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Executive Summary  
The document is contextualized to the works in aerOS’ WP3: aerOS secure, scalable and decentralized com-

pute infrastructure. The present deliverable is the third and final version of WP3 deliverables planned for 

M30. The deliverable is based on the aerOS module definitions presented in D3.1 (initial distributed compute 

infrastructure specification and implementation), D3.2 (intermediate distributed compute infrastructure speci-

fication and implementation), D2.6 (aerOS architecture definition (1)) and D2.7 (aerOS architecture definition 

(2)); and depicts final version of WP3 activities presenting the relevant components of the aerOS architecture 

composed from the following tasks:  

• T3.1: Smart networking for infrastructure element connectivity. 

• T3.2: Communication services and APIs.  

• T3.3: aerOS service and resource orchestration.  

• T3.4: Cybersecurity components.  

• T3.5: Node's self-* and monitoring tools.  

D3.3 is structured in a manner that clearly provides the methodological and technological advances for every 

task in the context of the aerOS decentralized infrastructure and performed since D3.2. 

IMPORTANT: This deliverable is of type OTHER. This means that D3.3 is mostly a software deliverable. 

While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be understood 

together with the software release that is uploaded alongside it. 

Until mid-term, WP3 smart-networking architecture focused on a highly integrated service mesh using intra- 

and inter-domain strategies. Key technologies included eBPF (via Cilium) for packet management, OpenFlow 

for network adaptability, and RESTful APIs with Kafka and FIWARE IoT agents for cloud-to-edge 

communication. Scalable orchestration is achieved with Kubernetes operators, Kafka, and ML tools like 

Kubeflow and MLFlow. Security is enforced through KrakenD, Keycloak, and OpenID Connect for API 

protection and IAM. Autonomous node monitoring and self-orchestration leverage PowerTOP, psutil, json-

rules-engine, and KubeEdge, enhancing resilience and efficiency in edge computing. 

After mid-term, the transition from MVPv1 (M18) to MVPv2 (M30) highlights the continuous improvements 

made in: 

• Networking and service orchestration, ensuring seamless deployment across domains. 

• Cybersecurity mechanisms, enforcing secure access and trust management. 

• Self- capabilities*, enabling autonomous optimization and failure recovery. 

The iterative development model allowed aerOS to refine its architecture based on real-world use cases, 

ensuring practical applicability and robust performance. By integrating cutting-edge cloud-native 

technologies, AI-driven orchestration, and secure networking solutions, aerOS positions itself as a future-

ready platform for managing distributed compute environments. Overall, MVPv2 successfully validates the 

aerOS concept, paving the way for its deployment in industrial, IoT, and cloud-edge scenarios. 

The final implementation of WP3 components marks the culmination of extensive research and development, 

establishing it as a fully functional, decentralized, and scalable compute infrastructure for distributed IoT-

edge-cloud environments. Key advancements include: 

• Smart Networking: Secure, scalable, and real-time connectivity across domains using service mesh, 

WireGuard, ONOS, and dynamic networking solutions. 

• Communication Services & APIs: Standardized API exposure (OpenAPI, AsyncAPI) improves 

interoperability, while low-code tools simplify integration and automation. 

• Orchestration & Resource Management: AI-driven decision-making, ML-powered monitoring, and 

dynamic workload balancing optimize system performance. 
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• Cybersecurity Reinforcements: Strong IAM via Keycloak and KrakenD ensures secure access, with 

RBAC and OpenID Connect enhancing data protection. 

• Autonomous Operations: Self-monitoring, anomaly detection, and self-healing reduce human 

intervention and maximize reliability. 
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1. About this document 

Deliverable D3.3 presents a concrete view of the final methodological specification and technological imple-

mentation of the components that constitute the aerOS decentralised infrastructure from WP2, which is an 

essential part of the aerOS Meta-OS. It builds up on the candidate technologies that thoroughly described in 

D3.1, D3.2 and elaborates on the final state of the composing components and their interactions. This deliver-

able is the final blueprint of the aerOS infrastructure and the components that developed in WP3 and posed to 

be integrated in aerOS use cases as detailed in WP5 deliverables. 

1.1. Deliverable context  

Item Description 

Objectives O1 (Design, implementation and validation of aerOS for optimal orchestration): Final 

implementation of the components related to aerOS orchestration capabilities. 

O2 (Intelligent realisation of smart network functions for aerOS): Final implementation of 

the smart-networking components. 

O3 (Definition and implementation of decentralised security, privacy and trust): Final 

implmentation of the aerOS cybersecurity components related to authentication, 

authorization, and secure access to aerOS APIs. 

O5 (Specification and implementation of a Data Autonomy strategy for the IoT edge-cloud 

continuum): Final implementation of the NGSI-LD module and its integration with other 

aerOS communication services and APIs. 

Work plan D3.3 content is based on the definitions and technologies specified in tasks: 

• T2.1 state of the art. The development of the aerOS components that presented in this 

deliverable are based on the recorded state of the art. 

• T2.2 use cases and requirements. The development of the aerOS components that 

presented in this deliverable consider the requirements for the different use cases. 

• T2.4 DevPrivSecOps. The development of the aerOS components that presented in 

this deliverable take into account the DevPrivSecOps methodology. 

• T2.5 aerOS architecture. The components that developed and presented in D3.2 are 

defined in the aerOS architecture. 

The content of D3.3 is the result of the following tasks activities: 

• T3.1 Smart networking for infrastructure element connectivity. 

• T3.2 Communication services and APIs. 

• T3.3 aerOS service and resource orchestration. 

• T3.4 Cybersecurity components. 

• T3.5 Node's self-* and monitoring tools. 

D3.3 presents the final integration of components defined by WP3 tasks within the 

decentralized infrastructure. The final development of the D3.3 components are contributing 

to WP5 integration and use case deployments tasks. 

Milestones This deliverable is the final step from WP3 towards the achievement of the milestone MS7 – 

Final software components release (M30). 
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Deliverables D3.3 is based on the components that are described in D2.6 and D2.7, and the candidate 

technologies analysed in D3.1 (Initial distributed compute infrastructure specification and 

implementation) and their intermediate development and integration as described in D3.2 

(Intermediate distributed compute infrastructure implementation). Additionally, this 

deliverable is coordinated with deliverable D4.3, which is delivered at the same time. 

1.2. The rationale behind the structure  
D3.3 details the final development and integration of the functional components in the context of the five 

WP3 tasks and formalize the work package’s activities as well as elaborates on the actions that performed in 

the context of WP3 to finalize the Minimum Viable Product version 2 (MVPv2). Hence, the deliverable 

unfolds in five sections. Section 1 provides basic information about the deliverable. Section 2 contains a brief 

introduction of the context and current status of aerOS. Section 3 presents an overview of the MVPv2, while 

Section 4 elaborates on the advancements of the five WP3 tasks, detailed in separate subsections that follow 

the same formal structure. More specifically, the subsections 4.1-4.5 begin with an updated description of the 

main functionalities of the WP3 components to the ones described in D3.2. Later, they provide the updated 

structure diagrams along with a description of each component, and concludes with the technologies and 

standards that employed in the MVPv2. Finally, Section 5 concludes the deliverable. 

1.3. Outcomes of the deliverable  
This deliverable aims at providing the final version of the aerOS infrastructure components with the work 

done in WP3 to accomplish the MVPv2. As in D3.1 and D3.2, the components descriptions are abstracted at 

the start of each subsection of section 4 (4.1-4.5), and updated advancements of those components considering 

the five different domains that each of the WP3’s tasks focus.  

The aerOS smart-networking represents the functional components responsible for attaining networking 

efficiency, agility and performance across the aerOS infrastructure elements. 

The aerOS communication services and APIs produce the functional components responsible for effortless, 

efficient, and continuous communication of the aerOS services across the whole IoT edge-cloud continuum. 

The aerOS service and resource orchestration develops the functional components aiming to deploy, manage, 

and federate services, responsible for delivering the aerOS functionalities. Moreover, it prepares the functional 

components essential to properly allocate and evenly deploy various resources to meet the requirements of 

vertical IoT services employed on top of aerOS. 

The aerOS cybersecurity components provides Identity and Access Management (IAM) services focusing on 

registering and authenticating users in aerOS, managing their access to aerOS elements, as well as providing 

secure access to computerized resources (APIs, infrastructure elements or domains) by linking users’ roles and 

restrictions with registered identities. 

The aerOS node’s self and monitoring tools develop the functional self-* components to enhance 

Infrastructure Elements (IEs), deploying automated procedures that minimizes the human interaction during 

all the operations of IEs. To accomplish this, several functional and runtime parameters, such as health and 

security status, are provided. 

 

1.4. Version-specific notes 
As mentioned above, this deliverable is of type OTHER. This means that D3.3 is mostly a software 

deliverable. While this document reports the advances of tasks T3.1-T3.5 in the period M19-M30, it must be 

understood together with the software release that is uploaded alongside it. 

In the compressed file that is downloaded when accessing this deliverable, the reader will be able to find two 

main artefacts: (i) this very document, that reflects in a narrative way the progresses achieved, and (ii) a 
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compressed file that is, in turn, composed of several compressed GitLab repositories corresponding to the 

code development progress by M30. 

In particular, and in order to facilitate the readability of the technical delivery, here below there is an 

indication of the repositories that have been included in the submission. They are structured following the task 

reporting that is used in this document (D3.3). This schema is also used in the submitted file. The directories 

contain the current advances, alongside an explanatory README.MD in each of them in order to describe 

their purpose and content. 

 

 

Figure 1. Software release of D3.3 
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2. MVP Overview 

Over the course of its realization, aerOS has carefully designed an architecture aimed at providing IoT 

developers with a coherent environment to leverage distributed capabilities across the entire continuum. This 

architecture delivers a unified execution environment to support the deployment and reuse of IoT services 

seamlessly. With a vision to functionally unify a diverse range of computing and network resources—from 

cloud to edge and even IoT devices—the project has employed and integrated numerous state-of-the-art 

concepts and technologies. 

