay and proceed to force workload to

also perform connectivity handshake using the client configuration object provided by the HLO.

The figure below is part of the logs of the aerOS orchestrator and exposes this information which is used

to configure connectivity in the overlay.

Figure 8. Object of the orchestration process including information for connecting to the networking overlay

The figure above illustrates how the allocation object sent to the LLO has been extended to include

networking information. It clearly shows the integration of the previously discussed WireGuard client

configuration object, which is now included and transmitted to the LLO. This configuration is then utilized

during workload deployment to establish secure connectivity to the remote server using the provided URL,

port, and key. The following figures demonstrate the orchestration results of a service comprising four service

components, specifically highlighting the overlay establishment. Notably, the names of the service

components are defined within the TOSCA-formatted deployment request sent to the HLO API.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 25 of 97

Figure 9. Server configuration object, including clients’ information

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 26 of 97

Figure 10. Service components connected to the overlay. Data from WireGuard server shell

Figure 11. Dnsmasq configuration associating service components with service name

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 27 of 97

Figure 12. Overlay connectivity and service names resolution. Network operations within a service component shell

A quite abstract representation of the final overlay and the layered nature of aerOS networking is

demonstrated in the following figure. It demonstrates the fact, also mentioned above, that although each

domains hosts a WireGuard server, for each new service deployed the one that is instrumented to provide the

overlay, over the continuum, is the one hosted in the aerOS domain which received the orchestration request.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 28 of 97

Figure 13. aerOS overlay diagram.

Finally, a sequence flow of the allocation of an isolated overlay, as part of the service orchestration, is

demonstrated below. This assumes the orchestration of two a service which includes two service components,

and one is allocated in the same domain which received the request by the user, and which also hosts the

WireGuard network server, and the other service component is allocated to another aerOS domain across the

continuum.

Figure 14. aerOS cross-domain overlay orchestration sequence flow detail.

3.1.1.2. Open Network Exposure for Standardized API Access

To enhance the functionality and interoperability of aerOS orchestration and federation framework across the

cloud-edge continuum, a new component has been developed to expose aerOS APIs with the 3GPP Common

API Framework for IoT (CAPIF). This integration aligns with industry standards and unlocks the potential

of integrating aerOS into modern 5G and telecom ecosystems. CAPIF provides a standardized approach to

API exposure, ensuring compatibility and seamless collaboration with external systems, devices, and third-

party services within a globally recognized and regulated framework. This effort is part of our broader goal to

bridge cloud-native networking with traditional telecom infrastructure, ensuring compatibility with future

NFV and telecom standards.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 29 of 97

CAPIF provides support for secure API exposure. Orchestration and federation involve critical operations

such as resource allocation, workload management, and policy enforcement, and CAPIF enables dynamic

API discovery and management, making it easier for clients, such as edge devices or third-party

applications, to locate and interact with aerOS APIs.

CAPIF’s adoption offers API discovery mechanisms, which can ensure aerOS services are accessible and

usable in a dynamic, multi-vendor ecosystem, aligning thus aerOS framework with the emerging 5G and

Network-as-a-Service (NaaS) models. By exposing our APIs through CAPIF, telecom operators and service

providers may leverage aerOS orchestration and federation capabilities directly within their 5G environments.

This opens up opportunities for advanced use cases such as network slicing, edge resource orchestration,

and IoT data federation, positioning possibly aerOS within the telecom ecosystem. To implement the

exposure of aerOS APIs under the 3GPP CAPIF specification, OpenCAPIF was utilized. Developed by ETSI,

the OpenCAPIF initiative extends the applicability of CAPIF beyond the telecom domain, addressing broader

industry requirements. This strategic effort opens new possibilities for aerOS framework’s role as a key player

in the evolving landscape of cloud-edge continuum and 5G innovation.

3.1.1.3. aerOS programable networking

The aerOS networking capabilities are designed to be self-contained, enabling seamless integration of

advanced SDN functionalities within the broader system. During this period a component which can

intermediate the interaction with external network services or infrastructure has been developed in the grounds

of aerOS auxiliary networking functionalities. Although this is not a core component and is not intended to be

part of the MVPv2 it can find use in configuring networking behaviour of hosting domains as it is built to

communicate specific SDN controllers (ONOS tested), providing the necessary OpenFlow commands to

manage connected switches and ensure intended traffic control throughout the network.

This service is developed as a cloud native application, the ONOS Flow Manager, which is a Python-based

tool that facilitates interaction with the ONOS SDN controller and allows for the dynamic deployment of

OpenFlow rules to Open vSwitch (OVS) devices. The script serves as the backbone for configuring traffic-

forwarding policies, managing flows, and applying packet filters. It offers flexibility by enabling

administrators to define criteria such as source and destination IPs, MAC addresses, and output ports, ensuring

granular control over network behaviour.

The service receives as input a list of parameters, including the ONOS controller access details, and a set of

parameters which describe matching criteria, actions, and priority levels. Once validated, these specifications

are translated into OpenFlow-compatible commands and sent to the ONOS controller using its REST API and

support:

• Multiple flow filters (e.g., source IP, source MAC, destination IP, destination MAC).

• Action-based modifications (e.g., output port, destination IP, MAC).

• LLDP packet redirection to the controller.

 Additionally, it has been adapted for compatibility with EAT to enable its triggering based on events

recognized by analytics. The goal of integrating these advanced SDN capabilities, is to set the groundwork for

a flexible and programmable networking environment. This component represents an effort towards achieving

a continuum-aware network fabric, where external network services and infrastructure can be seamlessly

integrated to support dynamic and scalable IoT deployments.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 30 of 97

3.1.2. Updated Structure diagram

Figure 15. aerOS cross-domain network overlay provision during service orchestration.

Table 1. Network mesh for real time cross-domain service communication

Component Description Interactions

HLO Deployment

Engine (Cross domain

Allocator)

Located in aerOS domain which

received the deployment request.

Retrieve from Orion-LD, and

generate data needed to build

overlay configuration objects for

server and client peers (service

components). Reach domains of

all selected IEs and send

descriptors including networking

data.

Proceeds to NGSI-LD queries to the Orion-

LD broker and to API calls to overlay

management component and HLO

deployment engines (local domain

allocation part). All of these are REST

based interactions, the access to the first two

are in local domain and the third one could be

in local or any other domain, which hosts the

selected IE, across the continuum.

Overlay management Service within aerOS domain

which undertakes the management

of networks available, and

networks allocated within the

domain. The range is configurable

and can be set at service initiation,

e.g., 10.13.0.0/16 means that it

will provide a “slice” like

10.13.1.0/24 or 10.13.2.0/24 for

each service which overlay

hosting is provided by this

domain.

Exposes API which is consumed by HLO

Deployment Engine (Cross domain

Allocator) to provide an available subnet.

HLO Deployment

Engine (Local domain

Allocator)

In each aerOS domain selected to

host a service component. Based

on descriptors received from the

step above, creates the needed

configuration objects, which

include networking information,

and reaches the suitable LLO for

Exposes, REST based, API which is

consumed by the HLO Deployment Engine

(Cross domain Allocator) of the domain

which received the service deployment

request by the user (IoT developer).

It calls, REST based, LLO API to provide

any CR needed for the deployment of the

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 31 of 97

the IEs that will host each service

component. It submits to the LLO

the final descriptive resource

needed by LLO to enforce service

component instantiation including

connectivity to the overlay.

service including connection to the

networking overlay.

Orion-LD Keeps part of the information

needed for the networking

configuration objects (public key

and public IP port of the domain

which will provide networking

overlay). Keeps also information

needed to track the domain that

provides server for network

overlay for each service. This is

updated once the service is

deployed.

Exposes NGSI-LD, a REST based API, to

provide information regarding data needed to

build the overlay connectivity.

LLO Guides and enforces service

components deployment in the

selected IEs, including

deployment of WireGuard client

that connects to server and thus

registers service component to the

overlay.

Exposes, REST API which is accessed by

HLO Deployment Engine (Local domain

Allocator) to submit the deployment

descriptor (CR) for the selected IE.

Proceeds to deploy component to selected IE

(API based interaction).

WireGuard Server Provides secure overlay (VPN)

and name resolution needed for

service components to reach one

another.

Receives configuration from HLO

Deployment Engine (Cross domain

Allocator). This is done in two steps. First is

the update of the configuration objects and

the second is access to an internal (to HLO)

API which abstracts operations to WireGuard

server and thus updates configuration and re-

initiates the wireguard service.

Receives handshake requests from wireguard

clients, which accompany each service

component. This interaction is based on

WireGuard protocol.

WireGuard client Runs as a complimentary service

(side car) to each service

component, proceeds to handshake

to register to the network overlay

and takes over all the network

connectivity.

Deployed by LLO as part of the allocation of

the service component on the selected IE and

reaches to WireGuard server on the domain

which hosts the service wireguard server to

perform handshake and then route traffic.

This interaction is based on wireguard

protocol.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 32 of 97

Figure 16. aerOS integration with OpenCAPIF.

Table 2. Open Network Exposure for Standardized API Access

Component Description Interactions

aerOS APIs All APIs exposed by every

aerOS domain, including APIs

for orchestration services, for

federation across the continuum.

OpenCAPIF registers these APIs and every

third-party application which discovers

aerOS APIs might access them. All interactions

are REST based.

OpenCAPIF Implementation of CAPIF

specification, which provides

APIs discoverability and

exposure, and thus access to

underlying offered services.

Interacts with aerOS API to register and

expose it (REST). Interacts with third-party

applications to expose aerOS APIs and provide

the means for a subsequent direct secure

connectivity.

Third-Party An external application which

would like to consume aerOS

domain services as exposed by

the APIs.

Interacts with openCAPIF to query APIs

offered and get security keys for subsequent

access. REST based interaction. Access aerOS

APIs, which again is a REST based interaction.

Figure 17. aerOS aux service for SDN.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 33 of 97

Table 3. ONOS OpenFlow Manager

Component Description Interactions

ONOS Flow Manager aerOS service capable of

transforming, user or component

provided, guidelines into ONOS

commands, including network

setup instructions, and sending

them to an ONOS SDN controller.

Exposes REST API to actors who want to

access it.

Interacts with ONOS SDN using its exposed

REST APIs

ONOS SDN Controller SDN controller managing network

operations. Processing high-level

instructions, and translates them

into flow rules, for a dynamic

configuration of the network.

Receives network application requests from

ONOS FlowManager (REST API).

OpenFlow protocol-based interaction with

managed network switches.

Network Switch Enforce decisions received by

ONOS flow rules enabling flexible

and programmable network

behaviour.

Interaction with ONOS SDN controller over

OpenFlow protocol.

3.1.3. Technologies and standards deployed in MVP

Table 4. Technologies and standards for aerOS networking implementation

Technology/Standard Description Justification

Wireguard Lightweight, high-performance

VPN protocol that uses modern

cryptography to provide secure,

fast, and simple point-to-point

encrypted network connections.

Addresses the requirement to build a secure,

isolated subnet overlay which provides

networking to all service components of a

service.

dnsmasq Lightweight DNS forwarder,

DHCP server, and TFTP server

designed for small networks,

providing caching, name

resolution, and IP address

management with minimal

resource usage.

Addresses the requirement of service

components to be able to resolve and reach

one another based on a defined name which

corresponds to routable IP (within the service

isolated overlay).

Curve2551 High-performance elliptic curve

used for secure key exchange,

offering strong cryptographic

security, efficiency, and resistance

to common attacks while enabling

fast and secure encryption

protocols like WireGuard and

TLS 1.3.

Instrumented, with the support of wg tool

(genkey option), to provide secure keys to be

used for service components to handshake

and register in network overlay.

ETSI OpenCAPIF An open-source implementation

of 3GPP CAPIF, developed

within ETSI. It provides a

reference implementation to

facilitate CAPIF adoption,

allowing developers and telecom

operators to integrate CAPIF-

Provide the means to demonstrate for aerOS

possibilities to integrate within telco

operators’ environments.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 34 of 97

compliant API exposure and

management into their networks.

3GPP CAPIF A standardized API framework

defined by 3GPP (TS 23.222) to

provide a unified, secure, and

controlled way for network

functions and third-party

applications to expose and

consume APIs within 5G and

telecom networks. It includes API

exposure, authentication,

authorization, and monitoring.

3.2. Communication services and APIs
In the dynamic and interconnected world of cloud-to-edge computing, the role of communication services and

APIs has become increasingly pivotal. These services and APIs are the cornerstones in the aerOS ecosystem,

enabling standardized, secure, and efficient interactions among various software entities. At their core, APIs

act as facilitators, exchanging information and commands while adhering to predefined protocols and data

contracts. The next sub-chapter summarizes the API concepts, guidelines and best practices adopted in aerOS,

which were thoroughly reported in D3.2. The following sub-chapters delve deeply into the provisioned APIs

from the different core aerOS services (covering OpenAPI and AsyncAPI) and into low-code tools such as

Node-RED and Behaviour trees and generation of skills from AsyncAPI for low-code tools.

3.2.1. API concepts, guidelines and best practices proposed in D3.2

In deliverable D3.2 it was reported the API concepts, guidelines, and best practices, particularly in the context

of REST APIs. The main insights provided on that report are the following:

• The absence of standardized procedures for creating endpoints, encoding body payloads, or defining

return codes for both successful and erroneous invocations was highlighted, emphasizing the need for

use-case/domain-specific guidelines. The report referenced efforts by organizations like ETSI to

establish principles for mobile edge services APIs and discussed how existing guidelines can be found

across cloud providers and technical articles, although they often pivoted around common ideas but

differed slightly in recommendations.

• Best practices for URI design, including the use of valid URIs following the IETF RFC 3986 standard

was also outlined. These URIs should be combined with verbs representing HTTP methods and nouns

for collections of objects, with plural names preferred in URIs. It also introduced pagination

techniques to optimize resource access, suggested versioning methods to support multiple API

versions, and detailed the use of HTTP status codes to indicate the outcome of client requests. Further,

it advised including error details in API responses, modelled as JSON objects with properties like

"error" and "description" to aid client-side error handling. Asynchronous operations were addressed,

recommending the use of a "202 Accepted" status code for operations requiring longer processing

time, alongside a status endpoint for clients to check operation status. Hypermedia As The Engine Of

Application State, a technique using hypermedia links in response contents, fostering API evolution

without client logic breaking, was also mentioned.

• The maturity in API design was discussed by making use of the Richardson Maturity Model, which

evaluates the maturity of web services based on their adherence to REST principles. It comprises four

levels:

o Level 0, which involved basic service-oriented applications without using URIs or HTTP

verbs

o Level 1, introducing URI usage for resource access but not fully utilizing HTTP verbs

o Level 2, achieving significant maturity by employing HTTP verbs and URIs

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 35 of 97

o Level 3, the highest level, incorporating HATEOAS to enhance discoverability and self-

descriptiveness.

3.2.2. aerOS OpenAPI

aerOS commitment to foster a standardized approach in CEI continuum led project partners to embrace

OpenAPI Specifications (OAS)1, a specification for HTTP APIs that defines the structure and syntax in a

technology agnostic way. These specifications are typically formalized using YAML or JSON, allowing for

their easy sharing and consumption. There are two OpenAPI design methodologies: API First (first creating

the OAS, and then create the code), or Code First (first writing code and annotating it to automatically

generate the OAS). The aerOS OpenAPI lifecycle was structured in phases, beginning with requirements

elicitation, where the desired functionalities of the API for its consumers are defined. This moves into the

design phase, where an initial OAS document is outlined, incorporating industry-standard schemas and

allowing for rigorous source control as a preparatory step for development. During configuration, the focus

shifts to adapting the IT infrastructure to accommodate the API's needs, such as gateways or security

requirements. The publishing phase then follows, which involves generating API documentation using tools

like Swagger UI to be hosted on a basic HTML server for easy access. Development translates the OAS into a

functional API, with tools available across programming languages to construct essential API structures. The

testing phase leverages the OAS to verify the consistency and security of the API implementation, ensuring

alignment with the initial design contracts. Finally, deployment integrates output from the publishing and

development processes to roll out the fully tested API to end-users, marking its readiness for real-world

application. In D3.2 it was informed about two methodologies for OpenAPI code generation, and the openapi-

generator run locally was chosen for its broader applicability.

Task T3.2 has focused on the development and preparation of OpenAPI specifications for both the aerOS

domain and the Infrastructure Elements (IEs), as can be seen in the next figure.

Figure 18. aerOS communications and services through OpenAPI

In that sense, core/basic aerOS services have exposed their APIs via OpenAPI specifications. Task 3.2 has

collected and consolidated all individual specs to provide a unified interface with all declared methods. The

following sections briefly introduce them.

1 https://www.openapis.org

https://www.openapis.org/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 36 of 97

3.2.2.1. Context Broker API

This aerOS contextual information is managed by the Context Brokers, which store the most recent value of

the attributes of NGSI-LD entities of the continuum, i.e., IE, services, etc. The NGSI-LD Context Broker

choice for aerOS has been the FIWARE Orion-LD2. It contains an official repository of ORION-LD API that

provides comprehensive documentation of the API3. Regarding aerOS approach, there are 4 main sections or

paths to be considered: Context Information Provision, Context Information Consumption, Context

Information Subscription, and Context Source Registration Subscription.

Figure 19. ContextBroker API inside aerOS OpenAPI

2 https://github.com/FIWARE/context.Orion-LD

3 https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-

api.yaml

https://github.com/FIWARE/context.Orion-LD
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 37 of 97

Figure 20. ContextBroker API inside aerOS OpenAPI (2)

3.2.2.2. Federator API

The Federator facilitates the bidirectional exchange of information with other domains of the aerOS

continuum. To do so, a central registry located in the entrypoint domain keeps an inventory of all integrated

domains and promote new domains registration and connection with those that are already part of the

continuum, by means of the Federator API.

Figure 21. Federator API inside aerOS OpenAPI

3.2.2.3. HLO API

The HLO APIs are designed to facilitate complex orchestration tasks at a high level of abstraction, allowing

for robust interaction and management across various aerOS services. It can be accessed from two different

components, FrontEnd (HLO-FE), and Deployment engine (HLO-AL).

Figure 22. HLO API inside aerOS OpenAPI

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 38 of 97

Figure 23. HLO API inside aerOS OpenAPI

3.2.2.4. LLO API

LLO provides granular control over specific functionalities, enabling precise manipulation of the underlying

systems through the LLO API:

Figure 24. LLO API inside aerOS OpenAPI

3.2.2.5. Data Fabric API

The Data Fabric paradigm introduces a metadata-driven architecture that automates the integration of data

from heterogenous sources and enables uniform access to the data through a standard interface. Hence, it is

integral to the efficient handling and integration of data across the aerOS platform, ensuring seamless data

flow and accessibility. Two main OpenAPI paths are available: Data Catalog Service and Data Security

Service.

Figure 25. Data Fabric API inside aerOS OpenAPI

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 39 of 97

3.2.2.6. Data Product Manager API

The aerOS Data Fabric, by means of the Data Product Manager, exposes an interface towards data owners to

onboard new data products and orchestrate the pipeline that turns raw datasets into data products. Thus, it is

an essential part of the data fabric for managing the lifecycle of data products, underpinning the platform's

data governance and utilization strategies.

Figure 26. Data Product Manager API inside aerOS OpenAPI

3.2.2.7. Self-Capabilities API

They are crucial for the self-reporting and autonomous operation of the infrastructure components. As

explained in previous WP2-WP3 deliverables, there are multiple operations, which are accessible through the

Self-API component. It includes Self-orchestrator, Self-security, Self-Optimization, Self-scaling, Self-healing,

and Self-Configurator. At the time of writing this deliverable, the latest version of the first four already

included their swagger OpenAPI in their artifacts. The remaining two will be integrated before the project

ends.

Figure 27. Self-Capabilities API inside aerOS OpenAPI

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 40 of 97

Figure 28. Self-Capabilities API inside aerOS OpenAPI (2)

3.2.2.8. IdM

A key component of the aerOS cyber security system is the aerOS Identity Management (IdM), whose ability

is to register and evaluate policies for resource and data access. It utilizes Keycloak IdM4, which provides

comprehensive functions to strengthen cybersecurity, by managing the authentication and authorization of

aerOS clients with a non-official but thoroughly documented Open API specifications5. The most relevant

paths used in aerOS are presented below:

4 https://www.keycloak.org/

5 https://github.com/ccouzens/keycloak-openapi

https://www.keycloak.org/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 41 of 97

Figure 29. IdM API inside aerOS OpenAPI

aerOS IdM has been integrated with OpenLDAP6 in order to enhance the adoption of aerOS IAM by

stakeholders, facilitating the automatic federation of user information from the LDAP directory. This

eliminates the need for manual transfer of user data to aerOS IdM, streamlining user management and group

associations.

Figure 30. IdM API inside aerOS OpenAPI (2)

aerOS implements a system of precise control and management over resources, which is seen in the

establishment of different roles. Each role is associated with specific access rights within the aerOS services

environment and linked to a corresponding group in OpenLDAP.

Figure 31. IdM API inside aerOS OpenAPI (3)

6 https://www.openldap.org/doc/admin26/OpenLDAP-Admin-Guide.pdf

https://www.openldap.org/doc/admin26/OpenLDAP-Admin-Guide.pdf

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 42 of 97

Figure 32. IdMAPI inside aerOS OpenAPI (4)

In turn, users group provide methods required to handle the lifecycle of user profiles via IdM.

Figure 33. IdM API inside aerOS OpenAPI (5)

3.2.2.9. IOTA

One of the ways leveraged in aerOS to achieve trust is by taking advantage of open-source edge technologies

such as IOTA’s distributed ledger Tangle framework7. The Tangle is a data structure replicated across a

network of nodes (IE’s in the aerOS continuum) that contains all the information necessary to track messages

and ensure traceability of the payloads distributed across the network. A brief extract of the official IOTA

Open API documentation8 is listed below:

7 https://wiki.iota.org/get-started/introduction/iota/introduction/

8 https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/TIP-0025/core-rest-api.yaml

https://wiki.iota.org/get-started/introduction/iota/introduction/
https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/TIP-0025/core-rest-api.yaml

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 43 of 97

Figure 34. IOTA API inside aerOS OpenAPI

3.2.3. aerOS AsyncAPI

OpenAPI is a widely adopted industry standard in software engineering, playing a pivotal role in defining

standardized specifications for REST-based interfaces. However, as technology evolves, there is a growing

need for standardized specifications of asynchronous interfaces, a capability OpenAPI does not inherently

provide. The rise of asynchronous interfaces and protocols is driven by the desire to move away from

monolithic systems towards more distributed architectures, often termed "event-driven" or "reactive." This

shift aims to enhance system efficiency, scalability, and fault tolerance.

To address the limitations of OpenAPI in the asynchronous realm, the AsyncAPI initiative has emerged,

seeking to establish an industrial standard for specifying asynchronous interfaces. Unlike OpenAPI,

AsyncAPI goes beyond by offering comprehensive support for various communication protocols such as

MQTT and Kafka. This flexibility allows it to accommodate the diverse requirements of distributed systems.

The following figure illustrates the followed approach in aerOS to embrace the benefits that AsyncAPI can

provide in the project needs. The following subsections detailed the AsyncAPI services implemented in the

context of this task.

Figure 35. aerOS communications and services through AsyncAPI

3.2.3.1. Advancing AsyncAPI with Industry-standard Protocols

AsyncAPI currently serves as a crucial tool for specifying asynchronous interfaces. However, there is

significant potential for enhancement by integrating additional industry-standard protocols such as Data

Distribution Service (DDS)9, ROS210, OPC UA11, and the publish/subscribe protocol Zenoh12. Incorporating

9 https://www.dds-foundation.org/what-is-dds-3/

10 https://www.ros.org/

https://www.dds-foundation.org/what-is-dds-3/
https://www.ros.org/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 44 of 97

these protocols into the AsyncAPI framework would expand its applicability, promoting adoption across

embedded systems and edge computing environments. This expansion is oriented to drive the development of

solutions specifically tailored to industrial contexts, particularly in terms of automated interface integration.

Such advancements would streamline application development within industrial automation systems, fostering

innovation and efficiency in this vital sector.

Integrating any protocol or standard into the AsyncAPI framework requires addressing two primary

challenges. Firstly, there is the need to map the primitives of the protocol specification—such as DDS's topics,

data readers, data writers, subscribers, and publishers—to AsyncAPI concepts like channels, operations, and

messages. Secondly, features unique to the protocol that do not directly correspond to an AsyncAPI concept

necessitate the definition of a binding. This binding provides protocol-specific information pertaining to

servers, messages, channels, and operations.

We briefly recap the core concepts of AsyncAPI v3.0.0:

• Message: A message is the unit of data exchanged between senders and receivers through a server.

Messages follow a well-defined schema and fall in one of three classes: an event, a query, or a

command.

• Server: A server represents a message broker or a messaging system that facilitates the exchange of

messages between senders and receivers via channels. It's the infrastructure that handles the routing

and delivery of messages.

• Channel: A channel is a named communication pathway within an AsyncAPI server that acts as the

destination and source of messages or events.

• Operation: An operation specifies how messages between components are communicated. AsyncAPI

differentiates between send and receive operations of messages on a channel. Additionally, operations

support a reply semantic.

3.2.3.2. AsyncAPI for DDS

DDS is an open standard for real-time, scalable, and interoperable data distribution middleware. Developed by

the Object Management Group (OMG), DDS is designed to facilitate seamless communication and data

exchange in distributed systems that demand real-time capabilities. There are several implementations of

DDS, such as OpenDDS or Cyclone DDS. DDS is a publish/subscribe data distribution middleware

comparable to MQTT. However, DDS operates decentralized and offers more capabilities for edge-focused

applications and IoT environments.

When considering the AsyncAPI and DDS specifications side by side, it becomes apparent that many core

concepts of AsyncAPI map directly to primitives in the DDS specification, i.e., AsyncAPI write operations

map to data writers in DDS, AsyncAPI read operations map to data readers in DDS, and AsyncAPI channels

map to DDS topics. However, there are core concepts in DDS especially concerning the specification of

quality-of-service requirements that have no direct counterpart in AsyncAPI and demand a DDS AsyncAPI

binding.

3.2.3.2.1. An Experimental AsyncAPI Binding for DDS

In this section, it is described an experimental DDS binding for messages, server, channels, and operations

that enables specifying DDS event-driven applications in AsyncAPI.

An AsyncAPI Message is the only concept that directly maps to DDS without the need for a binding. The

supported data types available in AsyncAPI specification and the DDS IDL map directly so that each

key/value pair in the payload of a message directly map to a key/value pair of a data class in DDS.

In contrast, the concept of a Server present within the AsyncAPI specification has no direct application in a

decentralized data distribution middleware such as DDS. However, in the AsyncAPI specification the host

field is mandatory so that we can use it to specify a DDS peer discovery host that discovery packets are sent to

11 https://opcfoundation.org/about/opc-technologies/opc-ua/

12 https://zenoh.io/

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://zenoh.io/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 45 of 97

in addition to the default multicast address. In DDS every communication between a data writer and a data

reader requires the specification of a domain. A domain represents a subsection of the DDS network that is

uniquely identified by a 32-bit unsigned integer. We introduce a domain object in the AsyncAPI DDS server

binding that allows configuring various aspects of the DDS domain specification as summarized in Table 1.

The DDS domain object in turn supports the specification of a discovery object containing options to

configure the detection of domain participants. The discovery object and related ports and interfaces objects

are summarized in Tables 2, 3, and 4. Lastly, the DDS server binding allows to specify a quality of service

(QoS) provider that allows specifying a path from where the DDS application described by the specification at

hand loads available QoS policies.

Table 5. DDS Domain Object

Field Name Type DDS Versions Description

id integer 1.4 The identifier of the DDS domain, a 32-bit un-

signed integer.

discovery object 1.4 Discovery options for the domain.

allowMulticast string 1.4 Whether multicast discovery is allowed. Com-

ma-separated list of: false, spdp, asm, ssm, true,

default.

dontRoute boolean 1.4 Allows setting the SO_DONTROUTE socket

option.

enableMulticas-

tLoopback

boolean 1.4 Must be true for intra-node multicast communi-

cation.

entityAutoNaming string 1.4 Specifies the entity auto naming mode. Either

empty (default) or fancy.

externalNetwork-

Address

string 1.4 Explicitly overrule the network address DDS

advertises in the discovery protocol which de-

faults to the address of the preferred network

interface. It can be used to allow DDS to com-

municate across network address translation

devices.

externalNetwork-

Mask

string 1.4 Specify the network mask of the external net-

work address. The default value is 0.0.0.0.

fragmentSize integer 1.4 The size of a DDSI fragment. The default is

1334 B.

interfaces object 1.4 The network interfaces used for discovery and

user traffic.

maxMessageSize integer 1.4 The maximum size of UDP payload.

maxRexmitMes-

sageSize

integer 1.4 The maximum size of a retransmitted message.

multicastRecvNet-

work

InterfaceAddresses

string 1.4 A comma-separated list of network interface

addresses to receive unicast traffic on. Alterna-

tively, one of the following: all (listen on all

multicast-capable interfaces), any (listen for

multicast on the operating system default inter-

face), preferred (listen on interface with highest

priority), or none (listen on no interfaces).

multicastTimeToLive integer 1.4 The time-to-live value for multicast packets. The

default is 32.

redundantNetwork- boolean 1.4 Whether to enable redundant networking on

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 46 of 97

ing selected network interfaces.

transport string 1.4 The transport to use for DDSI traffic: default,

udp, udp6, tcp, tcp6, raweth.

useIPv6 boolean 1.4 Whether to use IPv6 for DDS traffic.

Table 6. DDS Discovery Object

Field Name Type DDS Versions Description

DSGracePeriod string 1.4 Controls how long discovered endpoints will

survive after the discovery service disappears.

This allows reconnection without loss of data if

the discovery service restarts. The default is 30

s. Recognized units are day, hr (hours), min

(minutes), s (seconds), ms (milliseconds), us

(microseconds), and ns (nanoseconds).

defaultMulti-

castAddress

string 1.4 The multicast address used for all traffic except

for participant discovery. Defaults to the Simple

Participant Discovery Protocol (SPDP) address

239.255.0.1.

enableTopicDiscover-

yEndpoints

boolean 1.4 Whether to enable the use of topic discovery

endpoints. The default is false.

externalDomainId string 1.4 An override for the domain id is used to discov-

ery and determine the port number mapping.

The value default disables the override.

leaseDuration string 1.4 The duration of the lease for the domain partici-

pant. The default is 10 s. Recognized units are

day, hr (hours), min (minutes), s (seconds), ms

(milliseconds), us (microseconds), and ns (nano-

seconds).

maxAutoParticipant-

Index

integer 1.4 This element specifies the maximum DDSI par-

ticipant index if the participantIndex is “auto”.

The default is 9.

participantIndex string 1.4 The participant index used for discovery. The

value auto selects the index automatically. The

default is default using none if multicast discov-

ery is used or else auto.

ports object 1.4 The port numbers used for discovery and user

traffic.

SPDPInterval string 1.4 The interval at which SPDP messages are sent.