Building upon the foundational architecture, significant advancements beyond the state of the art have been 

achieved by M30 through research, development, and implementation in key technical domains. These 

include advancements in compute and network fabric, service fabric, and data fabric, which collectively 

underpinned the development of new components and additional functionalities. Extending the initial MVPv1, 

which was delivered by M18, MVPv2 (delivered in M30) consolidated recent project advancements and 

addressed various development and integration complexities, providing an enhanced platform which can 

validate and demonstrate the final technological achievements of aerOS. 

The MVPv2 has been structured in different flows, which demonstration has been recorded and will be 

uploaded to aerOS’ official YouTube channel as soon as the post-editing activities are finalized. 

aerOS Meta-OS encompasses a wide area of technologies in the field of programmable networks for enhanced 

connectivity, resources and service management and orchestration, resilient and self-adapting runtime layers 

that need to be employed in order to provide the minimum for the execution environment that aerOS requires. 

Additionally, cybersecurity tools and trust management are essential to ensure private and secure 

communications and access to services over all the aerOS continuum. All IEs and aerOS domains seamlessly 

expose APIs for fully defined communication among components and services. Respectively, Data Fabric 

technologies and integrated components are designed to support the transition from heterogeneous IoT data to 

a unified Data Dabric, and while monitoring capabilities should extract all information produced and needed 

for the self-adaptation of the ecosystem, analytics are foreseen to support events recognition and healing 

processes’ triggering. Even more, AI tasks are designed to run over different IEs in the continuum with 

optional use of frugality techniques and inclusion of explainability and interpretability. 

Above mentioned technologies represent the primary aerOS technologies and tools employed to realize the 

continuum and all these are implemented encompassing assimilable cloud native practices to enable 

stakeholders to design, deploy, and operate scalable and resilient applications over the aerOS Meta-OS. The 

goal is to encompass cloud-native techniques naturally in continuum deployments, where infrastructure 

(physical and virtualized) ranges from IoT devices all the way up to cloud data centers (and not only the latter, 

which is the usual cloud-native case). The complex nature of the above tasks and the integration of so many 

diverse technologies and implementing components introduced the requirement for an iterative development 

which would consider and integrate early implementation evaluations, and which should optimize 

functionalities based on feedback emerging both from development teams and from targeted audience, i.e. IoT 

developers 

It is worthwhile mentioning that addressing all the complexities and successfully achieving the project’s goals 

could not be accomplished in a single stage. Thus, following the agile methodology of the project, a clear, 

staged strategy was defined and implemented. Initially, the aerOS team developed a Minimum Viable Product 

(MVP) by M18 to integrate the aforementioned technologies and tools into a functional prototype. By month 

30, this approach has evolved further, leading to the completion of MVPv2. Building upon the insights gained 

from the initial MVP, the aerOS team refined the architecture concepts and expanded the platform’s 

capabilities, addressing new use cases and challenges. MVPv2 not only realizes all the core functionalities of 

a Meta-OS for continuum, as designed by aerOS, but also introduces additional components and features that 

enhance the overall system’s performance and scalability. Throughout this process, aerOS has maintained a 

focus on resource efficiency, validating with MVPv2 that the aerOS remains a lightweight implementation 

while preserving the platform's core functionalities. MVPv2 also includes advanced safeguards and 

mitigations, enabling seamless deployment to pilot locations and allowing the team to validate and fine-tune 

real-world scenarios. This iterative development approach has proven invaluable in demonstrating the 

feasibility, viability, and effectiveness of aerOS’s architecture in real and diverse environments. 

https://www.youtube.com/@aeros-project


D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 16 of 97 

While the initial MVP encompassed the most compelling -first version of- aerOS functionalities, MVPv2 

integrates all components of architecture building blocks and is thus a valuable ecosystem for demonstrating 

core concepts of aerOS architecture for a continuum Meta-OS. MVPv2 integrates two aerOS domains, which 

are deployed in two distinct locations, in geographic and administration terms, to demonstrate its functionality 

over the public cloud. Additionally, a mobile domain, although it is not a part of the continuous development 

and deployment process, is ad-hoc integrated when we need to exhibit the process, and the simplicity of this 

process, of integrating new infrastructure and extending the continuum. 

One of the core two domains is designed to be the entrypoint domain, while the other stands as a plain aerOS 

domain, which could be deployed anywhere across the continuum. The entrypoint domain is located in the 

common development and integration infrastructure of the project (a space provided by the partner, cloud 

provider, CloudFerro), while the plain one resides in the premises of the Technical Coordinator - NCSRD. 

This diverse topology of the MVP allows the evaluation of aerOS federation mechanisms for expanding in an 

agile way the aerOS continuum domains with additional/new ones, and this is the purpose of supporting a 

third one mobile domain which is provided with minimal legacy equipment from UPV. 

Like its predecessor, MVPv2 builds upon outcomes from both WP3 and WP4 which constitute the two 

technical work packages of the aerOS project. WP3 works on providing the required infrastructure 

components, based on the aerOS architecture, needed to enable scalable and secure IoT edge-cloud continuum 

aiming to support the resources and services orchestration across the continuum. WP3 encompasses several 

technologies and is related to several components in the aerOS stack. As already presented in D3.1 and D3.2, 

the figure below represents the building blocks which WP3 addresses. 

 

Figure 2. Building blocks of WP3 

Distributed over 5 tasks, many diverse technologies are addressed within WP3. Each task further breaks down 

to a set of relevant technologies related to its domain of interest. While first MVP version, prioritized 

components which were considered to provide functionalities prominent in establishing a prototype to 

demonstrate aerOS continuum, MVPv2 integrated many more functionalities that unleash the potential of an 

efficient management of resources and services for continuum actors in various industry verticals from edge to 

cloud. 
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With the target of supporting, through the deployment of MVPv2, a fully integrated environment that 

demonstrates advanced federated orchestration capabilities—managing a variety of services across diverse 

heterogeneous resources—WP3 has focused on providing the underlying mechanisms to enable this process. 

These mechanisms have been further refined and validated by month 30, ensuring their seamless integration 

into existing isolated computing infrastructures and their smooth transformation into aerOS-capable domains, 

as exemplified by the aerOS pilot sites. 

While tasks T3.1-T3.5 have devoted to completing the established formal goals, the efforts required to 

materialise the MVPv2 have been directed, mostly, to: 

• Network programmability and automated connectivity management, targeting cross-domain 

overlay connections built over public networks, interaction with network devices external to 

aerOS ecosystem, and providing binds with telco NFV standards. 

• API development and standardization based on industry specifications, which can boost 

interoperability, security, and automation.  

• Low code tools integration for introducing streamlined data exchange and enabling easy users 

interaction. 

• Extended orchestration capabilities, incorporating networking isolation, AI-driven decision-

making with explainability, and energy-aware resource selection. 

• Complete security and access control mechanisms, including IAM, RBAC, and secure API 

gateways, ensuring controlled access to aerOS services, alongside secure development pipelines 

for component integration. 

• Self-* capabilities, enhancing IE monitoring, anomaly detection, self-optimization, self-healing, 

and real-time status updates, which can support dynamic and resilient service orchestration across 

the continuum 

The following paragraphs provide a summary of the outcomes of each task, of WP3, which have been 

delivered and included in MVPv2 realization. Additionally, their relevance in establishing aerOS continuum 

establishment, is roughly presented.  

The first release of MVP (v1) established the foundations for network integration in a connected continuum. 

Inter-domain connectivity and service exposure were, thus, already ensured by M18. For MVPv2 focus shifted 

towards advancing the programmability and automation of network connectivity. The crucial point was to 

ensure the automated connection between service components (isolated pieces forming a service flow). For 

doing so, cross-domain overlay connections were needed. Now, every time that such flow is orchestrated, 

isolated components can automatically and securely connect among each other, regardless their location. 

Components that can interact with external networking infrastructure, based on programmability of external 

OpenFlow capable devices, were investigated with the goal to provide a close binding with hosting premises. 

Additionally, identifying the advantages of aligning with industry-standard frameworks, in this period aerOS 

networking capabilities were integrated with key telco domain and NFV technologies. This includes the task 

to integrate with openCAPIF, which implements the CAPIF (Common API Framework) specification, 

developed by ETSI, with the aim to facilitate interoperability with telecom networks. By aligning with 

CAPIF, the programmability and automation of aerOS network is enhanced, enabling seamless service 

orchestration and integration across diverse environments. This effort is part of a broader goal to bridge cloud-

native networking with traditional telecom infrastructure, ensuring compatibility with future NFV and telecom 

standards.  

In terms of service intertwining and API establishment, the foundational aspects of API development are 

shaped within the aerOS ecosystem, focusing on API guidelines and best practices, and API specifications and 

tooling. As this task has been instrumental in establishing comprehensive guidelines for API design, ensuring 

consistency, scalability, and security across the system, it has greatly contributed to MVP since by embracing 

industry-standard specifications like OpenAPI, aerOS did not only streamline API documentation but also 

facilitated their integration across diverse tools and platforms. Additionally, the adoption of the low-code tool 

Node-RED has been pivotal in enhancing user interactions within the aerOS ecosystem. It has enabled the 

creation of a user-friendly UI interface that allows users to effortlessly send data to Orion-LD and 
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automatically publish information in IOTA, further enriching the system's interoperability and data handling 

capabilities. The adoption of code generators under this task has further expedited the development process, 

enhancing the ecosystem’s versatility and interoperability. These efforts collectively form a crucial part of the 

aerOS infrastructure, setting a robust framework for efficient communication within aerOS MVPv2. 

The capacity of orchestrating microservice applications across heterogeneous Infrastructure Elements of an 

aerOS continuum is one of the most prominent innovations of the project. While in MPVv1 the foundational 

components that can ensure structured orchestration were successfully developed and validated, in the second 

period, capabilities with a special focus on network automation sere advanced. These include, among others, 

AI-driven decision-making, and enhanced resource efficiency. Developments in first period (M18), come up 

with a double layer orchestration process. HLO and LLO layers are key components of aerOS, enabling 

efficient service deployment across the continuum. LLO provided orchestration for Kubernetes (K8s), 

container, and Docker-based workloads, while HLO managed IE selection, requirement processing, and 

deployment coordination.  Now within this period and for MVPv2, automated networking capabilities were 

integrated to enable dynamic connectivity management, and HLO and LLO components were extended to 

support isolated overlay subnets allocation per service, improving segmentation and security. HLO was 

further enhanced with energy-aware selection criteria, optimizing deployments for power efficiency. 

Additionally, we expanded AI-driven decision-making in HLO with explainability mechanisms, increasing 

transparency in IE selection and orchestration decisions. To support these advancements, continuum models 

were extended, such as internal protobuf messaging, and topology descriptors (TOSCA) that incorporate these 

new parameters, ensuring a more intelligent, adaptive, and efficient orchestration framework. 

Secure and controlled access to resources is critical, therefore, all processes related to aerOS Cybersecurity 

have been finalized and incorporated into the second version of the MVP to demonstrate their integration with 

the entire aerOS Meta-OS. As a result, the authentication, authorization, and access control capabilities of 

aerOS are deployed and showcased in MVPv2, demonstrating how users with different access rights can be 

effectively managed by the aerOS IAM system using the RBAC mechanism and the KrakenD secure gateway. 

The combination of these tools enables the blocking or allowing of access to aerOS APIs (e.g., NGSI-LD 

endpoints). For the second version of the MVP, regarding the aerOS secure API Gateway, additional 

functionalities were introduced over time as different components required extra endpoints. Moreover, IAM 

facilitates authorized access to the aerOS Management Portal (for more details, refer to D4.3), ensuring 

restricted access to different domains within the portal based on user roles and groups. Since the initial version 

of the MVP, which was iterated on throughout the project, these roles and groups have been updated based on 

project needs. Consequently, access to the registered resources and functionalities within the Management 

Portal is tightly regulated and only allowed for authorized users. While the above features deal with securing 

the aerOS runtime environment, aerOS development team has also put in place a foundational toolset to 

support the development and secure integration of components, around the GitLab platform depicted from 

task T2.4 with pipelines for secure code development and continuous integration. Although, this toolset is not 

incorporated into MVPv2, it provides valuable functionality for securely developing and deploying aerOS 

components. 

Also, in the MVP, the most relevant self-* modules (those that live and act within the scope of a single IE) 

have continued to be developed, improved, integrated and tested. It is worth mentioning that only a sub-set of 

the self-* modules were incorporated into the MVPv2 due to functional reasons (some of the components 

have very specific purposes to respond to particular cases that were not replicated in the demonstration flows 

of MVPv2).  

The self-awareness component has been included in MVPv2, as it automates the process of publishing IE 

capabilities and updating, on real-time, running IE availability. For this new version of the MVP, the amount 

of information that can be extracted from each IE in the continuum has been increased, the integration with 

the rest of the self-* components has been improved, and the possibility of modifying the data sampling 

frequency (via REST API) has been added to optimize the IE resource consumption. The information obtained 

by the self-awareness module is modelled using aerOS data model for the continuum (WP4), and IE status is 

propagated all across the continuum consisting thus a candidate for IoT service components deployment. The 

self-orchestrator module has also been conveniently updated, increasing the amount and variety of 

information capable of managing its rules engine or reducing its resource consumption, among other new 

features. This component is in charge of sending re-orchestration alerts to the HLO as and when necessary. 
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For protection and mitigation of IE intrusion events, self-security has improved its threat detection capabilities 

and is now able to detect a wider variety of attacks towards an IE. Not only the MVPv1 self-* module 

integrations have been reinstated and improved, but more self-* capabilities have been included. It is now 

possible to handle critical situations in a more elegant, faster and efficient way. Based on the objective of 

providing a complete set of functionalities, self-optimization and adaptation has also been developed to detect 

anomalies based on the information received by self-awareness, and optimize IE resources by requesting early 

re-orchestration to the self-orchestrator to avoid a saturation in IE resources. Self-healing has also been 

planned and developed, to detect failures in both the IE and IoT devices connected to the node, through 

different scenarios. The self-API (another implemented module) allows the connection with the internal APIs 

of the self-* modules used. This results in a robust result that can be deployed in aerOS-compatible 

continuums. 

MVPv2 has served as the primary environment for validating the stability of architectural concepts and 

evaluating the viability and synergy of components. The aerOS development team, composed of numerous 

technical partners, has worked collaboratively to deliver seamlessly integrated components. While 

development adhered to specifications, contracts, APIs, and data model definitions, MVPv2 provided the 

necessary deployment environment for verifying the interaction and interworking of these components as an 

integrated system. This environment has been instrumental in ensuring the seamless operation of aerOS as a 

unified platform. 

MVPv2 development has been the basis to plan and execute an enhanced demonstrator, with a detailed 

scenario capable to showcase the project’s advancements and highlighting its capabilities in realistic 

scenarios. aerOS’s iterative development phase has been critical, incorporating vertical stakeholders' feedback 

to enhance existing features, resolve issues, and introduce new functionalities guided by real-world demand.  

The above-mentioned outcomes are diverse and stem from distinct domains of expertise. It is the integration 

of these components into MVPv2 that speaks about project's progress and refinement and ensures the 

identification of tasks addressed at this stage. MVPv2 integrates, validates and concludes technical milestones 

within the project lifecycle. In the initial design phase, the MVPv1 guided the prioritization of developments 

by defining the minimal set of features required to make aerOS viable for its first set of internal users and 

capable of demonstrating its foundational vision and functionalities. Subsequently, MVPv2 has built upon the 

initial insights, refining the architecture concepts, introducing enhanced capabilities, and expanding 

functionalities based on user feedback and evolving technical requirements. 

At this final stage, MVPv2 serves as the foundation for deploying the aerOS stack across project pilot use 

cases. The validation of core functionalities and system stability has paved the way for replicating aerOS 

deployments in the five pilot locations. These pilots, while not all requiring the full stack, have selected and 

are currently deploying the services most relevant to their specific needs and vertical domain purposes (for 

more detail refer to deliverable D5.3). MVPv2 facilitates this selective deployment by enabling stakeholders 

to understand the functionalities provided and choose those that align with their requirements. 

It is important, at this point, to also mention aerOS DevPrivSecOps platform as a critical enabler of MVPv2’s 

success. The aerOS development lifecycle is managed through an on-premises GitLab platform hosted by 

UPV (https://gitlab.aeros-project.eu). This GitLab platform not only provided a unified development 

environment but also ensures that every iteration, enhancement, and refinement to MVPv2 is systematically 

documented and version controlled. GitLab streamlines workflows from coding and testing to deployment, 

allowing real-time tracking of MVPv2’s evolution. 

The software accompanying this deliverable, hosted in aerOS GitLab, is fully demonstrable within the aerOS 

MVPv2. 

  

https://gitlab.aeros-project.eu/
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3. Final Implementation 

3.1. Advancements in Smart networking for Infrastructure 

Element connectivity 

3.1.1. Updated description and main functionalities 

aerOS is designed as a Meta-OS, establishing the continuum as a network of interconnected aerOS domains. 

Each domain is equipped with the same capabilities and is itself a network of connected IEs. Building around 

this concept and encompassing a design which does not include components with a central controlling role, 

with single point of presence, any domain can be self-contained and additionally can be easily integrated as a 

peer in the continuum. This topology is reflected in aerOS networking. All network capabilities are built with 

the goal to support self-contained functionality and at the same time to flexibly adapt to wide area 

connectivity requirements once a domain joins aerOS continuum.  

Task T3.1 aims to establish a fully functional network and compute fabric from edge to cloud. It ensures 

connectivity for IEs, allowing them to register as part of the continuum and execute specific workloads during 

IoT service deployment. Furthermore, WP3 lays the foundation for securely connecting domains and building 

a federated ecosystem. At the same time, it enables overlay communication for service components 

orchestrated across IEs in different administrative or geographical domains.  

The research and development within WP3 were responsible for fulfilling these capabilities. As outlined in 

architectural deliverables (D2.6 and D2.7), IEs publish their capabilities and offer computational resources by 

integrating into administrative domains. These domains share a common set of core functionalities, and are 

known as aerOS domains. The capability to network IEs within each domain and abstract their cross-domain 

connectivity forms the foundational underlay required to establish the continuum. Ensuring programmable but 

at the same time secure and controlled networking capabilities is crucial, particularly when operating over 

public networks. 

Basic network functionalities were part of previous developments. Building on these capabilities, IEs could 

connect within aerOS domains, which securely exposed services. These domains integrated a networking 

pipeline to control access, expose endpoints, and route requests to orchestration and federation services. 

Orchestration decisions could securely route deployment requests to selected IEs across all aerOS domains 

within the continuum. Additionally, IoT data could be federated across domains, enabling on-demand 

consumption throughout the continuum. This functionality allowed the creation of applications capable of 

interacting with each other by sharing application data seamlessly on top of data fabric federation capabilities. 

These federation capabilities were enabled with the support of the network stack for aerOS services exposure 

as described in D3.2. The period from M18 to M30, new advanced networking features were introduced, 

including isolated network overlays establishment for direct IoT service chaining, enabling real-time 

communication, when smart orchestration decisions dictate services placement on different IEs (thus, 

domains) across the continuum. Additionally, advancements and integration with tools and technologies based 

on open standards are developed and integrated with the aim to provide open exposure of aerOS capabilities to 

third parties. 

These, along with the refinement of network functions required to ensure secure exposure, load balancing, and 

access to federated orchestration services across domains. The solutions developed go beyond simply 

achieving network connectivity; they establish a robust framework for integrating technologies capable of 

dynamically adapting network parameters, enabling programmability of network functionalities, and 

supporting performance monitoring. These advancements build upon tools and technologies that emphasize 

the separation of control and data planes, ensuring scalability and flexibility. 