The default corresponds to about 80% of the

participant lease duration with a maximum of 30

s. Recognized units are day, hr (hours), min

(minutes), s (seconds), ms (milliseconds), us

(microseconds), and ns (nanoseconds).

SPDPMulti-

castAddress

string 1.4 The multicast address used for participant dis-

covery. Defaults to the SPDP address

239.255.0.1.

tag string 1.4 A tag that domain participants to be discovered

must match in addition to the domain ID.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 47 of 97

Table 7. DDS Ports Object

Field Name Type DDS Versions Description

base integer 1.4 The base port number. The default is 7400.

domainGain integer 1.4 The gain applied to the domain id to determine

the port number. The default is 250.

multicastDataOffset integer 1.4 The offset applied to the base port number to

determine the multicast data port number. The

default is 1.

multicastMetaOffset integer 1.4 The offset applied to the base port number to

determine the multicast meta port number. The

default is 0.

participantGain integer 1.4 The gain applied to the participant index to de-

termine the port number. The default is 2.

unicastDataOffset integer 1.4 The offset applied to the base port number to

determine the unicast data port number. The

default is 11.

unicastMetaOffset integer 1.4 The offset applied to the base port number to

determine the unicast meta port number. The

default is 10.

Table 8. DDS Interfaces Object

Field Name Type DDS Versions Description

autodetermine boolean 1.4 Whether to let DDS determine the network in-

terfaces automatically. The default is true.

address string 1.4 The address of the interface to use.

name string 1.4 The name of the interface to use. If both address

and name are provided the address must match

the interface name.

allow_multicast string 1.4 A comma-separated list controlling of some of

the following keywords: “spdp”, “asm”, “ssm”,

or either of “false” or “true”, or “default” to

control if DDS uses multicast on the interface.

multicast string 1.4 If set to default it will use the value as returned

by the operating system. If set to true it will

enable multicast on the interface regardless of

the operating system state.

preferMulticast boolean 1.4 Whether to prefer multicast over unicast when

unicast would suffice.

presenceRequired boolean 1.4 Whether the interface must be present.

priority integer 1.4 The priority of the interface. The default is 0.

In summary, the DDS binding in the AsyncAPI server specification has been used to configure all aspects of

the DDS domain the event-driven application participates in.

A communication between participants is described by an AsyncAPI Channel that maps to DDS topic(s). The

DDS channel binding extends the channel specification by a QoS policies object. A full list of applicable QoS

policies can be found in the DDS specification v1.4 and each QoS policy should be provided as part of the

DDS binding to enable their proper configuration. Furthermore, each AsyncAPI channel is associated with a

set of messages that correspond to DDS data types. In contrast to an AsyncAPI channel, a DDS topic only

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 48 of 97

supports a single data type thus if an AsyncAPI specification describes an application with several messages

per channel, we must ensure that the DDS binding and supporting tools (e.g. the code generator) map each

valid combination of AsyncAPI channel and message to a distinct DDS topic.

Table 9. DDS Operation Binding Object

Field Name Type DDS Versions Description

qosPolicies list 1.4 Defines QoS policies for the operation. Find a list of appli-

cable QoS policies below. If the DataReader or DataWriter

inherits the QoS settings from their Publisher or Subscrib-

er, respectively, the QoS policies are not required.

publishers list 1.4 The publisher objects the DataWriter belonging to a send

operation is associated with.

subscribers list 1.4 The subscriber objects the DataReader belonging to a re-

ceive operation is associated with.

Table 10. DDS Publisher Object

Field Name Type DDS Versions Description

name string 1.4 The name of the publisher object the DataWriter is associ-

ated with.

qosPolicies list 1.4 QoS policies applied to the Publisher.

Table 11. DDS Subscriber Object

Field Name Type DDS Versions Description

name string 1.4 The name of the subscriber object the DataReader is asso-

ciated with.

qosPolicies list 1.4 QoS policies applied to the Subscriber.

Table 12. Subset of DDS QoS Policy Objects

QoS Policy Field Name Type DDS Versions Description

Reliability

kind string 1.4 One of best_effort or reliable.

max_blocking

_time
string 1.4

The maximum blocking time. The default is

100 ms. Recognized units are day, hr

(hours), min (minutes), s (seconds), ms

(milliseconds), us (microseconds), and ns

(nanoseconds).

Deadline period string 1.4

The period of the deadline. The default is

INFINITE. Recognized units are day, hr

(hours), min (minutes), s (seconds), ms

(milliseconds), us (microseconds), and ns

(nanoseconds).

Durability kind string 1.4
One of volatile, transient_local, transient, or

persistent.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 49 of 97

Figure 36. AsyncAPI specification of a reliable service using the DDS binding

Participants of a DDS domain communicate using read/write operations between data writers and data

readers. AsyncAPI operations and their send and receive actions map directly to DDS data writers and data

readers. In addition, DDS data writers and data readers may be associated with a DDS Publisher or DDS

Subscriber, respectively, and may inherit the QoS settings of their Publisher and Subscriber or set their own

QoS policies. As a result, the DDS operations binding (c.f. Table 5) allows us to define a list of QoS policies

per operation or specify a DDS publisher object (c.f. Table 6) for write operations and a DDS subscriber

object (c.f. Table 7) for read operations. Table 8 highlights the specification of a subset of available QoS

policies available to DDS publishers and subscribers.

Figure 1 provides an example of using the experimental DDS binding (indicated by x-*) to specify a reliable

service that receives sensor readings and actuator status variables of a robot and publishes its predicted

trajectory every 20ms.

An AsyncAPI specification using the described DDS bindings can be processed by existing tooling, e.g. by

AsyncAPI Studio to generate documentation, by using the extension mechanism. We further validate the

correctness and functionality of resulting DDS applications by providing a rudimentary code generator for

CycloneDDS and python.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 50 of 97

3.2.3.2.2. CycloneDDS code generator for AsyncAPI

Note: This development is not endorsed in the software attachment due to privacy concerns.

The AsyncAPI React template rendering engine has been leveraged to implement a code generation solution

capable of producing Python code utilizing the CycloneDDS framework. This code generator is built upon the

experimental DDS binding of the AsyncAPI specification, validating the soundness of the mapping between

DDS concepts and AsyncAPI primitives by yielding functional CycloneDDS applications from an interface

specification. The organization's efforts have focused on implementing and validating the representation of

fundamental DDS concepts, including topics, data writers/readers, publishers, subscribers, and a subset of

quality-of-service objects within the AsyncAPI binding. The AsyncAPI React generator SDK facilitates the

implementation of code generators by parsing a specification and providing a straightforward API13 to interact

with the parsed AsyncAPI objects, such as messages, channels, operations, and bindings.

Figure 37. UML class diagram of generated CycloneDDS python code

The CycloneDDS generator creates a python data class per AsyncAPI message and associates each DDS topic

with a unique tuple of AsyncAPI channel and message. For each AsyncAPI send/receive operation, the

generator instantiates a data writer/reader and associates each data writer/reader with a publisher/subscriber

using the operations DDS binding. In addition, for each data reader of a subscriber, the generator sets up a

DDS listener. The DDS listener implements a callback that triggers when new data is available on the topic of

the corresponding data reader. Optionally, the CycloneDDS generator associates receive operations’ reply

objects with a data writer that enables data readers to send a response on a defined topic.

A functional python CycloneDDS application from the robot trajectory example has been generated. The

resulting application publishes a robots position, orientation, and speed on corresponding topics and a

trajectory predictor component subscribes to the topics to use the received messages to calculate and publish

the predicted trajectory of the robot. All send and receive operations are specified to be reliable, messages

13 https://github.com/asyncapi/parser-api/blob/master/docs/api.md

https://github.com/asyncapi/parser-api/blob/master/docs/api.md

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 51 of 97

being volatile, and occurring periodically with a deadline. The corresponding QoS policies are automatically

added to the publisher and subscriber and applied to the data writers and data readers. Figure 37 showcases a

UML class diagram of the resulting DDS publishers and the RobotTrajectoryPredictor DDS subscriber and its

DDS Listener that is activated when a data reader has messages ready.

When the CycloneDDS application executes it creates a thread per publisher and subscriber and reads/writes

data as specified in the QoS policies. The resulting output can be seen in Figure 38.

Figure 38. Output of code generator and exemplary CycloneDDS application

Note how the RobotTrajectoryPredictor receives twice as many RobotStateSpeed and RobotStatePosition

messages than RobotStateOrientation message since their periods in the Deadline QoS policy as shown in the

specification differ by a factor of two.

3.2.3.3. AsyncAPI for ROS 2

Robot Operating System 2 (ROS 2) is an open-source middleware framework designed for real-time, scalable

communication in robotic systems. It builds on standards like DDS and Zenoh to facilitate effective data

exchange crucial for complex robotic architectures. Supported by a vibrant community, ROS2 provides access

to thousands of ready-to-use, community-driven libraries, making it an indispensable tool for rapid

prototyping and deployment across various sectors—from industrial automation to autonomous vehicles. Its

robust features enable efficient multi-robot interactions and seamless cross-platform operations, contributing

significantly to its widespread adoption.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 52 of 97

Integrating ROS2 with AsyncAPI presents an exciting opportunity to standardize interface specifications in

robotic applications. With ROS2’s topics aligning naturally with AsyncAPI channels, and its publishers and

subscribers corresponding to AsyncAPI’s send and receive operations, there is a strong foundation for

synergy. However, integration must address ROS2-specific Quality of Service (QoS) settings, which lack

direct AsyncAPI equivalents. Developing an AsyncAPI-ROS2 binding would effectively encapsulate these

QoS parameters, facilitating precise and reliable system configurations. This integration not only promises to

streamline the specification process but also enhances interoperability and innovation within the robotics

community.

3.2.3.3.1. An Experimental AsyncAPI Binding for ROS 2

We describe an experimental binding for messages, servers, channels, and operations that enables specifying

event-driven applications in AsyncAPI. This binding is particularly relevant for ROS 2, which can use either

DDS or Zenoh as its middleware.

Server Binding Object

In ROS 2, the server binding object contains information about the server representation. Since ROS 2 can use

decentralized middleware with no central server, the host field can be set to localhost. When using Zenoh, the

host field specifies the Zenoh Router IP address.

Table 13. ROS 2 Server Binding Object

Field Name Type

ROS 2

Versions Description

rmwImplemen-

tation

string all Specifies the ROS 2 middleware implementation to be used. Valid

values include rmw_fastrtps_cpp (Fast

DDS), rmw_cyclonedds_cpp (Cyclone

DDS), rmw_connext_cpp (RTI Connext),

and rmw_zenoh_cpp (Zenoh). This determines the underlying mid-

dleware implementation that handles communication.

domainId inte-

ger

all All ROS 2 nodes use domain ID 0 by default. To prevent interfer-

ence between different groups of computers running ROS 2 on the

same network, a group can be set with a unique domain ID. Must

be a non-negative integer less than 232.

Figure 39. Example ROS 2 server binding object

Operation and Channels Binding Object

AsyncAPI operations, with their send and receive actions, map directly to ROS 2 subscribers, publishers,

actions, or services:

• send -> publisher, action_client, service_client

• receive -> subscriber, action_server, service_server

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 53 of 97

Unlike DDS, which only maps send/receive operations to publishers and subscribers, ROS 2 also includes

request and response operations, encompassing services and actions. Each operation binding maps to a

channel object with a ROS 2 role, node, and QoS policy object:

Table 14. ROS 2 Operation Binding Object

Field Name Type

ROS 2

Versions Description

role string all Specifies the ROS 2 type of the node for this operation. Valid

values are: publisher, subscriber, service_client ser-

vice_server, action_client, action_server. This defines how the

node will interact with the associated topic or action.

node string all The name of the ROS 2 node that implements this operation.

qosPolicies object all Quality of Service (QoS) for the topic.

Table 15. ROS 2 Quality of Service Object

Field Name Type

ROS 2

Versions Description

reliability string all One of best_effort or reliable. More information here: ROS 2

QoS

history string all One of keep_last, keep_all or unknown. More information

here: ROS 2 QoS

durability string all One of transient_local or volatile. More information here: ROS

2 QoS

lifespan integer all The maximum amount of time between the publishing and the

reception of a message without the message being considered

stale or expired. -1 means infinite.

deadline integer all The expected maximum amount of time between subsequent

messages being published to a topic. -1 means infinite.

liveliness string all One of automaticor manual. More information here: ROS 2

QoS

leaseDuration integer all The maximum period of time a publisher has to indicate that it

is alive before the system considers it to have lost liveliness. -

1 means infinite.

https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 54 of 97

Figure 40. Example ROS 2 operation binding object

Message Binding Object

ROS 2 message types, defined in .msg, .srv, or .action files, are mapped to AsyncAPI message payloads. The

following table describes how to map ROS 2 type to AsyncAPI types and format:

Table 16. ROS 2 type map to AsyncAPI types and format

ROS 2 Type AsyncAPI Type AsyncAPI Format

bool boolean boolean

byte string octet

char integer uint8

float32 number float

float64 number double

int8 integer int8

uint8 integer uint8

int16 integer int16

uint16 integer uint16

int32 integer int32

uint32 integer uint32

int64 integer int64

uint64 integer uint64

string string string

array array --

3.2.3.3.2. ROS 2 code generator for AsyncAPI

Note: The software associated to this development is not included in the compressed file since it is undergoing

its own open-sourcing process (SIEMENS). It will be available in due time for the community.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 55 of 97

The primary objective of our code generator is to utilize AsyncAPI tools equipped with ROS2 bindings to

systematically transform the specified information into ROS2 interface definition files, including .msg, .srv,

and .action files, as illustrated in Figure 41.

Figure 41. ROS 2 interfaces represented left as the AsyncAPI specification file format and right as a .msg ROS 2 file

format

These generated ROS2 files, supplemented with additional details from AsyncAPI, serve as the foundation for

deploying a comprehensive ROS2 application. The code generator is specifically optimized for integration

with low-code tools, as discussed in Chapter 4.2.1.3. It extracts key elements such as topic names, interface

descriptions, and Quality of Service (QoS) settings from the AsyncAPI specifications. Utilizing this

information, the tool generates C++ code for ROS2 components, including subscribers, publishers, action

clients, and service clients.

The application of this generated code for low code tools facilitates efficient development workflows,

enabling rapid prototyping and deployment of ROS2 applications. Detailed usage and benefits of this

approach are further elaborated in the subsequent sub-chapter.

3.2.4. Low-code tools

The integration of low-code tools into the aerOS project represents a significant step towards democratizing

the development process and enhancing the system's flexibility. At the heart of this integration lies the

implementation of behaviour trees, a graphical low-code application that do not directly orchestrate services

within the aerOS domains, but instead function as a graphical low-code interface that triggers functionalities

within already running applications with different parameters.The behaviour trees enable users to define

triggers that activate specific services' functionalities, without initiating or terminating the services

themselves. This approach ensures a user-friendly method for modifying the operational logic, where users

can interactively change the services to be triggered and adjust their parameters with ease.

Figure 42. Behavior trees in aerOS.

In this illustrative example of the application of behavior trees within the aerOS framework, showcasing their

role in triggering functionalities across different aerOS domains. The behavior tree was strategically

configured to initiate specific functionalities of service 1 within aerOS domain 1, as well as trigger

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 56 of 97

functionalities in service 2, which could be executed in an external aerOS domain 2. This cross-domain

interaction demonstrated the interoperable design of the aerOS system and the flexible nature of the behaviour

trees.

In addition to the integration of behavior trees, Node-RED flows have been employed as another low-code

tool within the aerOS project. Node-RED is a graphical programming tool that allows users to create and

deploy applications through a browser-based interface. The integration of Node-RED flows into the aerOS

system further enhances the system's flexibility and ease of use, complementing the capabilities provided by

the behavior trees.