At a higher level of abstraction, workloads operating over physical or virtual resources, i.e., IEs, are designed 

to remain agnostic of the underlying virtual networking infrastructure while addressing their own connectivity 

requirements, including policies, security, load balancing, and other critical aspects. The research and 

development conducted during this phase have gone beyond creating a connectivity layer for IEs, extending to 

the connectivity of workloads distributed across different aerOS domains located across the continuum, 
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supported by the establishment of virtual overlays. This foundational layer integrates abstractions and 

automation typical of Software-Defined Networking (SDN), providing seamless and adaptive integration of 

resources. By doing so, it ensures that aerOS can effectively support heterogeneous and distributed 

infrastructures, aligning with its overarching vision of a unified continuum environment. 

Task T3.1 efforts have been organized across seven key research lines: 

1. Smart networking within the K8s context 

2. Intra-domain network service mesh 

3. Inter-domain network service mesh 

4. Integration of Network Service Mesh with Service Mesh 

5. Synergy between Network Service Mesh and SDN 

6. Combining Network Service Mesh and NFV 

7. TSN support for the aerOS continuum 

By month M30, development efforts have further concentrated on tools and technologies that span multiple 

research lines, aiming to refine and consolidate the innovations made thus far. It is worth noting that while all 

research lines have progressed, their level of focus and advancement has varied depending on priorities and 

the complexities of integration. Significant emphasis has been placed on ensuring seamless integration of 

isolated overlays for cross-domain networking needed to support orchestration process decisions. This ensures 

a seamless interoperability between the network service mesh, SDN, NFV concepts and the overall aerOS 

architecture. In the following sections, the progress done within this final reporting period, for T3.1, regarding 

networking functionalities, and topologies is presented. 

3.1.1.1. Network mesh for real time cross-domain service communication  

As explained above and detailed in D3.2, a full network stack was developed by M18, providing core aerOS 

networking capabilities. Building on this foundation and the accessibility of aerOS services, application data 

can now be shared using the federation functionality of the aerOS data fabric. This enables data produced in 

one domain to be seamlessly shared and retrieved by consumer applications anywhere in the continuum via 

aerOS federation. In this final period, a prominent goal for aerOS networking was to enable service 

components—part of the same service deployment request but allocated across different IEs in multiple aerOS 

domains—to resolve and securely access each other directly, regardless of their location across the continuum. 

This functionality was implemented during this period based on a new functionality which provisions for the 

deployment of an isolated overlay for each service. These overlays span from IE to IE, across remote 

domains, but not fully routing IE to IE, but just connecting service components of the allocated service. This 

means that IEs are not part of this overlay but just the hosted service components. So, an IE can host several 

service components, constituents of different services each of them, and these service components can be part 

of different, distinct and isolated overlays. Thus, the hosting IE is not itself part of any overlay, it is just 

networked within the aerOS domain, but several workloads hosted in this IE can be, each one of them, part of 

different overlays. Beyond direct connectivity, among workloads, the overlay also provides essential network 

services such as secure and private networking and DNS resolution.  

To explain this, one can consider a scenario of deployment of a service, initiated from aerOS portal, which 

needs to perform end-to-end network performance testing, analyse the results, and visualize them. This could 

require five service components: a server, a client, an orchestrator component to initiate procedures and 

collect results, a time series database (TSDB), and an analytics function. While the client and server must be 

positioned at opposite ends of the network for measurement, the remaining components can be placed 

anywhere in the continuum. However, they all need to resolve and securely communicate with one another. 

For instance, the orchestrator must be able to instruct the client to generate traffic, the client must reach the 

server, the orchestrator must retrieve results from the server and push them to the TSDB, and the analytics 

component must access and process the data. While such interactions are straightforward within a local 

network, when service components are distributed across the continuum and deployed over different aerOS 

domains, additional provisioning and a complex support process are required. 
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This functionality has now been fully developed and integrated as part of aerOS networking capabilities. The 

provisioning of such an isolated overlay is managed by the aerOS HLO but also involves multiple other aerOS 

entities. Once the HLO determines the optimal placement for all service components across the continuum, an 

additional step is performed: establishing an overlay network exclusively for that service. The two main 

provisions of this networking functionality are secure connections—enabled by the domain WireGuard 

server—and name resolution—provided by the accompanying Dnsmasq server. WireGuard and Dnsmasq are 

part of the networking stack in every aerOS domain, as described in D3.2. While WireGuard was already 

integrated, Dnsmasq was recently introduced to support this new functionality. These two components operate 

as a bundle. Although each aerOS domain includes such a bundle, the one responsible for providing the 

overlay for a deployed service is the domain that initially received the deployment request via its exposed 

HLO API. 

To develop this capability the following objects have been studied as information included in them needs to be 

aligned within aerOS: 

• WireGuard server configuration, which defines the parameters required for the server to expose 

connectivity, authenticate and assign IP addresses to clients, and correctly forward and masquerade 

traffic across the overlay. 

 

Figure 3. Wireguard server configuration in aerOS 

• WireGuard client configuration, which includes the necessary parameters for establishing secure 

connectivity, such as the private key for encryption and authentication, the server’s URL and port, and 

the assigned IP address within the overlay network. 

 

Figure 4. Wireguard client configuration in aerOS 

• Dnsmasq server configuration, which holds all the mapping of names to overlay IPs 

 

Figure 5. Dnsmasq server configuration in aerOS 

To establish an overlay per service—where service components can securely connect and resolve one 

another—the necessary configuration objects must be generated during the orchestration process. The required 

information should either be available within the continuum or dynamically created as needed. Finally, these 
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configuration objects must be properly assigned to the respective services to ensure seamless operation. The 

following aerOS components have been extended, modified, or developed to manage and utilize this 

information effectively:  

• aerOS Domain Private and Public Key: The private key is used in the server configuration object, 

while the public key is shared with all clients that need to connect. These keys are generated once per 

domain (with the option to regenerate if necessary) by an initialization script running within a core 

aerOS service. This service exposes internally API to manage domain keys. These keys are securely 

stored within the domain, such as in a vault or a K8s secret when the domain is based on a Kubernetes 

cluster. Additionally, the public key is included as an attribute of the “Domain” continuum entity, 

enabling its retrieval across the continuum for seamless WireGuard client configuration. 

 

Figure 6. Left: aerOS continuum “Domain” entity including public key. Right: secret with private key. 

• aerOS continuum “Service” entity, is extended to include the information of the domain that hosts 

the overlay server. The name provided to this attribute is “domainHandler” (see figure below). 

 

Figure 7. aerOS continuum “Service” entity including information of domain providing the overlay service 
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• HLO deployment engine, has been massively extended so that along with the allocation requests (see 

D3.2) it performs two more actions: 

o Locally reconfigure WireGuard and Dnsmasq server and provide all information for the 

clients that will be connected (allocated service components) 

o Built configuration objects, which will be sent to the domains which host the selected IEs 

where service components will be allocated, that will provide connectivity to the overlay to 

the service components.  

o Private-public keys pair generation per each service component, as these are part of above-

mentioned configuration objects, which are integrated in the private key on service 

component configuration and the public in server configuration. 

• LLO, is extended to be able to handle information about the overlay and proceed to force workload to 

also perform connectivity handshake using the client configuration object provided by the HLO. 

The figure below is part of the logs of the aerOS orchestrator and exposes this information which is used 

to configure connectivity in the overlay. 

 

Figure 8. Object of the orchestration process including information for connecting to the networking overlay  

The figure above illustrates how the allocation object sent to the LLO has been extended to include 

networking information. It clearly shows the integration of the previously discussed WireGuard client 

configuration object, which is now included and transmitted to the LLO. This configuration is then utilized 

during workload deployment to establish secure connectivity to the remote server using the provided URL, 

port, and key. The following figures demonstrate the orchestration results of a service comprising four service 

components, specifically highlighting the overlay establishment. Notably, the names of the service 

components are defined within the TOSCA-formatted deployment request sent to the HLO API.  
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Figure 9. Server configuration object, including clients’ information  
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Figure 10. Service components connected to the overlay. Data from WireGuard server shell 

 

 

Figure 11. Dnsmasq configuration associating service components with service name 
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Figure 12. Overlay connectivity and service names resolution.  Network operations within a service component shell 

A quite abstract representation of the final overlay and the layered nature of aerOS networking is 

demonstrated in the following figure. It demonstrates the fact, also mentioned above, that although each 

domains hosts a WireGuard server, for each new service deployed the one that is instrumented to provide the 

overlay, over the continuum, is the one hosted in the aerOS domain which received the orchestration request. 
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Figure 13. aerOS overlay diagram. 

Finally, a sequence flow of the allocation of an isolated overlay, as part of the service orchestration, is 

demonstrated below. This assumes the orchestration of two a service which includes two service components, 

and one is allocated in the same domain which received the request by the user, and which also hosts the 

WireGuard network server, and the other service component is allocated to another aerOS domain across the 

continuum. 

 

Figure 14. aerOS cross-domain overlay orchestration sequence flow detail. 

3.1.1.2. Open Network Exposure for Standardized API Access 

To enhance the functionality and interoperability of aerOS orchestration and federation framework across the 

cloud-edge continuum, a new component has been developed to expose aerOS APIs with the 3GPP Common 

API Framework for IoT (CAPIF). This integration aligns with industry standards and unlocks the potential 

of integrating aerOS into modern 5G and telecom ecosystems. CAPIF provides a standardized approach to 

API exposure, ensuring compatibility and seamless collaboration with external systems, devices, and third-

party services within a globally recognized and regulated framework. This effort is part of our broader goal to 

bridge cloud-native networking with traditional telecom infrastructure, ensuring compatibility with future 

NFV and telecom standards. 
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CAPIF provides support for secure API exposure. Orchestration and federation involve critical operations 

such as resource allocation, workload management, and policy enforcement, and CAPIF enables dynamic 

API discovery and management, making it easier for clients, such as edge devices or third-party 

applications, to locate and interact with aerOS APIs.  

CAPIF’s adoption offers API discovery mechanisms, which can ensure aerOS services are accessible and 

usable in a dynamic, multi-vendor ecosystem, aligning thus aerOS framework with the emerging 5G and 

Network-as-a-Service (NaaS) models. By exposing our APIs through CAPIF, telecom operators and service 

providers may leverage aerOS orchestration and federation capabilities directly within their 5G environments. 

This opens up opportunities for advanced use cases such as network slicing, edge resource orchestration, 

and IoT data federation, positioning possibly aerOS within the telecom ecosystem. To implement the 

exposure of aerOS APIs under the 3GPP CAPIF specification, OpenCAPIF was utilized. Developed by ETSI, 

the OpenCAPIF initiative extends the applicability of CAPIF beyond the telecom domain, addressing broader 

industry requirements. This strategic effort opens new possibilities for aerOS framework’s role as a key player 

in the evolving landscape of cloud-edge continuum and 5G innovation. 

3.1.1.3. aerOS programable networking  

The aerOS networking capabilities are designed to be self-contained, enabling seamless integration of 

advanced SDN functionalities within the broader system. During this period a component which can 

intermediate the interaction with external network services or infrastructure has been developed in the grounds 

of aerOS auxiliary networking functionalities. Although this is not a core component and is not intended to be 

part of the MVPv2 it can find use in configuring networking behaviour of hosting domains as it is built to 

communicate specific SDN controllers (ONOS tested), providing the necessary OpenFlow commands to 

manage connected switches and ensure intended traffic control throughout the network. 

This service is developed as a cloud native application, the ONOS Flow Manager, which is a Python-based 

tool that facilitates interaction with the ONOS SDN controller and allows for the dynamic deployment of 

OpenFlow rules to Open vSwitch (OVS) devices. The script serves as the backbone for configuring traffic-

forwarding policies, managing flows, and applying packet filters. It offers flexibility by enabling 

administrators to define criteria such as source and destination IPs, MAC addresses, and output ports, ensuring 

granular control over network behaviour. 

The service receives as input a list of parameters, including the ONOS controller access details, and a set of 

parameters which describe matching criteria, actions, and priority levels. Once validated, these specifications 

are translated into OpenFlow-compatible commands and sent to the ONOS controller using its REST API and 

support: 

• Multiple flow filters (e.g., source IP, source MAC, destination IP, destination MAC). 

• Action-based modifications (e.g., output port, destination IP, MAC). 

• LLDP packet redirection to the controller. 

 Additionally, it has been adapted for compatibility with EAT to enable its triggering based on events 

recognized by analytics. The goal of integrating these advanced SDN capabilities, is to set the groundwork for 

a flexible and programmable networking environment. This component represents an effort towards achieving 

a continuum-aware network fabric, where external network services and infrastructure can be seamlessly 

integrated to support dynamic and scalable IoT deployments. 
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3.1.2. Updated Structure diagram 

 

Figure 15. aerOS cross-domain network overlay provision during service orchestration.  

Table 1. Network mesh for real time cross-domain service communication 

Component Description Interactions 

HLO Deployment 

Engine (Cross domain 

Allocator) 

Located in aerOS domain which 

received the deployment request. 

Retrieve from Orion-LD, and 

generate data needed to build 

overlay configuration objects for 

server and client peers (service 

components). Reach domains of 

all selected IEs and send 

descriptors including networking 

data. 

Proceeds to NGSI-LD queries to the Orion-

LD broker and to API calls to overlay 

management component and HLO 

deployment engines (local domain 

allocation part). All of these are REST 

based interactions, the access to the first two 

are in local domain and the third one could be 

in local or any other domain, which hosts the 

selected IE, across the continuum. 

Overlay management Service within aerOS domain 

which undertakes the management 

of networks available, and 

networks allocated within the 

domain. The range is configurable 

and can be set at service initiation, 

e.g., 10.13.0.0/16 means that it 

will provide a “slice” like 

10.13.1.0/24 or 10.13.2.0/24 for 

each service which overlay 

hosting is provided by this 

domain. 

Exposes API which is consumed by HLO 

Deployment Engine (Cross domain 

Allocator) to provide an available subnet. 

HLO Deployment 

Engine (Local domain 

Allocator) 

In each aerOS domain selected to 

host a service component. Based 

on descriptors received from the 

step above, creates the needed 

configuration objects, which 

include networking information, 

and reaches the suitable LLO for 

Exposes, REST based, API which is 

consumed by the HLO Deployment Engine 

(Cross domain Allocator) of the domain 

which received the service deployment 

request by the user (IoT developer). 

It calls, REST based, LLO API to provide 

any CR needed for the deployment of the 
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the IEs that will host each service 

component. It submits to the LLO 

the final descriptive resource 

needed by LLO to enforce service 

component instantiation including 

connectivity to the overlay. 

service including connection to the 

networking overlay. 

Orion-LD Keeps part of the information 

needed for the networking 

configuration objects (public key 

and public IP port of the domain 

which will provide networking 

overlay). Keeps also information 

needed to track the domain that 

provides server for network 

overlay for each service. This is 

updated once the service is 

deployed. 

Exposes NGSI-LD, a REST based API, to 

provide information regarding data needed to 

build the overlay connectivity. 

LLO Guides and enforces service 

components deployment in the 

selected IEs, including 

deployment of WireGuard client 

that connects to server and thus 

registers service component to the 

overlay. 

Exposes, REST API which is accessed by 

HLO Deployment Engine (Local domain 

Allocator) to submit the deployment 

descriptor (CR) for the selected IE. 

Proceeds to deploy component to selected IE 

(API based interaction). 

WireGuard Server Provides secure overlay (VPN) 

and name resolution needed for 

service components to reach one 

another. 

Receives configuration from HLO 

Deployment Engine (Cross domain 

Allocator). This is done in two steps. First is 

the update of the configuration objects and 

the second is access to an internal (to HLO) 

API which abstracts operations to WireGuard 

server and thus updates configuration and re-

initiates the wireguard service. 

Receives handshake requests from wireguard 

clients, which accompany each service 

component. This interaction is based on 

WireGuard protocol. 

WireGuard client Runs as a complimentary service 

(side car) to each service 

component, proceeds to handshake 

to register to the network overlay 

and takes over all the network 

connectivity. 

Deployed by LLO as part of the allocation of 

the service component on the selected IE and 

reaches to WireGuard server on the domain 

which hosts the service wireguard server to 

perform handshake and then route traffic. 

This interaction is based on wireguard 

protocol. 
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Figure 16. aerOS integration with OpenCAPIF. 

Table 2. Open Network Exposure for Standardized API Access 

Component Description Interactions 

aerOS APIs All APIs exposed by every 

aerOS domain, including APIs 

for orchestration services, for 

federation across the continuum. 

OpenCAPIF registers these APIs and every 

third-party application which discovers 

aerOS APIs might access them. All interactions 

are REST based. 

OpenCAPIF Implementation of CAPIF 

specification, which provides 

APIs discoverability and 

exposure, and thus access to 

underlying offered services. 

Interacts with aerOS API to register and 

expose it (REST). Interacts with third-party 

applications to expose aerOS APIs and provide 

the means for a subsequent direct secure 

connectivity. 

Third-Party An external application which 

would like to consume aerOS 

domain services as exposed by 

the APIs. 

Interacts with openCAPIF to query APIs 

offered and get security keys for subsequent 

access. REST based interaction. Access aerOS 

APIs, which again is a REST based interaction. 

 

Figure 17. aerOS aux service for SDN. 
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Table 3. ONOS OpenFlow Manager 

Component Description Interactions 

ONOS Flow Manager aerOS service capable of 

transforming, user or component 

provided, guidelines into ONOS 

commands, including network 

setup instructions, and sending 

them to an ONOS SDN controller. 

Exposes REST API to actors who want to 

access it. 

Interacts with ONOS SDN using its exposed 

REST APIs 

ONOS SDN Controller SDN controller managing network 

operations. Processing high-level 

instructions, and translates them 

into flow rules, for a dynamic 

configuration of the network. 

Receives network application requests from 

ONOS FlowManager (REST API). 

OpenFlow protocol-based interaction with 

managed network switches. 

Network Switch Enforce decisions received by 

ONOS flow rules enabling flexible 

and programmable network 

behaviour. 

Interaction with ONOS SDN controller over 

OpenFlow protocol. 

 

3.1.3. Technologies and standards deployed in MVP 

Table 4. Technologies and standards for aerOS networking implementation 

Technology/Standard Description Justification 

Wireguard Lightweight, high-performance 

VPN protocol that uses modern 

cryptography to provide secure, 

fast, and simple point-to-point 

encrypted network connections. 

Addresses the requirement to build a secure, 

isolated subnet overlay which provides 

networking to all service components of a 

service. 

dnsmasq Lightweight DNS forwarder, 

DHCP server, and TFTP server 

designed for small networks, 

providing caching, name 

resolution, and IP address 

management with minimal 

resource usage. 

Addresses the requirement of service 

components to be able to resolve and reach 

one another based on a defined name which 

corresponds to routable IP (within the service 

isolated overlay). 

Curve2551 High-performance elliptic curve 

used for secure key exchange, 

offering strong cryptographic 

security, efficiency, and resistance 

to common attacks while enabling 

fast and secure encryption 

protocols like WireGuard and 

TLS 1.3. 

Instrumented, with the support of wg tool 

(genkey option), to provide secure keys to be 

used for service components to handshake 

and register in network overlay. 

ETSI OpenCAPIF An open-source implementation 

of 3GPP CAPIF, developed 

within ETSI. It provides a 

reference implementation to 

facilitate CAPIF adoption, 

allowing developers and telecom 

operators to integrate CAPIF-

Provide the means to demonstrate for aerOS 

possibilities to integrate within telco 

operators’ environments. 
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compliant API exposure and 

management into their networks. 