Users will be able to leverage the intuitive, drag-and-drop interface of Node-RED to define custom workflows

and integrate various functionalities within the aerOS ecosystem.

This low-code approach will empower system administrators and users to rapidly configure and adapt the

system's behavior without the need for extensive programming knowledge.

Figure 43. Node-RED in aerOS

As in the behavior tree’s example, the role of Node-RED is to trigger functionalities across different aerOS

domains. This tool has been used within the MVP, as discussed in Chapter 3.2.5.

The incorporation of behaviour trees and Node-RED thus represents a nuanced enhancement of the aerOS

system's responsiveness and adaptability, providing users with powerful tools to influence the system

behaviour dynamically while leaving the core orchestration responsibilities to the HLO and LLO.

3.2.4.1. Generate skills from AsyncAPI for Low Code tools

Within aerOS’ scope, two low-code tools were employed: Node-RED and Behavior Trees. Both platforms

offer intuitive GUIs that facilitate the integration of interfaces and the management of data transmission using

protocols such as ROS2, REST, MQTT, and other industrial standards. Code generators can be utilized to

create specific blocks within these tools, significantly enhancing usability and streamlining development

processes.

Figure 44. Flow to generate low-code skills

As can be seen in Figure 44, an AsyncAPI specification for the machine acts as the blueprint for generating

these skills or blocks. This specification is transformed into C++ code for Behavior Trees or JavaScript code

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 57 of 97

for Node-RED. The generated blocks in the low-code tools represent specific robotic skills. Users can connect

these skills or blocks via the GUI, efficiently deploying robust applications.

To further streamline the process, AsyncAPI specifications for machines can be auto generated, offering

significant benefits, particularly in brownfield environments where manually documenting existing interfaces

in an AsyncAPI YAML file is both time-consuming and labour-intensive. For instance, in machines utilizing

ROS2, the AsyncAPI specification can be automatically created using ROS2 interface files (.msg, .srv,

.action), as detailed in the previous subchapter. Alternatively, information can be extracted from live

monitoring tools, although this approach necessitates an operational machine to accurately capture real-time

interface dynamics.

3.2.5. Technologies and standards deployed in MVP

Table 17. Technologies and standards deployed in MVP

Technology/Standard Description Justification

OpenAPI A specification for building and

documenting RESTful APIs.

Enables clear, standard-based documentation,

simplifies API development, and increases

interoperability.

Web-based tool for

OpenAPI (e.g.,

SwaggerUI/Redoc)

Tools that provide visualization

and interaction with OpenAPI

documents.

Facilitates easy access to API documentation

for developers, promoting easy testing and

reducing onboarding time for new

developers.

Code Generator (e.g.,

Swagger Codegen)

Automated code generation tools

that produce client and server

code from an OpenAPI specifica-

tion.

Speeds up the development process by

generating boilerplate code for the MVP,

allowing developers to focus on

implementing unique business logic and

speeding up time-to-market.

Node-RED Graphical programming tool that

allows users to create and deploy

applications through a browser-

based, low-code interface.

It provides a UI to send commands to a

service and automatically publish the

outcome of those commands into an IOTA

block.

3.3. aerOS service and resource orchestration

3.3.1. Main functionalities

3.3.1.1. aerOS continuum ontology entities as a single source of truth

The aerOS continuum ontology described in section 3.1.3.1 of D4.2 has been designed having into

consideration two essentials pillars in the aerOS architecture: (i) Domain federation and continuum

management; and (ii) Decentralized orchestration. When it comes to aerOS orchestration, this ontology tries

to facilitate the complex orchestration process in a distributed and decentralized environment such as the IoT-

Edge-Cloud computing continuum, so the initial Intention Blueprint (in TOSCA format), which includes

information of the service orchestration requested by a user through the Management Portal, is translated into

several NGSI-LD entities so as to avoid the requirement of deploying additional databases for storing these

TOSCA files in each domain, leveraging the stablished aerOS Federation and Data Fabric to store and share

these entities in a decentralized way. This conceptual data model will be enhanced to describe more important

data that is being identified as the project moves further, such as advanced network or communication links

among services, or storage requirements needed by services components.

In the first iteration of the continuum conceptual data model, Service entities (e.g. an IoT service) are linked to

a set of ServiceComponents (e.g. the IoT Edge and Central Cloud service components), which indeed are the

core entities of the orchestration as the whole orchestration process is performed independently for each

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 58 of 97

ServiceComponent. In addition, these entities contain specific attributes that will be later used by the

orchestrator components: location requirements, Service Level Agreements, execution information, etc.

Moving to the specific interaction of aerOS orchestrator components (see section 4.3.2) with the ontology,

HLO Data Aggregator uses the IErequirement attribute value to perform a preliminary filtering to select the

candidate IEs that are able to run the component of a service in terms of computing resources, location, real-

time capabilities, … Furthermore, the monitoring data of the IEs status is retrieved (IE entities) and sent to

the HLO Allocation Engine, along with additional ServiceComponent running requirements (e.g. custom

SLAs), to feed the Allocation AI Algorithm. After the allocation decision of this algorithm, the

Implementation Blueprint (as a K8s Custom Resource) is sent to the selected LLO, which retrieves the

execution information (container image, cli arguments, environment variables, network ports, …) included in

the ServiceComponentArtifacts entity of the ServiceComponent to deploy the requested workload in the

selected IE. Finally, the ServiceComponent entity is updated with the result of the orchestration process

(deployed IE, status, …) to allow its further monitoring.

3.3.1.2. High-level Orchestration components decomposition

As described in deliverable D3.1, the High-level Orchestration part in the multi-level orchestration

architecture is responsible for the smart placement of the services inside the federated domains taking into

account the services requirements and the infrastructure constraints. It interacts with the Low-level

Orchestration to communicate the final decision.

Considering its complexity and the engagements of many partners in its development, the high-level

orchestration has been decomposed into different components illustrated in Figure 9. Each component is

responsible for specific duties of this orchestration level.

The HLO Storage Engine is responsible for converting the user service definition in TOSCA format and

transforms it into a set of data entities to be stored using NGSI-LD endpoint.

The HLO Data Aggregation and Alert system is responsible for aggregating all the required data for the

smart allocation. It also triggers the remaining stages in the placement process.

The HLO Allocation Engine is responsible for the AI part in the HLO. It receives the services requirements

and infrastructure elements constraints to provide the allocation decision.

The HLO Deployment Engine is the component interacting with LLO and transforms the allocation decision

from the HLO Allocation Engine and converts into a deployment request to the LLO.

3.3.1.3. Multi-Low Level Orchestrators support for multiple resource

orchestrators

In the aerOS architecture, different types of infrastructure elements are considered to support rich types of

compute resources such as Kubernetes clusters, limited compute modules such as Raspberry PIs etc. From the

D3.1 deliverable, Operators watching an aerOS-specific custom resource in the Low Level Orchestrator

handle the actual deployments of so-called Service Components in these compute resources.

The support of such resources requires flexibility and decoupling in the development of these operators.

Depending on the containerization runtime deployed in the infrastructure element defining its type, a

corresponding operator manages the deployment of service components.

The components constituting two types of low-level orchestrators (dockerd and K8S) have been described in

previous deliverables. It is important to note that each operator watches a different set of Service Components

Custom Resources. To allow such separation, different kinds of Custom Resources Definitions are provided

for each low-level orchestrator type but are consistent in their schemas.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 59 of 97

3.3.1.4. Connectivity and energy support orchestration in aerOS continuum

ontology

The aerOS continuum ontology has provided the modelling tools for the internal functioning of the aerOS

orchestration system. Nevertheless, certain models were missing but are important for the optimization of the

allocations of Service Components into the IEs. In this regard, two modelling aspects were added. The first

one being the connectivity, Network Link and Network Port have been added to the continuum ontology. They

allow to model how Service Components in the current topology are connected, creating a network overlay

that is automatically orchestrated as part of aerOS. These added concepts can also be augmented with

optimization constraints such as latency and bandwidth. These allows further adaptation to the application

nature of the user. The second one, related to energy ontologies have been added to accommodate two

modelling needs. Energy efficiency has been integrated as part of the IE requirements and defines the required

compromise between computation and energy of the running IE. The Energy Source ontology independently

defines the percentage of green energy supplied to the infrastructure. The user can provide a minimum green

energy requirement in the application blueprint.

3.3.1.5. High-level Orchestration Allocator AI algorithm

As part of the architecture of the HLO, the AI algorithms constitute the core of the smart mechanisms in the

allocation of the services resources and deployed in the HLO Allocator. Any proposed AI algorithmic

approach passes through different steps before final integration.

1- Design of an AI algorithm for the continuum.

2- Test and validation with simulation data.

3- Input and Output adaptation for the HLO Allocator data formats.

4- Final deployments and tests.

In the context of aerOS, different algorithms have been designed, then tested and validated. However, due to

the current stage of the project, only some of them have been able to be deployed over real data (those used in

the MVPv2). Others have been developed and tested over simulated data (compliant with aerOS data models

and structure).

In the next pages, a summary of the algorithmic approaches developed can be found.

- A Deep Reinforcement Learning (DRL) Allocator

This has been the algorithm used in the MVPv2 validation of aerOS. Therefore, it has been the only one

applied over a real, functional aerOS continuum (composed of three domains: CloudFerro (entrypoint),

NCSRD and mobile domain).

In this case, the development of a HLO Allocator AI Algorithm utilizing a Deep Reinforcement Learning

(DRL) approach based on the stable-baselines3 framework was performed. The work encompasses the

creation of a synthetic dataset for training the DRL model, the integration of the allocator into the HLO, and a

performance comparison with a Mixed Integer Linear Programming (MILP) approach, which has been

identified as significantly slower. The development adheres strictly to Machine Learning Operations

(MLOps) best practices to ensure scalability, reproducibility, and maintainability.

The decision to employ a DRL algorithm stems from the need for an efficient and scalable solution to the

allocation problem within the HLO. DRL offers the ability to learn complex policies that can generalize over a

wide range of scenarios, making it suitable for dynamic and diverse environments. Unlike traditional

approaches such as Mixed Integer Linear Programming (MILP), which re-calculate the optimal allocation for

every request, DRL shifts the computational overhead from online calculation to offline training through

back-propagation. During inference, the allocation action is computed using a neural network, resulting in

significantly reduced computational effort for each allocation request.

In the context of the aerOS federation, which supports large networks and distributed systems across multiple

domains, scalability is a crucial requirement. DRL enables higher scalability on a per-request basis, allowing

for a larger number of devices within the same domain. For example, while a MILP approach with similar

objectives requires approximately one minute to compute allocations for a network with 60 devices, our DRL

https://stable-baselines3.readthedocs.io/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 60 of 97

approach requires less than one second. This translates to a saving of approximately 59 seconds per allocation

request compared to MILP.

The HLO Allocation Engine receives as input the service component to be placed and a pre-filtered list

of IE candidates from the HLO Data Aggregation and Alert System, as defined in the protobuf message

format. The DRL approach utilizes the service component definition, including its constraints, and the

resources of an IE, such as memory usage, to minimize the expected latency between service components and

the overall power consumption. The output of the HLO Allocation Engine is an allocation mapping between

the service component and an IE, and optionally, the previous IE if the service was deployed previously.

Figure 45. MLOps inference pipeline structure for the HLO Allocator AI algorithm.

As illustrated in Figure 45, the HLO Allocation Engine based on an MLOps pipeline structure to ensure future

scalability and maintainability has been implemented. The approach is divided into three main parts, each

subcategorized into specific functions:

- ML Foundation:

o Redpanda Data Aggregator Endpoint: Collects data from the HLO Data Aggregation and

Alert System.

o Data Modeller: Structures and models the incoming data.

o Data Schemer: Defines and manages the schema of the data for consistency.

- ML Core:

o Anomaly Handler: Detects and handles anomalies in the data.

o Feature Engineer: Processes and transforms raw data into meaningful features for the model

inference.

o Data Validator: Ensures data quality and validity.

o Model Inferencer: Performs inference using the trained DRL model.

o Output Post Processor: Refines and formats the model output for downstream applications.

- ML Auxiliaries:

o Output API / Redpanda Broker: Manages communication and data exchange between HLO

Allocator Engine and HLO Deployment Engine.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 61 of 97

Figure 46. Deep Reinforcement Learning of the HLO Allocation Engine.

In DRL, an agent learns to make decisions in a complex environment by interacting with it and receiving

rewards or penalties for its actions, as shown in Figure 46. The goal is to learn a policy that maximizes the

cumulative reward over time. The MaskablePPO algorithm is employed, a variant of Proximal Policy

Optimization (PPO), which is a popular model-free, on-policy DRL algorithm.

Concrete Example of DRL in HLO Allocation

In the aerOS DRL approach, the action during inference is the selection of an IE for a given service

component. For instance, the agent might select "IE 2" for the service component "Server". To prevent the

selection of unsuitable IEs, such as those exceeding certain resource thresholds (e.g., IEs larger than "5"),

action masking to exclude these possibilities is employed. The reward function is defined as:

𝑅𝑒𝑤𝑎𝑟𝑑 = −∆𝑐𝑜𝑠𝑡

The cost includes factors such as:

• Latency between service components.

• Estimated power consumption of the service component on the IE.

• Penalty for CPU overload if the allocation would exceed the IE's CPU capacity.

Since DRL algorithms aim to maximize the reward, multiplying the cost by -1 effectively turns the problem

into a cost minimization task. The state and reward are used by the critic to train the actor neural network,

which then selects the actions. By continuously interacting with the environment and receiving feedback

through rewards, the agent improves its policy over time.

Synthetic Dataset Generation for Training

Although the environment is fixed and could, in theory, generate random states, training can be improved both

in efficiency and time by using a pre-defined dataset that resembles real-world scenarios. To achieve this, a

synthetic dataset with different-sized networks in a hierarchical form and services with one or more

interdependent service components was generated. This dataset contains:

- One hundred samples for each network size between 1 and 100.

- Zero to 200 samples for services with 1 to 30 interdependent service components.

By matching services with networks in the dataset, we can train the DRL model effectively. The pre-trained

network can then be used for inference on actual allocation requests.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 62 of 97

Multi-Tenancy Gaming approach from Slice Resource Provisioning perspective (theoretical)

aerOS consortium suggested the investigation of the maximization of total profit for all users through a Profit-

aware Slicing Resource Provisioning approach with Multi-Tenancy Gaming (PS-MTG) algorithm, towards

the orchestration of microservices across aerOS domains. In this context, the microservices are considered as

Slicing Resource Provisioning due to its direct connection with mobile communications domain.

The results of this work have been published in the article: “Profit-Aware Proactive Slicing Resource

Provisioning with Traffic Uncertainty”

A summary of this work is as follows:

The proposed approach consists of two main steps. First, a Slicing Request Pre-Check Algorithm is developed

to verify whether the slicing satisfies predefined conditions related to anticipated bandwidth requirements,

slots, and wavelengths. After the pre-check, the set of slice requests that can be served by the tenant is

determined. Next, the Slice-Tenant Matching for Credible Prediction Algorithm begins, involving a loop that

matches tenants with users. Each user selects the most profitable tenant. If network congestion occurs after

serving a user, the algorithm updates resource information and costs for all tenants before finalizing the match

and updating the related costs, profits, and paths.

The proposed profit-aware resource provisioning algorithm using a 14-node network was elevated. For this

evaluation, 200 services are generated by intercepting and scaling real-world data, with the sliced data traffic

constrained to a range of 0-10 Gbps. The delay for each slice is randomly selected within the range of 40 ms

to 100 ms, with 10 ms intervals. AI-based (GRU-based) prediction, as discussed in (1), is used to make

predictions and assess the credibility of the results. The experiment spans 24 consecutive time steps. The PS-

MTG algorithm achieved an overall accuracy of 7.26%, slightly trailing behind the FIX algorithm at 7.95%.