3GPP CAPIF A standardized API framework 

defined by 3GPP (TS 23.222) to 

provide a unified, secure, and 

controlled way for network 

functions and third-party 

applications to expose and 

consume APIs within 5G and 

telecom networks. It includes API 

exposure, authentication, 

authorization, and monitoring. 

3.2. Communication services and APIs 
In the dynamic and interconnected world of cloud-to-edge computing, the role of communication services and 

APIs has become increasingly pivotal. These services and APIs are the cornerstones in the aerOS ecosystem, 

enabling standardized, secure, and efficient interactions among various software entities. At their core, APIs 

act as facilitators, exchanging information and commands while adhering to predefined protocols and data 

contracts. The next sub-chapter summarizes the API concepts, guidelines and best practices adopted in aerOS, 

which were thoroughly reported in D3.2. The following sub-chapters delve deeply into the provisioned APIs 

from the different core aerOS services (covering OpenAPI and AsyncAPI) and into low-code tools such as 

Node-RED and Behaviour trees and generation of skills from AsyncAPI for low-code tools. 

3.2.1. API concepts, guidelines and best practices proposed in D3.2 

In deliverable D3.2 it was reported the API concepts, guidelines, and best practices, particularly in the context 

of REST APIs. The main insights provided on that report are the following:  

• The absence of standardized procedures for creating endpoints, encoding body payloads, or defining 

return codes for both successful and erroneous invocations was highlighted, emphasizing the need for 

use-case/domain-specific guidelines. The report referenced efforts by organizations like ETSI to 

establish principles for mobile edge services APIs and discussed how existing guidelines can be found 

across cloud providers and technical articles, although they often pivoted around common ideas but 

differed slightly in recommendations. 

• Best practices for URI design, including the use of valid URIs following the IETF RFC 3986 standard 

was also outlined. These URIs should be combined with verbs representing HTTP methods and nouns 

for collections of objects, with plural names preferred in URIs. It also introduced pagination 

techniques to optimize resource access, suggested versioning methods to support multiple API 

versions, and detailed the use of HTTP status codes to indicate the outcome of client requests. Further, 

it advised including error details in API responses, modelled as JSON objects with properties like 

"error" and "description" to aid client-side error handling. Asynchronous operations were addressed, 

recommending the use of a "202 Accepted" status code for operations requiring longer processing 

time, alongside a status endpoint for clients to check operation status. Hypermedia As The Engine Of 

Application State, a technique using hypermedia links in response contents, fostering API evolution 

without client logic breaking, was also mentioned. 

• The maturity in API design was discussed by making use of the Richardson Maturity Model, which 

evaluates the maturity of web services based on their adherence to REST principles. It comprises four 

levels:  

o Level 0, which involved basic service-oriented applications without using URIs or HTTP 

verbs 

o Level 1, introducing URI usage for resource access but not fully utilizing HTTP verbs 

o Level 2, achieving significant maturity by employing HTTP verbs and URIs 
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o Level 3, the highest level, incorporating HATEOAS to enhance discoverability and self-

descriptiveness. 

3.2.2. aerOS OpenAPI  

aerOS commitment to foster a standardized approach in CEI continuum led project partners to embrace 

OpenAPI Specifications (OAS)1, a specification for HTTP APIs that defines the structure and syntax in a 

technology agnostic way. These specifications are typically formalized using YAML or JSON, allowing for 

their easy sharing and consumption. There are two OpenAPI design methodologies: API First (first creating 

the OAS, and then create the code), or Code First (first writing code and annotating it to automatically 

generate the OAS). The aerOS OpenAPI lifecycle was structured in phases, beginning with requirements 

elicitation, where the desired functionalities of the API for its consumers are defined. This moves into the 

design phase, where an initial OAS document is outlined, incorporating industry-standard schemas and 

allowing for rigorous source control as a preparatory step for development. During configuration, the focus 

shifts to adapting the IT infrastructure to accommodate the API's needs, such as gateways or security 

requirements. The publishing phase then follows, which involves generating API documentation using tools 

like Swagger UI to be hosted on a basic HTML server for easy access. Development translates the OAS into a 

functional API, with tools available across programming languages to construct essential API structures. The 

testing phase leverages the OAS to verify the consistency and security of the API implementation, ensuring 

alignment with the initial design contracts. Finally, deployment integrates output from the publishing and 

development processes to roll out the fully tested API to end-users, marking its readiness for real-world 

application. In D3.2 it was informed about two methodologies for OpenAPI code generation, and the openapi-

generator run locally was chosen for its broader applicability.  

Task T3.2 has focused on the development and preparation of OpenAPI specifications for both the aerOS 

domain and the Infrastructure Elements (IEs), as can be seen in the next figure.  

 

Figure 18. aerOS communications and services through OpenAPI 

In that sense, core/basic aerOS services have exposed their APIs via OpenAPI specifications. Task 3.2 has 

collected and consolidated all individual specs to provide a unified interface with all declared methods. The 

following sections briefly introduce them. 

 

1 https://www.openapis.org  

https://www.openapis.org/
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3.2.2.1. Context Broker API 

This aerOS contextual information is managed by the Context Brokers, which store the most recent value of 

the attributes of NGSI-LD entities of the continuum, i.e., IE, services, etc. The NGSI-LD Context Broker 

choice for aerOS has been the FIWARE Orion-LD2. It contains an official repository of ORION-LD API that 

provides comprehensive documentation of the API3. Regarding aerOS approach, there are 4 main sections or 

paths to be considered: Context Information Provision, Context Information Consumption, Context 

Information Subscription, and Context Source Registration Subscription. 

 

 

Figure 19. ContextBroker API inside aerOS OpenAPI 

 

 

2 https://github.com/FIWARE/context.Orion-LD  

3 https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-

api.yaml  

https://github.com/FIWARE/context.Orion-LD
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
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Figure 20. ContextBroker API inside aerOS OpenAPI (2) 

3.2.2.2. Federator API 

The Federator facilitates the bidirectional exchange of information with other domains of the aerOS 

continuum. To do so, a central registry located in the entrypoint domain keeps an inventory of all integrated 

domains and promote new domains registration and connection with those that are already part of the 

continuum, by means of the Federator API. 

 

Figure 21. Federator API inside aerOS OpenAPI 

3.2.2.3. HLO API 

The HLO APIs are designed to facilitate complex orchestration tasks at a high level of abstraction, allowing 

for robust interaction and management across various aerOS services. It can be accessed from two different 

components, FrontEnd (HLO-FE), and Deployment engine (HLO-AL). 

 

Figure 22. HLO API inside aerOS OpenAPI 
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Figure 23. HLO API inside aerOS OpenAPI 

3.2.2.4. LLO API 

LLO provides granular control over specific functionalities, enabling precise manipulation of the underlying 

systems through the LLO API:  

 

Figure 24. LLO API inside aerOS OpenAPI 

3.2.2.5. Data Fabric API 

The Data Fabric paradigm introduces a metadata-driven architecture that automates the integration of data 

from heterogenous sources and enables uniform access to the data through a standard interface. Hence, it is 

integral to the efficient handling and integration of data across the aerOS platform, ensuring seamless data 

flow and accessibility. Two main OpenAPI paths are available: Data Catalog Service and Data Security 

Service. 

 

 

Figure 25. Data Fabric API inside aerOS OpenAPI 
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3.2.2.6. Data Product Manager API 

The aerOS Data Fabric, by means of the Data Product Manager, exposes an interface towards data owners to 

onboard new data products and orchestrate the pipeline that turns raw datasets into data products. Thus, it is 

an essential part of the data fabric for managing the lifecycle of data products, underpinning the platform's 

data governance and utilization strategies.  

 

Figure 26. Data Product Manager API inside aerOS OpenAPI 

3.2.2.7. Self-Capabilities API 

They are crucial for the self-reporting and autonomous operation of the infrastructure components. As 

explained in previous WP2-WP3 deliverables, there are multiple operations, which are accessible through the 

Self-API component. It includes Self-orchestrator, Self-security, Self-Optimization, Self-scaling, Self-healing, 

and Self-Configurator. At the time of writing this deliverable, the latest version of the first four already 

included their swagger OpenAPI in their artifacts. The remaining two will be integrated before the project 

ends. 

 

 

Figure 27. Self-Capabilities API inside aerOS OpenAPI 
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Figure 28. Self-Capabilities API inside aerOS OpenAPI (2) 

3.2.2.8. IdM 

A key component of the aerOS cyber security system is the aerOS Identity Management (IdM), whose ability 

is to register and evaluate policies for resource and data access. It utilizes Keycloak IdM4, which provides 

comprehensive functions to strengthen cybersecurity, by managing the authentication and authorization of 

aerOS clients with a non-official but thoroughly documented Open API specifications5. The most relevant 

paths used in aerOS are presented below:  

 

4 https://www.keycloak.org/  

5 https://github.com/ccouzens/keycloak-openapi 

https://www.keycloak.org/
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Figure 29. IdM API inside aerOS OpenAPI 

 

aerOS IdM has been integrated with OpenLDAP6 in order to enhance the adoption of aerOS IAM by 

stakeholders, facilitating the automatic federation of user information from the LDAP directory. This 

eliminates the need for manual transfer of user data to aerOS IdM, streamlining user management and group 

associations. 

 

Figure 30. IdM API inside aerOS OpenAPI (2) 

aerOS implements a system of precise control and management over resources, which is seen in the 

establishment of different roles. Each role is associated with specific access rights within the aerOS services 

environment and linked to a corresponding group in OpenLDAP. 

 

Figure 31. IdM API inside aerOS OpenAPI (3) 

 

 

6 https://www.openldap.org/doc/admin26/OpenLDAP-Admin-Guide.pdf  

https://www.openldap.org/doc/admin26/OpenLDAP-Admin-Guide.pdf
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Figure 32. IdMAPI inside aerOS OpenAPI (4) 

 

In turn, users group provide methods required to handle the lifecycle of user profiles via IdM. 