However, PS-MTG offers a marginal advantage in terms of overall user benefit accuracy. Additionally, the

refusal rate of sliced services across the different schemes was assessed. To highlight the algorithm's

effectiveness, the services were intentionally overloaded, which resulted in a higher rejection ratio. Notably,

the PS-MTG algorithm demonstrates the lowest service rejection rate, while the FULL algorithm consistently

shows a high rejection ratio. In contrast, the FIX algorithm exhibits a fluctuating rejection rate, peaking at

23%.

- Adaptable Computing and Network Convergence algorithmic approach (theoretical)

aerOS consortium proposed a fundamental framework called Adaptable Computing-Network Convergence

(ACNC), designed to address the challenges of autonomous orchestration of cloud and network resources.

ACNC is an ML-aided framework that integrates computing and networking resources to efficiently manage

dynamic and voluminous user requests with stringent QoS requirements. Even though this algorithm has not

been able to be deployed over aerOS infrastructure (due to several reasons), it is being further explored and

has been tested over certain 6G infrastructure conditions.

The results of this work have been published as a pre-print in arXiv: “Towards a Dynamic Future with

Adaptable Computing and Network Convergence (ACNC)”

A summary of this work is as follows:

ACNC comprises several key components:

• State Recognition and Context Detection: ACNC employs dimension reduction techniques to

generate live, holistic, and abstract system states in a hierarchical structure. Continual Learning

(CL) is used to classify these system states into contexts, each managed by dedicated ML agents.

• Resource Orchestration: The framework includes an end-to-end orchestrator that collaborates with

domain orchestrators (network and computing) to allocate resources efficiently. The orchestration

process is closed loop, ensuring that resources are dynamically adjusted to meet changing

demands.

As the system size increases, ACNC has demonstrated over a simulated environment optimal performance in

terms of energy consumption and total profit. The DDQL-GNN approach in ACNC, which uses Graph Neural

Networks (GNNs), outperforms the standard Double-Deep Q-Learning (DDQL) approach, indicating the

effectiveness of incorporating graph-shaped system states in decision-making..

https://ieeexplore.ieee.org/document/10622595
https://ieeexplore.ieee.org/document/10622595
https://arxiv.org/abs/2403.07573
https://arxiv.org/abs/2403.07573

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 63 of 97

Predicting Network Metrics for Managing Mobility and Reallocation (theoretical)

aerOS consortium proposed a prediction-based intelligent network analytics framework so that the allocation

of microservices can be done based on the forecasted behaviour of the network. Anticipating user demand and

network conditions, would enable proactive adjustments by HLO in aerOS whenever deploying services.

Since this approach has not been validated over real aerOS continuums, the demonstration is supported over

6G theoretical infrastructure, including historical data.

The results of this work have been published as a scientific article: “Network Slice Mobility for 6G Networks

by Exploiting User and Network Prediction”

A summary of this work is as follows:

The work exposed operated within a distributed Cloud-edge-IoT environment, where resource predictions

guide decisions on scaling, migrating, or reallocating services. By prioritizing high-value services and

leveraging complementary load profiles across servers, the approach ensures that resources are utilized

efficiently while reducing the costs associated with mobility/reallocation. It assumes a time-slotted system and

uses traffic prediction methods to obtain accurate prediction information. The scheme prioritizes based on

their importance and uses the prediction information to decide on scaling up/down or migrating slices to

different servers.

Anomaly Prediction and Resource Allocation (theoretical)

aerOS consortium proposed a framework to locate the potential microservices/slices anomalies and decide the

resource allocation strategies simultaneously by predicting the users’ future requests. Although departing from

a slice-only perspective, the alignment with aerOS was permeated across this effort, so that the inner dynamic

adjustment (e.g., slice splitting, merging, and scaling) can be applied.

Also, building on top of the work n T3.5 of aerOS (self-awareness), this approach, by monitoring the running

status of physical/virtual nodes, the connectivity of physical/virtual links, and the latencies of different service

function chains in the sub-slices level and slice level, slice anomaly detection can improve the users’ quality

of service/experience (QoS/QoE) by ensuring users’ specific requests for resources, service latencies,

computing capacities, and content availabilities.

The results of this work have been published as a scientific article: “User Request Provisioning Oriented Slice

Anomaly Prediction and Resource Allocation in 6G Networks”

Markov-Decision Process as the based for joint Service Migration and Resource Allocation in

Edge IoT System (theoretical)

aerOS team also proposed a comprehensive approach to address the joint optimization of service migration

and resource allocation in Cloud-Edge-IoT computing continuums. Here, the approach had as main target to is

to minimize access delay while maintaining service continuity for IoT users in a dynamic environment

characterized by user mobility and constrained edge server resources.

The results of this work have been published as a scientific article: “Joint Service Migration and Resource

Allocation in Edge IoT System Based on Deep Reinforcement Learning”

. The proposed methodology relies on a deep reinforcement learning (DRL)-based algorithm to dynamically

adapt to changes in system conditions and user requirements. The problem of allocation is formulated as a

Markov Decision Process (MDP) with defined states, actions, and a reward function. The state includes

information about predicted user locations, edge server resource availability, and user-server associations. The

actions consist of binary migration decisions and continuous resource allocation parameters. The reward is

designed to incentivize minimizing total task processing delays. The algorithm offers a scalable and intelligent

solution for optimizing service migration and resource allocation in aerOS computing continuums. Its

integration of mobility prediction, hybrid action space handling, and DRL-based optimization ensures

enhanced service continuity, reduced delays, and improved resource utilization.

A Priority-Aware Energy-Efficient Approach for Latency-Sensitive Applications (theoretical)

https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10317883
https://ieeexplore.ieee.org/document/10317883

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 64 of 97

aerOS consortium proposed a priority-aware solution for the autonomous orchestration of cloud and network

resources that had as basis the configuration of 6G networks. Applicability to aerOS would be demonstrated in

a future initiative.

The results of this work have been published as a pre-print in arXiv: “ORIENT: A Priority-Aware Energy-

Efficient Approach for Latency-Sensitive Applications in 6G”

A summary of this work is as follows:

The approach is designed to address the joint problem of service instance placement and assignment, path

selection, and request prioritization, collectively referred to as PIRA (Placement, Instance Assignment,

Request Prioritization, and Allocation). The primary objective is to maximize the system's overall profit,

defined as a function of the number of concurrently supported requests, while minimizing energy consumption

over time. This is achieved while considering end-to-end latency requirements and resource capacity

constraints. The proposed approach leverages a combination of Double Dueling Deep Q-Learning (D3QL)

and GNNs to encode the state of the system and make optimal resource allocation decisions. The solution is

particularly suited for latency-sensitive applications in 6G, where stringent QoS requirements must be met

efficiently, however, as mentioned, it would be for interest in the regular aerOS implementation cases.

Customizable Hybrid Isolation for Vertical Slicing approach (theoretical)

aerOS consortium proposed a novel flexible hybrid isolation model and addresses challenges in slice resource

provisioning with uncertain traffic in transport networks. After this scientific work under task T3.3 of aerOS,

that targets resource (mobile network slices) allocation, a dynamic programming algorithm efficiently handles

grouping, and an iterative adjustment algorithm fine-tunes resource allocation based on probabilistic analysis.

The results of this work have been published as a scientific article: “Probabilistic-Assured Resource

Provisioning With Customizable Hybrid Isolation for Vertical Industrial Slicing”

Multi-Agent Actor-Critic (MAAC) algorithm for Heterogeneous Edge Caching Learning with

Attention Mechanism Aiding approach (theoretical)

aerOS consortium proposed a novel multi-agent, neighbour-aware actor-critic (NAC) framework, inspired by

the Multi-Agent Actor-Critic (MAAC) algorithm was developed in order to optimize edge caching strategies.

The work uses an attention-based multi-agent caching replacement strategy. Agents can learn from

neighbouring Base Stations (BSs), improving caching decisions through shared knowledge. Consequently,

caching states can be exchanged between BSs, facilitating better information sharing, such as content size and

type. In this approach, both time and space factors were incorporated as observations to analyse the influence

between BSs through the critic network, using an attention mechanism. Each BS, acting as an agent, has its

own critic network and can observe the historical caching states of neighbouring BSs. This process combines

distributed local training with centralized global learning.

The results of this work have been published as a scientific article: “Heterogeneous Edge Caching Based on

Actor-Critic Learning With Attention Mechanism Aiding”

Joint Network Slicing, Routing, and In-Network Computing approach (theoretical)

aerOS consortium proposed a slicing-based solution for the autonomous orchestration of computing

continuum network resources, particularised in next-generation mobile networks.. The solution involves

formulating a Mixed-Integer Linear Programming (MILP) problem that considers end-to-end capacity and

QoS constraints. Given the NP-hard nature of the problem, a heuristic algorithm is proposed, WF-JSRIN

(Water Filling-based Joint Slicing, Routing, and In-Network Computing), which provides near-optimal

solutions with significantly reduced execution times compared to optimal approaches. This makes it highly

suitable for practical real-world applications, particularly in the context of autonomous resource orchestration.

The goal was to align with aerOS principles and to maximize the number of accepted users while minimizing

energy consumption, thereby ensuring sustainable and efficient network operations

The results of this work have been published as a scientific article: “Joint Network Slicing, Routing, and In-

Network Computing for Energy-Efficient 6G”

https://arxiv.org/abs/2402.06931
https://arxiv.org/abs/2402.06931
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10571186
https://ieeexplore.ieee.org/document/10571186

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 65 of 97

3.3.2. Structure diagram

Figure 47. aerOS High-Level Orchestration Components

Table 18. aerOS High-Level Orchestration Components’ description

Component Description Interactions

HLO Storage Engine Component of the High-Level

Orchestrator (HLO) exposing a

REST endpoint responsible for

receiving IoT service LCM

(deployment, update, delete)

requests. These requests originate

Management portal, located in entrypoint

domain. Receives TOSCA descriptor through

REST endpoints.

Orion CB, to which it pushes (using ngsi-ld

API) service requirements.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 66 of 97

from the aerOS entrypoint domain

in TOSCA format and are

translated into the internal aerOS

data model, represented in NGSI-

LD format.

Internal breakdown includes,

HLO FE EP (HLO Front end

endpoint) is exposing REST API

and HLO FE Handler

implements the business logic of

this component, including data

validation, translation, storage.

Data Aggregator is triggered to proceed

with the orchestration pipeline, utilizing the

Redpanda message broker with protobuf

formatted data.

HLO Data

Aggregation and Alert

System

Component of the High-Level

Orchestrator (HLO) responsible to

receive service deployment or

migration requests and

subsequently filter and retrieve,

from data fabric, all computing

resources (aerOS IEs) capable to

support service requirements.

Internal breakdown includes Data

Aggregator, which is responsible

to receive service requirements,

filter and retrieve capable IE

information and forwards all this

information to HLO Allocation

engine.

IE resource alert end point,

responsible to receive alerts from

IEs self-orchestration component

regarding service component

migration.

IE resource alerts handler,

responsible to forward service

component, that needs to be

migrated, id to Data aggregator

(again using Redpanda and

protobuf format).

HLO Storage Engine, from which it

receives service deployment request, when

event is triggered through Redpanda message

broker (with protobuf formatted payload).

Self-orchestration component which triggers

event, also through Redpanda message broker

with protobuf formatted payload, with

information of service component that needs

to be migrated to other aerOS computing

resource (IE).

Local Orion-CB (part of aerOS data

federation) is queried using filtered requests

based on service component requirements, to

retrieve IEs, across all aerOS continuum,

capable to host newly deployed (or migrated)

service component.

HLO Allocation Engine to which it

forwards service components requirements

and list of IE capable to host each

component. This information is conveyed

using Redpanda message broker in a protobuf

formatted message.

HLO Allocation

Engine

Component of the High-Level

Orchestrator (HLO) implementing

smart algorithm which enables the

most efficient allocation of each

service component to the most

suitable aerOS IE and forwarding

decision to next orchestration

level.

Since all input and output is going

through Redpanda message broker

and is modeled using protobuf

formatted messages, a variety of

implementations may exist, and

HLO Data Aggregation and Alert System

(specifically Data Aggregator sub-

component) is contacting, asynchronously,

HLO Allocation Engine using Redpanda and

submitting protobuf formatted messages

including information about service

components and candidate IEs for each of

them.

HLO Deployment engine is contacted, from

HLO Allocation Engine, using Redpanda and

submitting protobuf formatted messages

which include selected IE id, LLO id, service

component id.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 67 of 97

internal components (e.g. data

engineering, feature cleaning,

specific AI algorithm, etc.) are

specific to each of them.

HLO Deployment

Engine

Component of the High-Level

Orchestrator (HLO) receiving (de-

)allocation decision, and which

can identify and addressing LLO

which is responsible to access

selected IE.

If a link between referenced IE

and service component exists, it is

identified as a delete request

otherwise it is a deploy request.

If LLO, responsible for selected

IE, is located internally, to current

aerOS domain, request is

forwarded to local domain

allocator otherwise it is sent to the

aerOS domain to which LLO,

responsible for the selected IE, is

located. So LCM requests arrive

through Redpanda (message

broker) and then allocation request

is submitted in REST API, also

exposed by this component. This

API can be accessed either

internally for local deployments,

or from other domains for

deployments (or migrations)

decided in other domains of the

continuum.

All updates regarding IEs and

service components decisions

(de)allocations are sent to local

CB to keep aerOS continuum state

updated.

Based on the above functional

description, the components

internal to HLO Deployment

Engine are:

Inter-domain

Allocation/Migration Manager,

which is the sub-component

receiving decision from HLO

Allocation Engine, accessing

Deployment API (either locally or

to external domain) and updates

state of local domain by

submitting Orion-CB ngsi-ld API.

HLO Allocation EP, which

HLO Allocation Engine, is sending selected

IE for specific service component and related

LLO information, elaborating Redpanda

message broker and protobuf formatted

messages.

Exposed HLO Deployment Engine API

(HLO Allocation EP) is accessed from

Inter-domain Allocation/Migration

Manager (either form local or a remote one)

receiving IE and LLO id and service

component data.

LLO, is receiving, from HLO Deployment

Engine, service definition template (CRD).

Orion-CB Rest API, is accessed from HLO

Deployment Engine, for updating domain

status based on decisions and LCM

performed.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 68 of 97

exposes Rest API for LCM actions

on indicated service component

and connected IE.

Local Allocation Manager,

responsible to transform service

requests to CR and forward this to

the proper LLO which is

connected with the selected IE.

IE LLO (Low Level

Operators)

This component acts as a thin

layer abstracting all heterogeneous

computing resources (aerOS IE)

access.

Low level orchestrators have the

knowledge of accessing specific

selected computing resources (IEs)

within each aerOS domain. Upon

receiving service definition

templates, they access actual

computing resources for

workloads LCM activities (create,

destroy, update).

Receive Service Definition Templates

(CRDs) from HLO Deployment Engine.

Receives Implementation Blueprints

custom K8s resources from HLO

Deployment Engine. Depending on the

information included in these blueprints

and on the LLO type (K8s, Docker, …) it

will deploy the requested workloads in the

selected IEs,

Access computing resources (IEs) for

workloads (service component deployments).

Figure 48. aerOS Multi Low-Level Orchestration Components

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 69 of 97

Table 19. aerOS Multi Low-Level Orchestration Components’ description

Component Description Interactions

Local Allocation

Manager

The Local Allocation Manager

sits behind the HLO Allocation

Endpoints and receive requests

from the Inter-domain

Allocation/Migration Manager.

Its role is to manage the allocation

of the service components in a

specific infrastructure element of

the domain.

The Local Allocation Manager interacts

with the Operator inside the Low Level

Orchestrator by submitting Custom

Resources of different types to it, depending

on the target infrastructure element for the

deployment.

Low Level

Orchestrator

At the Low Level Orchestrator,

different deployments requests for

the target infrastructure element

type are received from the Local

Allocation Manager through

Custom Resources submission.

Depending on Custom Resources

data, deployment requests to target

infrastructure element type are

generated.

The Operator inside the Low Level

Orchestrator watches the Service

Components Custom Resources of the

corresponding type.

The Operator then manages the deployments

by submitting different types of requests to

the corresponding infrastructure element.

Infrastructure

Element

Depending on the type of

infrastructure element (e.g.

dockerd or K8s), it receives

compatible service components

deployments requests from the

corresponding operator.

N/A

3.3.3. Technologies and standards deployed in MVP

Table 20. Technologies and standards deployed in MVP

Technology/Standard Description Justification

Protobuf A language-agnostic data

serialization format developed by

Google. It's a binary serialization

format used to efficiently serialize

and deserialize structured data and

it is commonly used for

communication between different

services or systems.

It has been chosen for the communication of

HLO components as it provides:

Efficiency and performance benefits, as a

binary format is more compact than JSON,

XML and other human readable commonly

used formats making it less demanding in

transfer and faster in processing.

It is language agnostic; message structures

are defined using a neutral interface

description language.

Code generation is automated with the use

of available tools for every programming

language.

It is easily extensible also without breaking

existing implementations if fields are added

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 70 of 97

providing thus compatibility.

The main benefit, based on all the above, is

that it provides independence in components

development, so all partners working on all

HLO/LLO different components can work

without waiting one another or having to get

informed about APIs.

Redpanda event

streaming platform.

Platform which provides high-

performance distributed event

streaming capabilities, enabling

messaging and data streaming

based on a defined API.

Offers the capability to trigger events and

stream data that should be processed when

these events rise.

It provides a well-known and defined API for

clients to stream or receive events and data.

Development language neutral as all

programming languages offer their

implementing libraries. Light implementation

as compared to Kafka.

Decouples components and provides the

capability to later expand the list of

components that might need to subscribe to

events and act accordingly. The choice of

Redpanda provides to the development

teams, working on different HLO/LLO

components, to proceed independently and

bind components dynamically.

Python Fastapi A web framework for building

APIs with Python based on

standard Python type hints. It is

designed to be easy to use,

efficient, and to provide automatic

validation and documentation of

API endpoints.

It is used for the implementation

of HLO REST APIs as needed in

HLO FE EP and HLO

Allocation EP components.

Provides support for fast REST endpoints

implementation.

Natively provides asynchronous support.

Enables strong typing and validation for

input and output data.

Produces automatic API documentation, by

generating interactive OpenAPI and JSON

Schema documentation based on the Python

type hints used within code, enabling thus

testing and understanding.

confluent-kafka-

python

confluent-kafka-python provides a

high-level Producer, Consumer

and AdminClient compatible with

all Apache Kafka brokers >= v0.8.

Confluent-Kafka python is backed by

counfluent which is the leading company

regarding Kafka, also it is good for redpanda

cause it’s 100% Kafka compatible, also

another important aspect is the community

and documentation, because it is the most

used library in python regarding interacting

with Kafka/redpanda.

Operator SDK Go is a simple and efficient

programming language developed

by Google, which is used in most

of the cloud-native developments

(e.g. Kubernetes is written in Go).

The Operator SDK is an open-

source toolkit for Go to manage

(build, test and package)

Low level orchestrators are based on

Kubernetes operators, so the most used and

mature framework for developing them

should be tested and used, among other

alternatives. Furthermore, it uses Go, which

is the most common language for building

K8s native applications.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 71 of 97

Kubernetes Operators.

Orion-LD Open-source implementation of

an NGSI-LD Context Broker.

This component is responsible for

managing and providing real-time

contextual information about

various entities and their

environments. In aerOS, the

continuum will be represented and

monitored through this contextual

information.

Federated instances of Orion-LD will be in

charge of retrieving all the needed data in the

orchestration process from the continuum.

3.4. Cybersecurity components
The definition of aerOS AAA, namely Authentication, Authorisation, and Accountability, shows the

importance of creating a comprehensive security framework that ensures secure access, trust and transparency

in the project's resources. The embodiment of these concepts and their integration into the project was realized

through the technical implementations carried out in Task 3.4. More specifically, the terms Authentication and

Authorisation were covered by the aerOS IDM, while Accountability by the aerOS Secure API gateway. The

combination of these three concepts through the technical implementation enhance data security and ensures

operational integrity from insider threats or external attacks.

The following subsections describe the final result developed in task 3.4 since D3.2, namely during the

months M19-M30. More specifically there is a thorough description of the components, an architectural

diagram of aerOS AAA infrastructure which illustrates the relationships between the components, and a final

subsection which describes the technologies and protocols deployed in MVP v2.

3.4.1. Main functionalities

As aforementioned, the aerOS Identity Management (IdM) and aerOS API Gateway components are essential

for ensuring secure and efficient operation within the aerOS ecosystem, each serving a different purpose. The

main objective of the aerOS IdM is to provide secure and dependable authentication and authorization for

aerOS clients. Also, it prevents unauthorized access, by implementing advanced security mechanisms, such as

token-based authentication and Single Sign-On (SSO) through the usage of OpenID Connect (OIDC).

Additionally, it enforces Role-Based Access Control (RBAC), assigning users specific roles that determine

their access to resources and data, thereby aligning access privileges with organizational policies.

The API Gateway is designed to provide a centralized entry point for all interactions with aerOS components.

Its purpose is to streamline communication, eliminate redundancy from multiple access points, and enforce

security policies. It applies access controls defined by the IdM system based on user roles and groups.

Additionally, the API Gateway plays a critical role in safeguarding the aerOS Data Fabric by managing API-

level security and preventing unauthorized interactions, ensuring the integrity and confidentiality of the

system’s data.

The progress of aerOS IdM and aerOS API Gateway is described in the following sub-sections.

3.4.1.1. aerOS Identity and Access Management

The Identity and Access Management (IAM) of aerOS, as discussed in D3.1, has been based on Keycloak14,

while the authentication and authorization has been performed using the OpenID Connect (OIDC) protocol

and access has been granted to aerOS users based on their roles (i.e., Role-based Access Control). Keycloak,

14 https://www.keycloak.org/

https://www.keycloak.org/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 72 of 97

OIDC, and RBAC thoroughly presented in D3.1; hence, in D3.3 there is no further elaboration on these tools

and protocols.

In this deliverable, the advances in IAM are discussed presenting the intermediate implementation of

Keycloak, OIDC, and RBAC. Furthermore, enhancing the IAM of aerOS the consortium decided to

implement Keycloak with OpenLDAP15 in order to enhance the adoption of aerOS IAM by stakeholders since

with this approach all the user information of an organization can be federated automatically from the LDAP

directory without needing to pass the user information to the aerOS IAM (e.g., Keycloak) manually, as it can

be seen in Figure 49.

Figure 49. Synchronisation of OpenLDAP users in Keycloak.

In the following it is described the setting up of Keycloak as well as the main functionalities of IAM such as

the authentication and authorization using OIDC protocol, the RBAC, and the federation with OpenLDAP.

The aerOS user roles that have been deployed so far to support the RBAC activities are the listed below (after

analysing the needs of the project, the users have been updated):

• Continuum administrator: can access all the aerOS services, generate new deployments, access all the

data (read only) and is able to generate new users.

• Data product owner: can create new data sources that will be integrated in the domain.

• Vertical deployer: can deploy new services in his domain.

• aerOS user: can consume the data of his domain, but it has not any permissions to create new data or

change the configuration of the domain.

In order to facilitate the installation of the aerOS IdM, a new version of OpenLDAP has been packaged in a

Helm chart where the default users defined in the project have been created. Once the first Keycloak

connection to the OpenLDAP has been set up, the new users/groups/roles are managed directly from the

Management Portal. Figure 50 shows the groups that have been generated in OpenLDAP and that can be

visualised in Keycloak by means of the federation that has been programmed. As the groups are generated

using the Management Portal, it has been decided to only generate a Default group in the first OpenLDAP

installation.

15 https://www.openldap.org/

https://www.openldap.org/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 73 of 97

Figure 50. Groups generated for 2nd MVP in OpenLDAP (and federated in Keycloak)

Figure 51 shows the roles generated by default in the OpenLDAP image and the federation of the OpenLDAP

image in the Keycloak. In Figure 14 the same can be seen with the default generated users.

Figure 51. Roles generated for 2nd MVP in OpenLDAP (and federated in Keycloak)

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 74 of 97

Figure 52. Users generated for MVPv2 in OpenLDAP (and federated in Keycloak)

3.4.1.2. Secure API Gateway

aerOS is comprised by multiple APIs that form the innovative meta-OS that is designed and developed in the

project. However, these APIs do not incorporate security mechanism to tackle security threats, such as

unauthorized access. Thus, one of the most essential elements of the aerOS architecture is the Secure API

Gateway. The Secure API Gateway simplifies the process of exposing the various aerOS APIs by providing a

unified exposing interface and offering advanced features for secure API management and performance, such

as omitting unauthorized users from accessing the aerOS APIs. Based on these observations the KrakenD API

Gateway is employed in aerOS to both enhance the aerOS cybersecurity capabilities by ensuring the security

of all aerOS APIs. The rest of the section elaborates on the implementation of KrakenD in aerOS ecosystem

and provides insights about its integration with the other aerOS components.

KrakenD is a stateless, distributed, high-performance effective Open-Source API Gateway written in GO that

is used to fill the architecture gap about the gateway. It is used in aerOS to provide security to the API’s that

may be exposed to the Internet as well as control which users have access to which API’s and which endpoints

in said API’s. This control is determined according to the roles and groups established in the Identity

Management component. Another objective of the gateway in the project is to homogenise the entry point to

access all the resources, so the different components can access all the API’s from the same place. KrakenD

was also chosen for its capability to modify the incoming and outgoing traffic to suit specific needs, as well as

making additional internal petitions and verifications with added scripting support. The following figure from

the KrakenD Community Edition Documentation website16 showcases these features:

16 https://www.krakend.io/docs/overview/

https://www.krakend.io/docs/overview/

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 75 of 97

Figure 53. KrakenD and its capabilities

KrakenD has been successfully deployed in the entrypoint domain of the MVPv2, alongside with the

Keycloak IAM. The integration between Keycloak and KrakenD has been performed, as well as integration

between KrakenD and the backend elements (i.e., aerOS APIs). Furthermore, a federated OpenLDAP

database was agreed upon to act as the database for the IAM (see Section 4.4.1.1) and was subsequently

integrated into the Kubernetes cluster. KrakenD was expanded so only certain allowed testing roles are

allowed to access the backend, Ingress compatibility has also been installed in the cluster and KrakenD is

ready and could be exposed for testing. Additional functionalities were added as time went on and the

different components required extra endpoints such as the implementation with the federator, the aerOS Portal

and IOTA. A simplified installation process via helm charts has been integrated alongside the new installation

instructions. Connection to the Keycloak to retrieve user tokens is still necessary although token caching has

been implemented to reduce latency.

3.4.2. Structure diagram

Figure 16 illustrates the aerOS authentication, authorization, and access control procedure along with the

relevant components that are implemented. In the presented scenario, the client (e.g., a user) is authenticated

in the management portal that redirects the authentication request to Keycloak IAM, which retrieves user

information from OpenLDAP. Afterwards, Keycloak responds with the ID token, which is deployed by the

client to request access to an aerOS API. The request pass through KrakenD that validates the ID token with

Keycloak and grants access to the API. In case that the ID token is invalid, namely the role of the client does

not allow access to the requested API, the access is blocked.

Figure 54. aerOS Authentication, authorization, and access control

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 76 of 97

Table 21. List of cybersecurity tools

Component Description Interactions

Client Any deployed element within the

aerOS continuum that wants to

access a protected endpoint.

The client obtains an ID token from

Keycloak and then makes the petition to the

API using the ID token.
Keycloak (IAM) Responsible for implementing the

authentication and authorization of

aerOS users.

KrakenD GW API to validate the ID token.

OpenLDAP to retrieve user information and

support user federation.
OpenLDAP (user

federation)

Registry that contains user

information.

Keycloak to send user/group/role

information.

KrakenD (API GW) Access control and management of

aerOS APIs.

Receives petitions from the client, verifies

the ID token with Keycloak and if it is valid,

allows access to aerOS APIs.
API An aerOS API, such as OrionLD,

HLO, etc.

KrakenD that manages the access to all

aerOS APIs.

3.4.3. Technologies and standards deployed in MVP

The aerOS AAA components have been deployed in the MVPv2 in order to demonstrate the cybersecurity

capabilities and protection mechanisms for a user that wants to access the OrionLD API. In this set up, all the

aerOS APIs are protected by the KrakenD API Gateway that validates the access requests and allows or

blocks the access based on the aerOS RBACs. In order to accomplish this, as presented in Figure 55, KrakenD

retrieves the access token from the IAM, using its public IP, as well as the special API endpoint created to get

the tokens.

Figure 55. KrakenD retrieving access token from Keycloak

Afterwards, as depicted in Figure 56, the access token could be used to access an aerOS API, such as Orion-

LD endpoint.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 77 of 97

Figure 56. Deploying token to access an aerOS API

Table 22. Tools deployed in the MVP

Technology/Standard Description Justification

Keycloak Detailed in D3.1. Detailed in D3.1.

OpenID Connect Detailed in D3.1. Detailed in D3.1.

OpenLDAP An open-source implementation

of the LDAP protocol.

Free and open-source tool that can be

integrated with Keycloak provide user

federation capabilities.

KrakenD Detailed in D3.1. Detailed in D3.1.

RBAC Assigning permissions to aerOS

entities based on the roles of

aerOS users.

It is a well-known access control mechanism

that can be easily applied is aerOS due to its

distinct user roles.

3.5. Node’s self-x and monitoring tools

One of the main features of aerOS is the wide variety of IEs that exist across the computing continuum. This

variety depends on its physical components, its operating system, its capabilities and even its location on the

continuum. One of the objectives of aerOS is to achieve all these nodes autonomously, that is, they can func-

tion without human interaction. This particularity allows the IEs that exist in the continuum to execute actions

and decisions autonomously, in addition to being able to monitor their health status in real-time.

This section of the document describes the characteristics that the aerOS nodes shall have to be able to exe-

cute certain operations. These IEs are described by a set of attributes and are considered independent entities

in the continuum that can execute workloads and perform internal functionality to report or modify their state

towards the continuum. Making the IEs of the continuum more autonomous allows it to be more reliable in the

event of outages in part of the network or services.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 78 of 97

The following subsections describe the updated functionalities that have been designed for aerOS IEs, the

architectural diagram of a node's self-capabilities and relationships between components, and the technologies

and standards deployed in the MVP. This section corresponds to the evolution and developments carried out

in the aerOS task T3.5.