 

Figure 33. IdM API inside aerOS OpenAPI (5) 

 

3.2.2.9. IOTA 

One of the ways leveraged in aerOS to achieve trust is by taking advantage of open-source edge technologies 

such as IOTA’s distributed ledger Tangle framework7. The Tangle is a data structure replicated across a 

network of nodes (IE’s in the aerOS continuum) that contains all the information necessary to track messages 

and ensure traceability of the payloads distributed across the network. A brief extract of the official IOTA 

Open API documentation8 is listed below:  

 

7 https://wiki.iota.org/get-started/introduction/iota/introduction/  

8 https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/TIP-0025/core-rest-api.yaml  

https://wiki.iota.org/get-started/introduction/iota/introduction/
https://editor.swagger.io/?url=https://raw.githubusercontent.com/iotaledger/tips/main/tips/TIP-0025/core-rest-api.yaml
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Figure 34. IOTA API inside aerOS OpenAPI 

 

3.2.3. aerOS AsyncAPI 

OpenAPI is a widely adopted industry standard in software engineering, playing a pivotal role in defining 

standardized specifications for REST-based interfaces. However, as technology evolves, there is a growing 

need for standardized specifications of asynchronous interfaces, a capability OpenAPI does not inherently 

provide. The rise of asynchronous interfaces and protocols is driven by the desire to move away from 

monolithic systems towards more distributed architectures, often termed "event-driven" or "reactive." This 

shift aims to enhance system efficiency, scalability, and fault tolerance. 

To address the limitations of OpenAPI in the asynchronous realm, the AsyncAPI initiative has emerged, 

seeking to establish an industrial standard for specifying asynchronous interfaces. Unlike OpenAPI, 

AsyncAPI goes beyond by offering comprehensive support for various communication protocols such as 

MQTT and Kafka. This flexibility allows it to accommodate the diverse requirements of distributed systems. 

The following figure illustrates the followed approach in aerOS to embrace the benefits that AsyncAPI can 

provide in the project needs. The following subsections detailed the AsyncAPI services implemented in the 

context of this task. 

 

Figure 35. aerOS communications and services through AsyncAPI 

3.2.3.1. Advancing AsyncAPI with Industry-standard Protocols 

AsyncAPI currently serves as a crucial tool for specifying asynchronous interfaces. However, there is 

significant potential for enhancement by integrating additional industry-standard protocols such as Data 

Distribution Service (DDS)9, ROS210, OPC UA11, and the publish/subscribe protocol Zenoh12. Incorporating 

 

9 https://www.dds-foundation.org/what-is-dds-3/  

10 https://www.ros.org/  

https://www.dds-foundation.org/what-is-dds-3/
https://www.ros.org/
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these protocols into the AsyncAPI framework would expand its applicability, promoting adoption across 

embedded systems and edge computing environments. This expansion is oriented to drive the development of 

solutions specifically tailored to industrial contexts, particularly in terms of automated interface integration. 

Such advancements would streamline application development within industrial automation systems, fostering 

innovation and efficiency in this vital sector. 

Integrating any protocol or standard into the AsyncAPI framework requires addressing two primary 

challenges. Firstly, there is the need to map the primitives of the protocol specification—such as DDS's topics, 

data readers, data writers, subscribers, and publishers—to AsyncAPI concepts like channels, operations, and 

messages. Secondly, features unique to the protocol that do not directly correspond to an AsyncAPI concept 

necessitate the definition of a binding. This binding provides protocol-specific information pertaining to 

servers, messages, channels, and operations.  

We briefly recap the core concepts of AsyncAPI v3.0.0: 

• Message: A message is the unit of data exchanged between senders and receivers through a server. 

Messages follow a well-defined schema and fall in one of three classes: an event, a query, or a 

command.  

• Server: A server represents a message broker or a messaging system that facilitates the exchange of 

messages between senders and receivers via channels. It's the infrastructure that handles the routing 

and delivery of messages. 

• Channel: A channel is a named communication pathway within an AsyncAPI server that acts as the 

destination and source of messages or events.  

• Operation: An operation specifies how messages between components are communicated. AsyncAPI 

differentiates between send and receive operations of messages on a channel. Additionally, operations 

support a reply semantic. 

3.2.3.2. AsyncAPI for DDS 

DDS is an open standard for real-time, scalable, and interoperable data distribution middleware. Developed by 

the Object Management Group (OMG), DDS is designed to facilitate seamless communication and data 

exchange in distributed systems that demand real-time capabilities. There are several implementations of 

DDS, such as OpenDDS or Cyclone DDS. DDS is a publish/subscribe data distribution middleware 

comparable to MQTT. However, DDS operates decentralized and offers more capabilities for edge-focused 

applications and IoT environments. 

When considering the AsyncAPI and DDS specifications side by side, it becomes apparent that many core 

concepts of AsyncAPI map directly to primitives in the DDS specification, i.e., AsyncAPI write operations 

map to data writers in DDS, AsyncAPI read operations map to data readers in DDS, and AsyncAPI channels 

map to DDS topics. However, there are core concepts in DDS especially concerning the specification of 

quality-of-service requirements that have no direct counterpart in AsyncAPI and demand a DDS AsyncAPI 

binding. 

3.2.3.2.1. An Experimental AsyncAPI Binding for DDS 

In this section, it is described an experimental DDS binding for messages, server, channels, and operations 

that enables specifying DDS event-driven applications in AsyncAPI. 

An AsyncAPI Message is the only concept that directly maps to DDS without the need for a binding. The 

supported data types available in AsyncAPI specification and the DDS IDL map directly so that each 

key/value pair in the payload of a message directly map to a key/value pair of a data class in DDS. 

In contrast, the concept of a Server present within the AsyncAPI specification has no direct application in a 

decentralized data distribution middleware such as DDS. However, in the AsyncAPI specification the host 

field is mandatory so that we can use it to specify a DDS peer discovery host that discovery packets are sent to 

 

11 https://opcfoundation.org/about/opc-technologies/opc-ua/  

12 https://zenoh.io/  

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://zenoh.io/
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in addition to the default multicast address. In DDS every communication between a data writer and a data 

reader requires the specification of a domain. A domain represents a subsection of the DDS network that is 

uniquely identified by a 32-bit unsigned integer. We introduce a domain object in the AsyncAPI DDS server 

binding that allows configuring various aspects of the DDS domain specification as summarized in Table 1. 

The DDS domain object in turn supports the specification of a discovery object containing options to 

configure the detection of domain participants. The discovery object and related ports and interfaces objects 

are summarized in Tables 2, 3, and 4. Lastly, the DDS server binding allows to specify a quality of service 

(QoS) provider that allows specifying a path from where the DDS application described by the specification at 

hand loads available QoS policies.  

Table 5. DDS Domain Object 

Field Name Type DDS Versions Description 

id integer 1.4 The identifier of the DDS domain, a 32-bit un-

signed integer. 

discovery object 1.4 Discovery options for the domain. 

allowMulticast string 1.4 Whether multicast discovery is allowed. Com-

ma-separated list of: false, spdp, asm, ssm, true, 

default. 

dontRoute boolean 1.4 Allows setting the SO_DONTROUTE socket 

option. 

enableMulticas-

tLoopback 

boolean 1.4 Must be true for intra-node multicast communi-

cation. 

entityAutoNaming string 1.4 Specifies the entity auto naming mode. Either 

empty (default) or fancy. 

externalNetwork-

Address 

string 1.4 Explicitly overrule the network address DDS 

advertises in the discovery protocol which de-

faults to the address of the preferred network 

interface. It can be used to allow DDS to com-

municate across network address translation 

devices. 

externalNetwork-

Mask 

string 1.4 Specify the network mask of the external net-

work address. The default value is 0.0.0.0. 

fragmentSize integer 1.4 The size of a DDSI fragment. The default is 

1334 B. 

interfaces object 1.4 The network interfaces used for discovery and 

user traffic. 

maxMessageSize integer 1.4 The maximum size of UDP payload. 

maxRexmitMes-

sageSize 

integer 1.4 The maximum size of a retransmitted message. 

multicastRecvNet-

work 

InterfaceAddresses 

string 1.4 A comma-separated list of network interface 

addresses to receive unicast traffic on. Alterna-

tively, one of the following: all (listen on all 

multicast-capable interfaces), any (listen for 

multicast on the operating system default inter-

face), preferred (listen on interface with highest 

priority), or none (listen on no interfaces). 

multicastTimeToLive integer 1.4 The time-to-live value for multicast packets. The 

default is 32. 

redundantNetwork- boolean 1.4 Whether to enable redundant networking on 
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ing selected network interfaces. 

transport string 1.4 The transport to use for DDSI traffic: default, 

udp, udp6, tcp, tcp6, raweth. 

useIPv6 boolean 1.4 Whether to use IPv6 for DDS traffic. 

Table 6. DDS Discovery Object 

Field Name Type DDS Versions Description 

DSGracePeriod string 1.4 Controls how long discovered endpoints will 

survive after the discovery service disappears. 

This allows reconnection without loss of data if 

the discovery service restarts. The default is 30 

s. Recognized units are day, hr (hours), min 

(minutes), s (seconds), ms (milliseconds), us 

(microseconds), and ns (nanoseconds). 

defaultMulti-

castAddress 

string 1.4 The multicast address used for all traffic except 

for participant discovery. Defaults to the Simple 

Participant Discovery Protocol (SPDP) address 

239.255.0.1. 

enableTopicDiscover-

yEndpoints 

boolean 1.4 Whether to enable the use of topic discovery 

endpoints. The default is false. 

externalDomainId string 1.4 An override for the domain id is used to discov-

ery and determine the port number mapping. 