3.5.1. Main functionalities

To allow nodes that connect to the aerOS compute continuum to be autonomous, they need to have certain

capabilities. These features are offered through the aerOS self-* capabilities suite to all IEs that connect to the

continuum, which are:

• Self-awareness: considered one of the main self-* capabilities of an autonomous system, this compo-

nent analyses and obtains information from the node, continuously monitoring its health status and

workload. Due to the need to offer real-time information on the status of the IE, this module is subdi-

vided into two components, which are executed continuously. One (power_consumption) is in charge

of obtaining the energy consumption of the node, which requires more computing time. The other

(hardware_info) is responsible for obtaining the rest of the parameters. The component that obtains

the power consumption needs an average of 20-25 seconds per execution to obtain new valid values

and the other only needs about 3-15 seconds to update its information, depending on the amount of in-

formation to be collected by the sub-module. This amount is specified by environment variables in the

sub-module deployment files. The purpose is to provide updated information to the rest of the self-*

capabilities as fast as possible to modify the operation of the IE, if necessary. Currently, this self-*

capability is able to obtain the following information from each node: hostname, addresses (internal

IP and MAC), CPU (architecture, number of cores, max frequency and current usage), RAM (total

capacity, available capacity and current usage), disk (type, total capacity, available capacity and cur-

rent usage), network (speed up, speed down, traffic up, traffic down and lost packages), power con-

sumption (current and average), capability to execute workloads in real-time and operating system. To

obtain all these parameters, both sub-modules use external packages and libraries such as PowerTOP,

iproute2, psutil, getmac or speedtest-cli, as detailed below. On the other hand, each sub-module has a

REST API that allows the sampling frequency of the information in each node to be set independent-

ly. This makes it possible to optimise the operation of the node within the domain to which it belongs

and reduce the consumption of resources. Below are screenshots of the two sub-modules running on

the continuous development and integration cloud infrastructure of the project (provided by partner

CF).

Figure 57. Hardware info sub-module running on a test cluster of infrastructure

Figure 1. Hardware info sub-module running on a test cluster of infrastructure

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 79 of 97

• Self-orchestrator: considered one of the main self-* capabilities of an autonomous system, this com-

ponent is composed by a Rules Engine, a Facts Generator, a Trigger and wrapped by a REST API. It

is capable of managing facts, rules and alerts, obtaining information from the self-awareness, self-

realtimeness, self-healing and self-optimisation and adaptation modules to send warnings about prob-

lems in the IE to the aerOS EAT (Embedded Analytics Tool) of the domain, with the goal to improve

the management and coordination of their own workloads. This improves the scalability of tasks and

reduces the number of errors that occur during task execution. This self-* capability uses libraries

such as json-rules-engine or jsonschema, as detailed below.

In order to be able to manage the rules for detecting faults, malfunctions or anomalous situations

within a node, the module exposes a REST API that allows CRUD (Create, Read, Update and Delete)

operations to be performed on these rules. Moreover, by means of persistent storage in the node, this

module maintains an updated backup copy of the rules to restore them to their last state in case of

failure in the IE.

On the other hand, this REST API also allows to receive alerts in a predefined format coming from

other self-* modules in order to carry out the necessary corrective measures through the aerOS EAT.

In addition, when a rule is triggered or an alert is received at the corresponding REST API endpoint, a

message is sent to the domain's IOTA hornet node to register the event.

Below is a screenshot of the module running on the continuous development and integration cloud

infrastructure of the project (provided by partner CF).

Figure 58. Power consumption sub-module running on a test cluster of infrastructure

Figure 2. Power consumption sub-module running on a test cluster of infrastructure

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 80 of 97

• Self-security: developed using Suricata (open-source network analysis and threat detection software),

it monitors traffic logs in real-time from the network card to detect threats and abnormal behaviours

through Log Monitoring module. The ETL (Extraction, Transformation, Load) processing module

then collects the security logs, converts them into structured JSON format and sends alerts to an end-

point (Trust Manager). These alerts allow to discover different types of network attacks to detect vul-

nerabilities and threats at the IE level. An API has also been created so that the Trust Manager can

make requests each week, with the intention of collecting the alerts for the whole week and saving

them in the history. The alerts generated by self-security are deleted once a week by a new service

with the intention of minimising the space that this component occupies on disk.

Below is an example of the alerts generated by the self-security running on the continuous

development and integration cloud infrastructure of the project (provided by partner CF).

Figure 60. Self-security alert example

• Self-API: this self-capability consists of a global API deployed in each IE of the aerOS continuum

that exposes the functions that can be executed on the rest of the self-* capabilities installed on the

node, controlling the input and output data flows.

Below is a screenshot of the self-API module running on the project's continuous development and

integration cloud infrastructure (provided by partner CF):

Figure 59. Self-orchestrator module running on a test cluster of infrastructure

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 81 of 97

Figure 61. Self-API module running on node-8 of test K8s cluster-2 of infrastructure

• Self-healing: capability of autonomously recovering affected parts of the system both at the hardware

and software level caused by failures or abnormal states. It also can restart the system to pre-

established routines scheduling, if necessary. This module detects and remedies abnormal states of the

network, outlier values of sensors connected to the IE, and issues with the IE’s power level. Since the

self-healing module detects abnormal states or outlier values, it generates a JSON alert message and

sends this message to the Trust Manager component for the health score calculation algorithm. The

following is an example of a POST JSON message:

Figure 62. Example of JSON alert from self-healing to Trust Manager

Furthermore, the module collects these alert messages generated from scenarios and exposes a GET

API endpoint, which is consumed by self-API component. An example of these JSON alerts is shown

below:

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 82 of 97

Figure 63. Example of JSON alerts from self-healing to self-API

• Self-scaling: possibility of horizontally increasing or decreasing the hardware resources dedicated to

workloads of a node running Kubernetes. These changes depend on the needs of each workload, are

executed in real-time, and are based on time series inference and custom logic.

• Self-configuration: ability to maintain the desired state of the system with the help of an abstract and

reactive management of its configuration. Both the configuration itself and its possible evolution can

be defined/represented based on the concepts such as “resource”, “requirement”, and action/reaction.

Development has focused on evolving an existing open source tool (originated in H2020 project AS-

SIST-IoT), by integrating the innovative needs of aerOS and incorporating automated configuration.

• Self-optimisation and adaptation: ability to optimise the dissemination of the data and control the

performance of IE. On the one hand side, by using dynamic sampling techniques and the current

metric streams (i.e. the IE’s operational data obtained from self-awareness), the component suggests

optimal sampling periods, allowing control over the frequency of data monitoring by the self-

awareness component. On the other hand, it incorporates an estimation model monitoring the shifts in

the metric streams to detect data points with significant differences that may indicate potential

anomalies, aiming to prevent the overutilization and underutilization of IE resources.

• Self-realtimeness: an experimental capability that continuously monitors the performance of real-

time services using their time utility (TU) that degrades with the tardiness of deadline misses. The

component automatically adjust the CPU time (quota) granted to a real-time service every period to

trade-off CPU utilisation and TU achieved on an IE. If a real-time service’s TU degrades below a con-

figurable threshold self-realtimeness issues a re-orchestration request as illustrated in the following

figure:

Figure 64. Self-realtimeness relocating real-time workload with bad time-utility from node 1 to node 2 (2)

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 83 of 97

In the next subsection the relationships between the components and their interactions are described.

3.5.2. Structure diagram

The aerOS self-* capabilities set is comprised of 9 software components that act together and run on the nodes

connected to the computing continuum. Each module is considered an independent entity within an IE and

fulfils a specific function. However, to offer the described functionality they must interact with each other,

creating intertwined relationships. This means that some modules depend on the information generated by

others to complete their functionality and vice versa. Despite this, depending on the needs and performance of

the node, one or more modules will be installed, divided into two categories. Core components are those self-*

capabilities set tools that are always installed in an IE. Non-core components are those that are installed based

on the performance of the node and the needs of a specific deployment. The core modules are self-awareness,

self-orchestrator, self-security and self-API. The non-core modules are self-configuration, self-healing, self-

optimisation and adaptation, self-realtimeness and self-scaling. To offer a clearer vision of the set, a diagram

has been created that represents the interactions between the different components and tools of the set.

When an aerOS computing continuum node has IoT peripheral devices connected, self-configuration and self-

healing modules can be installed in the IE. These systems continuously analyse the health status of these

devices, sending alerts to the self-orchestrator module in case of failure or malfunction so that it

communicates with the aerOS EAT in order to improve the management and coordination of the node's

workloads. The possibility of exposing node actions to the outside is done through the self-API, which will

include the necessary security layers. This security can be extended to the interior of the node thanks to self-

security. In order to improve its own orchestration and, therefore, that of the continuum, each node has the

self-orchestrator, which, fed through self-awareness, self-realtimeness, self-healing and self-optimisation and

adaptation, determines whether to send alerts to the aerOS EAT. The self-awareness module sends data on the

current state of the IE, the self-realtimeness sends alerts when the real-time characteristic is not met, and the

self-optimisation and adaptation (powered by self-awareness) sends warnings when it is expected that there

may be problems in the near future with the workload. Lastly, those IEs that are within a Kubernetes cluster,

through the self-scaling component, will be able to horizontally scale their resources up or down.

In the next table, the specific functionalities, details and interactions are further described:

Figure 65. Relationships between the different self-* capabilities of an IE

Figure 3. Relationships between the different self-* capabilities of an IE

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 84 of 97

Table 23. Self-* capabilities components, description and interactions

Component Description Interactions

Self-awareness This is the self-* capability that allows to get real-time

information about the status of the IE. It gathers information

about the IE and submits it to the associated Data Fabric and

self-* components, and is divided into two sub-modules. This

module can:

• Obtain parameters such as hostname, addresses (inter-

nal IP and MAC), CPU (architecture, number of cores,

max frequency and current usage), RAM (total capaci-

ty, available capacity and current usage), disk (type,

total capacity, available capacity and current usage),

network (speed up, speed down, traffic up, traffic

down and lost packages), power consumption (current

and average), capability to execute workloads in real-

time and operating system.

• Define custom parameters such as Infrastructure Ele-

ment ID, Infrastructure Element Tier and Infrastruc-

ture Element Status.

• Works on Kubernetes clusters and Docker, on AMD64

and ARM64 architectures and physical or virtual ma-

chines.

• It is capable of inform about their health status in "re-

al-time".

• Sends data periodically (the sampling period may vary

through its API).

This is the current schema of the development carried out in

the module:

From the last iteration of this deliverable until M30 of the

project, the connection with the self-optimisation and

adaptation module has been carried out and tested, the amount

and type of information that the module is capable of capturing

in each installed IE has been extended, the data model used to

define an IE has been refined and adapted, and the option to

modify the sampling period through an exposed endpoint has

been added.

It obtains information

about the state of the

node and directly feeds

the self-orchestrator and

the self-optimisation and

adaptation modules.

Additionally, it provides

context information to

the Context Broker

associated with that IE.

Figure 66. Self-awareness schema

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 85 of 97

Moreover, it has been tested in more types of different IE and

it has been deployed in several continuums (including those of

the Pilots of the project) to check the reliability and

performance of the module, as well as to determine that it is

free of faults. Currently, the module is finalised, unless bugs

are detected and need to be corrected due to the tests carried

out.

The next steps are to continue integrating the module into the

Pilots' domains to enable full synergy between self-awareness

and the other components of each of their domains.

Self-

orchestrator

This self-* capability allows to interact with aerOS Embedded

Analytics Tool. This module is composed of:

• Rules Engine: contains the rules and facts (rule activa-

tion thresholds) to be evaluated. These rules represent

the situations in which it is necessary to send an alert

to the aerOS EAT of the domain where the node is lo-

cated. The facts represent the current state of the IE

and the network, and are fed directly from the self-

awareness module.

• Facts Generator: allows to generate the activation

thresholds of the rules based on the information re-

ceived by the self-awareness module.

• REST API: allows to execute CRUD (Create, Read,

Update and Delete) actions dynamically on the rules

stored in the rules engine, insert facts and receive

alerts from other self-* modules.

• Trigger: generates alerts from the self-orchestrator and

sends them to the aerOS EAT of the domain where the

node is located.

This is the current schema of the development carried out in

the module:

It obtains information

directly from four

components: (1) self-

awareness (values to

generate the facts), (2)

self-healing, (3) self-

realtimeness (to

determine if the node

meets the real-time

characteristics) and (4)

self-optimisation and

adaptation (to determine

whether future states of

the IE should trigger

corrective or

compensatory actions in

advance).

Figure 67. Self-orchestrator schema

Figure 4. Self-orchestrator schema

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 86 of 97

From the last iteration of this deliverable until M29 of the

project, the last pending functionalities of this module have

been carried out to complete its development. The REST API

has been refined to allow a common endpoint that can be used

by the rest of the self-* modules to send alerts to the domain's

aerOS EAT and the Facts Generator has been modified to

adapt it to the new data model of the Context Broker's

Infrastructure Element entity.

In addition, work has been done on the interactions between

the different self-* modules and the self-orchestrator, as well

as the integration and testing in the domains of the Pilots.

Self-security Adapted to work in Kubernetes and non-Kubernetes

environments, the three components that compose the module

(Log Monitoring, ETL processing and the API) generate

cyber-intrusion alerts that are sent to the Trust-Manager.

Self-security is able to detect 3 types of network attacks: port

scan attack, denial of service attack (DoS) and brute force

attack. It is expected to expand the portfolio of detected

attacks with specific attacks that can be performed on the

services installed in the Pilots.

This is the schema of the development carried out in the

module:

Gets information from

the network card and

sends alerts to the Trust-

Manager via the ETL

module (for real-time

alerts) and API (for

weekly alerts).

Self-API It allows to expose a single point of connection to the self-*

capabilities of each node, being the global API of each IE. It

will be able to retrieve certain aspects of management and will

allow, for example, dynamic rules to be parametrised in the

self-orchestrator module. In addition, it will be able to take the

form of an API Gateway, being aligned with OpenAPI and

will have the capacity to control the volumes of information

that can enter and leave an IE.

This is the current structure of the development carried out in

the self-API module:

It will interact with all

the rest of self-*

capabilities in order to

manage their

configuration /

parameters / data.

Figure 68. Self-security schema

Figure 5. Self-security schema

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 87 of 97

Figure 69. Self-API schema

Self-scaling A feature of an IE that allows it to adapt to the demand for

services and to be able to horizontally scale the resources

dedicated to a specific workload dynamically, based on time

series inference and custom logic. This is reserved for IEs

within Kubernetes environments. The progress up to M30 has

been the complete adaptation of the previously developed

component (TRL3, from the ASSIST-IoT project) to the data

model and the deployment configuration of the aerOS meta-

operating system through configurations according to services

and service components, in addition to an API to execute

processes in a non-sequential way and modify the default

parameters according to the needs of the user and the system.

This is the current schema of the development carried out in

the module:

Figure 70. Self-scaling schema

It interacts mainly with

the Kubernetes metrics

service and it is possible

to interact with its API

through the Self-API

component.

Self-

configuration

The self-configuration component can be used for reactive

configuration management of heterogeneous resources within

an aerOS deployment.

Using the REST interface the administrator/user is able to

define a multi-stage configuration structure using abstract

concepts, such as resource, functionality, action, and reaction,

and provide fallback configurations. Actions represent external

events and can trigger predefined reactions that may induce

configuration evolution, as well as communication with

This component is one of

the few that are be able to

operate autonomously,

without the need to

interact with other aerOS

self-* functions. It only

has to interact with

external resources.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 88 of 97

resources.

Figure 71. Self-configuration schema

Internally, the configuration is represented via a Directed

Acyclic Graph (DAG). Its vertices can be of two kinds:

resource and functionality, whereas edges represent the

“requires-to-function” relationship. Different labels can be

associated with each vertex, allowing categorization/grouping

of vertices, without changing the overall graph structure.

Taking numerical values – called “weights” – into account, the

self-configurator can autonomously decide which fallback

configurations should be applied to the system in case of an

error in any of the system components.

For the self-configurator to function, it must be able to

communicate with (external) resources. The communication is

done through connectors. Their duty is to perform direct

manipulation on the resource and inform the self-configurator

of the resource’s status.

Self-healing This module periodically monitors the target metrics of an IE

in relation to certain analytics associated to sensors status.

Depending on the value obtained and the type of metric

analysed, the module determines whether the value is correct

or abnormal. If the value is not correct, the module is then able

to applies some recovery actions into the IE and to check if the

remediation attempt was successful. If the remediation is

successful, the IE resumes normal operation. Otherwise, it

retries a different remediation. If the number of remediation

attempts exceeds a threshold, the IE is considered permanently

down.

Here below there is a diagram flow that represent the

functioning of the module. Software-wise, there are custom

PoCs being developed to analyse the status of the IEs and to

identify abnormal status. The theoretical approach for certain

cases has been completed, and up to M18, such cases have

been replicated in a scenario with DHT22 Digital Humidity &

Temperature sensors and Raspberry Pi IEs.

To implement the self-healing capability, a suite of abnormal

scenarios has been defined, along with the proposed healing

actions to be taken:

1. Sensor Failure:

◦ Scenario: No measurement or measurement value

that indicates outlier.

In the case of detecting

abnormal states, or

healing actions to be

taken, this will feed the

health score of the IE.

The self-healing module

interacts with the self-

API and the Trust-

Manager modules.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 89 of 97

◦ Healing: Alert messages to exclude sensor from

the set of those that provide input to the system.

2. Device Power Alert:

◦ Scenario: Power level of the device drops below a

threshold.

◦ Healing: Alert messages for battery replacement

or recharging.

3. Network Protocol Violation:

◦ Scenario: Protocol-specific violation, e.g., over-

whelming the radio resources (LoRa, Duty Cycle

violations).

◦ Healing: Enforce reconfiguration to the IE.

4. Link Quality Issues:

◦ Scenario: Radio values drop below a threshold.

◦ Healing: Report to self-orchestrator, instruct de-

vice to change link parameters.

5. Communication Failure Indication (no messages re-

ceived by IE):

◦ Scenario: Substantial amount of time without

message reception might be attributed to connec-

tion lost.

◦ Healing: Set up dedicated communication channel

and poll (check-alive) the target IE.

The general software flow of all self-healing scenarios is as

follows. The node is powered on and starts its normal

operation. There is a value of interest (specific to each

scenario) that is monitored. Once this value exceeds a

threshold, a remediation attempt takes place. The success of

the remediation attempt is evaluated either by the node itself or

by another node (this depends on the scenario).

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 90 of 97

In order to meet its objectives, the module consists of three

main components: the normal operator, the abnormal detector

and the remediation evaluator. The flow may differ slightly

depending on the type and capabilities of the IE or the

execution scenario, however, the main flow always consists of

these three components and the corresponding operations.

After M18, enhanced versions of all defined scenarios have

been completed, and the custom software has been developed

and tested in more refined scenarios. The self-healing module

has been evaluated in an experimental environment and the

test cases of all scenarios have been replicated using DHT22

Digital Humidity & Temperature sensors and Raspberry Pi

IEs, demonstrating the improved capabilities and the resilience

of the module. Also, the module has been deployed in the

aerOS environment and the interactions with self-API and

Trust-Manager components have been tested.

The following figures show the network related scenarios in

action, within this local experimental environment, with the

self-healing module successfully detecting network abnormal

states.

Figure 72. Self-healing schema

Figure 6. Self-healing schema

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 91 of 97

Figure 73. Link Quality Issue scenario

Figure 74. Network Protocol Violation scenario

Also, preparations are in progress for utilizing self-healing in

the appropriate aerOS’ pilots.

Self-

optimisation

/adaptation

The goal of this module is two-fold. First, it aims to react in

advance to potential scenarios when the IE would like to act

upon (e.g., overload, network down, demand peak…). Second,

it dynamically adjusts the sampling frequency of the self-

awareness to optimize the monitoring and data dissemination.

Ultimately, self-optimisation brings the

smart/predictive/proactive fashion to the self-* capabilities of

an IE in aerOS.

From the technical perspective, the module consists of the

following components:

• Collector/Parser: monitoring the metric streams ob-

tained from the self-awareness service and optionally

parsing them to the format acceptable by analytics

models.

• Sampling Model: model that computes the next opti-

mal sampling period.

• Shift/Anomaly Detection Model: model that returns

information indicating when the significant change in

a metric stream is detected and what type of anomalies

it may indicate.

• Recommender: component exposing computed infor-

mation for self-orchestrator and self-awareness.

There below is a summary of the flow that this module

Fed with data on the state

of the node via the self-

awareness module, it

sends alerts to the (1)

self-orchestrator module

about detected anomalies

and (2) self-awareness

about new optimal

sampling period.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 92 of 97

follows:

Its most important components are the Shift/Anomaly

Detection Model and Sampling Model.

The Shift/Anomaly Detection Model’s internal structure is

presented on the following diagram:

Figure 76. Schema of Anomaly Detection Model

The component separates the detection of anomalies per each

type of IE’s operational data. Initially, only the types detecting

CPU, RAM and Disk usage-related anomalies have been

implemented and tested. However, due to the modular

Figure 75. Self-optimisation and adaptation components schema

Figure 7. Self-optimisation and adaptation schema

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 93 of 97

structure, it is simple to extend this component to detect more

types of anomalies as well (e.g. power consumption-related).

Internally, each model uses a statistical-based (density-based)

approach to detect shifts in the metric stream obtained from

self-awareness. The sensitivity of the detection for each model

type is specified using configuration parameters that can be

seamlessly modified by the user on runtime. Before passing

the information of anomalies to the self-orchestrator, it is a

role of Recommender module to map them into their

respective codes recognizable by self-orchestrator.

The next component is the Sampling Model, which internal

structure is presented in the following diagram:

Figure 77. Schema of Sampling Model

This Sampling Model performs all computations in the

Adaptive Sampling Model internal component. It accepts the

IE’s operational data and for each relevant metric (CPU,

RAM, Disk usage) computes the optimal sampling period. The

computation of sampling period is done by estimating the

evolution of the metric stream using the PEWMA calculation.

Then, among different proposed sampling periods, the one

with the smallest value (i.e. signalling the need of the most

frequent monitoring) is selected as the optimal

recommendation. Similarly to the Shift/Anomaly Detection

Model, the performance of the module is controlled through

configuration parameters (e.g. maximal or minimal sampling

period) that can also be modified using exposed API

endpoints.

Both of the aforementioned components are resource-efficient

since they do not require performing complex operations and

need to store only individual variables in the local cache (no

need for storing historical data).

All of the presented components of self-optimisation and

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 94 of 97

adaptation have been implemented, successfully deployed and

tested with the integration of the remaining relevant self-*

modules. Moreover, internal experimental testing of the

performance of individual models was also completed on both

real IE operational data and external synthetic data set.

Self-

realtimeness

The self-realtimeness aims at controlling the real-time

performance of those containerised services (i.e., containers

running in an IE) that are tagged for that purpose.

It is composed of two components:

Modified kernel module:

Monitors performance of real-time services (periodic services

with a soft deadline) deployed on an IE by periodically

adjusting quota of containers based on the time utility and

tardiness of their tasks.

User space component:

Calculates each real-time service’s time utility from its

tardiness and issues a reorchestration if the tardiness drops

below a user-configurable threshold. The self-realtimeness

component relies on a patched Linux kernel version (v5.10)

that enables hierarchical container-based scheduling (HCBS).

We have evaluated the self-realtimeness component in an

experimental environment.

Figure 43 above shows the real-time performance of a

workload by means of its response time (left axis in light blue

and light green) and its derived time-utility (right axis in dark

blue). The time-utility is at 100 if a soft real-time workload’s

response time falls within its deadline (red) or degrades

(linearly, exponentially, or as a step function) with its

tardiness. We can see that the workload running on node 1

exhibits poor response times (light blue) and accordingly a

degraded time-utility. As a result, the self-realtimeness

component on node 1 issues a re-orchestration request so that

the workload is relocated to node 2. We observe an improved

response time and time-utility on node 1 (light green). This

highlights how the self-realtimeness component effectively

detects poor real-time performance of a workload on a node

and issues a relocation request resulting in improved real-time

performance as a result of a relocation of the affected

containerized workload.

In addition, we will evaluate the functionality, interoperability,

and effectiveness of the self-realtimeness components within

the controlled and closed environment of Pilot 3.

Modified kernel

module:

Receives containers’ TU

from user space

component via the /proc

filesystem.

User space component:

Reads real-time services

(containers) tardiness

from and writes updated

TUs to the kernel module

via the /proc filesystem.

Communicates with self-

orchestrator if relocation

of a real-time service is

required.

3.5.3. Technologies and standards deployed in MVP

Table 24. Self-* capabilities technologies/standards, descriptions and justifications deployed in MVP

Technology/Standard Description Justification

iproute2 Set of utilities for managing

network connections and

It allows to obtain the desired information

about all physical interfaces of the aerOS

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 95 of 97

(self-awareness –

hardware info)

controlling incoming and

outgoing traffic.

nodes. In addition, its small size after

installation makes the final Docker image a

contained size.

psutil

(self-awareness –

hardware info)

Cross-platform library for system

and process monitoring in Python.

The ease of use and different functions allow

for agile development and its speed allows

for very short execution times.

speedtest-cli

(self-awareness –

hardware info)

Cross-platform library for

measuring the upload and

download speeds of a node's

Internet connection.

It allows measurements to be carried out very

simply and efficiently with only a few lines

of code.

getmac

(self-awareness – both

hardware info and power

consumption)

Cross-platform library to obtain

the MAC address of a node.

It allows to easily obtain the network

interfaces of the node and its MAC address

with a single line of code.

quart

(self-awareness – both

hardware info and power

consumption)

Cross-platform framework for

creating asynchronous web

applications. It is an asynchronous

reimplementation of Flask.

It allows a REST API to be executed

asynchronously in the same thread as the rest

of the module's functions. It also allows

extensions to be added for more specific

needs and functions.

requests

(self-awareness – both

hardware info and power

consumption, self-

healing and self-API)

Cross-platform library that allows

HTTP requests to be executed.

Allows HTTP requests to be executed in a

simple way, with error handling, response

codes, headers, data sending, etc.

PowerTOP

(self-awareness – power

consumption)

Open-source diagnostic tool that

provides energy consumption by

host and by process (per PID).

Allows experiment with various GNU/Linux

power management configurations and obtain

power consumptions from Intel, AMD, ARM

and UltraSPARC processors.

pandas

(self-awareness – power

consumption)

Cross-platform library that allows

to analyse and manipulate

structures and datasets easily and

quickly.

Used to analyse the results of PowerTOP, it

allows the management of possible missing

data in the resulting report, the use of column

sets to extract information or the analysis of

CSV files.

axios

(self-orchestrator)

JavaScript library to perform

HTTP requests (client side). It can

be considered the equivalent of

requests in Python.

It allows to execute HTTP requests with few

lines of code, use Node.js promises,

automatically transform JSON data,

configure the HTTP request, easy response

and error handling, etc.

express

(self-orchestrator and

self-API)

A flexible minimalist web

application suite that provides

functions for developing web

applications.

It allows to create powerful, lightweight and

simple REST APIs. Its small size after

installation allows the final Docker image to

have a contained size.

fs-extra

(self-orchestrator)

JavaScript library that allows

extra functionality to be added to

the standard fs library.

It allows to delete all files in a single

directory with a single line of code, allowing

to quickly and efficiently complete the

functionality of the DELETE /rules self-

orchestrator endpoint.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 96 of 97

json-rules-engine

(self-orchestrator)

Rules engine and alert-based

system to trigger orchestration

requests to upper layers in the

domain.

The rules are generated through simple

schemas in JSON and is developed in

Node.js, which is fast and lightweight.

jsonschema

(self-orchestrator)

Library that allows easy

validation of JavaScript objects

using JSON schemas.

It allows in the self-orchestrator to create a

validator to validate the body of the requests

received in JSON format, add sub-schemas,

create recursive schemas, determine if there

are errors in the JSON received, etc.

Suricata

(self-security)

High performance, open-source

network analysis and threat

detection software.

It has been integrated with Kubernetes to

provide real-time security, efficiently

processes and analyses data, and enhances

network security and incident detection.

FastAPI

(self-healing)

Lightweight Python framework

for building APIs.

Enables fast and asynchronous API

development with automatic validation and

OpenAPI support.

getmac

(self-healing)

Cross-platform python library to

obtain the MAC address of a

node.

Provides a simple and efficient way to obtain

network interface details of the node and its

MAC address with minimal code.

Swagger / OAS

(self-API)

Widely adopted framework for

designing, building, documenting,

testing and consuming RESTful

APIs. It allows to define API

endpoints, request/response

models, and more in a structured

and standardised format using a

YAML or JSON specification.

Swagger aids in the automation of testing,

deployment, and monitoring of APIs. It

accelerates development cycles and reduces

human error, ensuring that any changes to

aerOS self-API are quickly validated and

deployed.

OAS is also supported by a rich ecosystem of

tools.

Custom development Many of the self-* capabilities

incorporate custom developments

to achieve their functionality.

Lightweight languages and code are used.

Best practices coming from DevPrivSecOps

are used too.

D3.3 – Final distributed compute infrastructure specification and implementation

 Version 1.0 – 17-MAR-2025 - aerOS© - Page 97 of 97

4. Conclusions

The WP3 in aerOS project has made significant advances in developing a unified, scalable, and secure

distributed computing infrastructure that seamlessly integrates IoT, edge, and cloud resources. The journey

from the initial Minimum Viable Product (MVPv1) to the final implementation (MVPv2) has been marked by

continuous refinements in networking, orchestration, cybersecurity, and self-monitoring.

Key Outcomes and Advancements in WP3:

1. From MVP to MVPv2 – A Refined Execution Environment

a. The MVP, delivered at M18, provided the foundation for a Meta-Operating System (Meta-

OS), ensuring interoperability across diverse computing environments.

b. By M30, the MVPv2 introduced smarter networking, AI-driven orchestration, and stronger

security, making aerOS a robust and industry-ready platform.

2. Smart Networking & Communication Services

a. The final implementation refined network programmability, enhancing cross-domain

connectivity with technologies like WireGuard, ONOS SDN, and OpenCAPIF.

b. Standardized APIs (OpenAPI, AsyncAPI) ensured easy integration with telecom and IoT

ecosystems, enabling interoperability across diverse platforms.

3. AI-Driven Orchestration & Automated Resource Management

a. The orchestration engine introduced energy-aware workload selection, federated

orchestration, and real-time monitoring, optimizing resource efficiency.

b. AI-powered self-* capabilities (self-awareness, self-healing) reduced manual intervention and

improved system resilience.

4. Cybersecurity & Access Control Enhancements

a. Stronger IAM, RBAC, and secure API gateways ensured controlled access to aerOS

resources.

b. Security mechanisms were tested and validated, making aerOS WP3 components reliable for

deployment in real-world scenarios.

5. Deployment in Pilots

a. The aerOS framework components of WP3 are now ready for large-scale deployment, with

real-world pilots validating its efficiency, adaptability, and security.

b. Continuous work will focus on integrating AI-driven orchestration, and further refining

security protocols showcasing in different pilots as part of WP5.

The final implementation of aerOS in WP3 transforms the initial MVP into a fully operational, federated

computing platform in MVPv2 capable of dynamically managing networking, orchestration, security, and

monitoring across distributed IoT-edge-cloud environments.

With AI-driven automation, secure APIs, intelligent networking, and self-adaptive capabilities, aerOS

emerges as a scalable, efficient, and deployment-ready solution for IoT, smart cities, industrial automation,

and cloud computing.

Having completed final testing and validation of components developed in WP3, it enables WP5 for

deploying them in aerOS pilots, driving digital transformation across various industries.