The value default disables the override. 

leaseDuration string 1.4 The duration of the lease for the domain partici-

pant. The default is 10 s. Recognized units are 

day, hr (hours), min (minutes), s (seconds), ms 

(milliseconds), us (microseconds), and ns (nano-

seconds). 

maxAutoParticipant-

Index 

integer 1.4 This element specifies the maximum DDSI par-

ticipant index if the participantIndex is “auto”. 

The default is 9. 

participantIndex string 1.4 The participant index used for discovery. The 

value auto selects the index automatically. The 

default is default using none if multicast discov-

ery is used or else auto. 

ports object 1.4 The port numbers used for discovery and user 

traffic. 

SPDPInterval string 1.4 The interval at which SPDP messages are sent. 

The default corresponds to about 80% of the 

participant lease duration with a maximum of 30 

s. Recognized units are day, hr (hours), min 

(minutes), s (seconds), ms (milliseconds), us 

(microseconds), and ns (nanoseconds). 

SPDPMulti-

castAddress 

string 1.4 The multicast address used for participant dis-

covery. Defaults to the SPDP address 

239.255.0.1. 

tag string 1.4 A tag that domain participants to be discovered 

must match in addition to the domain ID. 
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Table 7. DDS Ports Object 

Field Name Type DDS Versions Description 

base integer 1.4 The base port number. The default is 7400. 

domainGain integer 1.4 The gain applied to the domain id to determine 

the port number. The default is 250. 

multicastDataOffset integer 1.4 The offset applied to the base port number to 

determine the multicast data port number. The 

default is 1. 

multicastMetaOffset integer 1.4 The offset applied to the base port number to 

determine the multicast meta port number. The 

default is 0. 

participantGain integer 1.4 The gain applied to the participant index to de-

termine the port number. The default is 2. 

unicastDataOffset integer 1.4 The offset applied to the base port number to 

determine the unicast data port number. The 

default is 11. 

unicastMetaOffset integer 1.4 The offset applied to the base port number to 

determine the unicast meta port number. The 

default is 10. 

Table 8. DDS Interfaces Object 

Field Name Type DDS Versions Description 

autodetermine boolean 1.4 Whether to let DDS determine the network in-

terfaces automatically. The default is true. 

address string 1.4 The address of the interface to use. 

name string 1.4 The name of the interface to use. If both address 

and name are provided the address must match 

the interface name. 

allow_multicast string 1.4 A comma-separated list controlling of some of 

the following keywords: “spdp”, “asm”, “ssm”, 

or either of “false” or “true”, or “default” to 

control if DDS uses multicast on the interface. 

multicast string 1.4 If set to default it will use the value as returned 

by the operating system. If set to true it will 

enable multicast on the interface regardless of 

the operating system state. 

preferMulticast boolean 1.4 Whether to prefer multicast over unicast when 

unicast would suffice. 

presenceRequired boolean 1.4 Whether the interface must be present. 

priority integer 1.4 The priority of the interface. The default is 0. 

In summary, the DDS binding in the AsyncAPI server specification  has been used to configure all aspects of 

the DDS domain the event-driven application participates in. 

A communication between participants is described by an AsyncAPI Channel that maps to DDS topic(s). The 

DDS channel binding extends the channel specification by a QoS policies object. A full list of applicable QoS 

policies can be found in the DDS specification v1.4 and each QoS policy should be provided as part of the 

DDS binding to enable their proper configuration. Furthermore, each AsyncAPI channel is associated with a 

set of messages that correspond to DDS data types. In contrast to an AsyncAPI channel, a DDS topic only 
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supports a single data type thus if an AsyncAPI specification describes an application with several messages 

per channel, we must ensure that the DDS binding and supporting tools (e.g. the code generator) map each 

valid combination of AsyncAPI channel and message to a distinct DDS topic. 

Table 9. DDS Operation Binding Object 

Field Name Type DDS Versions Description 

qosPolicies list 1.4 Defines QoS policies for the operation. Find a list of appli-

cable QoS policies below. If the DataReader or DataWriter 

inherits the QoS settings from their Publisher or Subscrib-

er, respectively, the QoS policies are not required. 

publishers list 1.4 The publisher objects the DataWriter belonging to a send 

operation is associated with. 

subscribers list 1.4 The subscriber objects the DataReader belonging to a re-

ceive operation is associated with. 

Table 10. DDS Publisher Object 

Field Name Type DDS Versions Description 

name string 1.4 The name of the publisher object the DataWriter is associ-

ated with. 

qosPolicies list 1.4 QoS policies applied to the Publisher. 

Table 11. DDS Subscriber Object 

Field Name Type DDS Versions Description 

name string 1.4 The name of the subscriber object the DataReader is asso-

ciated with. 

qosPolicies list 1.4 QoS policies applied to the Subscriber. 

Table 12. Subset of DDS QoS Policy Objects 

QoS Policy Field Name Type DDS Versions  Description 

Reliability 

kind string 1.4 One of best_effort or reliable. 

max_blocking

_time 
string 1.4 

The maximum blocking time. The default is 

100 ms. Recognized units are day, hr 

(hours), min (minutes), s (seconds), ms 

(milliseconds), us (microseconds), and ns 

(nanoseconds). 

Deadline period string 1.4 

The period of the deadline. The default is 

INFINITE. Recognized units are day, hr 

(hours), min (minutes), s (seconds), ms 

(milliseconds), us (microseconds), and ns 

(nanoseconds). 

Durability kind string 1.4 
One of volatile, transient_local, transient, or 

persistent. 
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Figure 36. AsyncAPI specification of a reliable service using the DDS binding 

Participants of a DDS domain communicate using read/write operations between data writers and data 

readers. AsyncAPI operations and their send and receive actions map directly to DDS data writers and data 

readers. In addition, DDS data writers and data readers may be associated with a DDS Publisher or DDS 

Subscriber, respectively, and may inherit the QoS settings of their Publisher and Subscriber or set their own 

QoS policies. As a result, the DDS operations binding (c.f. Table 5) allows us to define a list of QoS policies 

per operation or specify a DDS publisher object (c.f. Table 6) for write operations and a DDS subscriber 

object (c.f. Table 7) for read operations. Table 8 highlights the specification of a subset of available QoS 

policies available to DDS publishers and subscribers. 

Figure 1 provides an example of using the experimental DDS binding (indicated by x-*) to specify a reliable 

service that receives sensor readings and actuator status variables of a robot and publishes its predicted 

trajectory every 20ms. 

An AsyncAPI specification using the described DDS bindings can be processed by existing tooling, e.g. by 

AsyncAPI Studio to generate documentation, by using the extension mechanism. We further validate the 

correctness and functionality of resulting DDS applications by providing a rudimentary code generator for 

CycloneDDS and python. 
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3.2.3.2.2. CycloneDDS code generator for AsyncAPI 

Note: This development is not endorsed in the software attachment due to privacy concerns. 

The AsyncAPI React template rendering engine has been leveraged to implement a code generation solution 

capable of producing Python code utilizing the CycloneDDS framework. This code generator is built upon the 

experimental DDS binding of the AsyncAPI specification, validating the soundness of the mapping between 

DDS concepts and AsyncAPI primitives by yielding functional CycloneDDS applications from an interface 

specification. The organization's efforts have focused on implementing and validating the representation of 

fundamental DDS concepts, including topics, data writers/readers, publishers, subscribers, and a subset of 

quality-of-service objects within the AsyncAPI binding. The AsyncAPI React generator SDK facilitates the 

implementation of code generators by parsing a specification and providing a straightforward API13 to interact 

with the parsed AsyncAPI objects, such as messages, channels, operations, and bindings. 

 

Figure 37. UML class diagram of generated CycloneDDS python code 

The CycloneDDS generator creates a python data class per AsyncAPI message and associates each DDS topic 

with a unique tuple of AsyncAPI channel and message. For each AsyncAPI send/receive operation, the 

generator instantiates a data writer/reader and associates each data writer/reader with a publisher/subscriber 

using the operations DDS binding. In addition, for each data reader of a subscriber, the generator sets up a 

DDS listener. The DDS listener implements a callback that triggers when new data is available on the topic of 

the corresponding data reader. Optionally, the CycloneDDS generator associates receive operations’ reply 

objects with a data writer that enables data readers to send a response on a defined topic. 

A functional python CycloneDDS application from the robot trajectory example has been generated. The 

resulting application publishes a robots position, orientation, and speed on corresponding topics and a 

trajectory predictor component subscribes to the topics to use the received messages to calculate and publish 

the predicted trajectory of the robot. All send and receive operations are specified to be reliable, messages 

 

13 https://github.com/asyncapi/parser-api/blob/master/docs/api.md 

                        

         

       

            

       

          

       

    

 

                         

        

                      

    

 

        

                         

                        

                         

        

 

                        

                                

                 

    

 

https://github.com/asyncapi/parser-api/blob/master/docs/api.md


D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 51 of 97 

being volatile, and occurring periodically with a deadline. The corresponding QoS policies are automatically 

added to the publisher and subscriber and applied to the data writers and data readers. Figure 37 showcases a 

UML class diagram of the resulting DDS publishers and the RobotTrajectoryPredictor DDS subscriber and its 

DDS Listener that is activated when a data reader has messages ready. 

When the CycloneDDS application executes it creates a thread per publisher and subscriber and reads/writes 

data as specified in the QoS policies. The resulting output can be seen in Figure 38. 

 

Figure 38. Output of code generator and exemplary CycloneDDS application 

Note how the RobotTrajectoryPredictor receives twice as many RobotStateSpeed and RobotStatePosition 

messages than RobotStateOrientation message since their periods in the Deadline QoS policy as shown in the 

specification differ by a factor of two. 

3.2.3.3. AsyncAPI for ROS 2 

Robot Operating System 2 (ROS 2) is an open-source middleware framework designed for real-time, scalable 

communication in robotic systems. It builds on standards like DDS and Zenoh to facilitate effective data 

exchange crucial for complex robotic architectures. Supported by a vibrant community, ROS2 provides access 

to thousands of ready-to-use, community-driven libraries, making it an indispensable tool for rapid 

prototyping and deployment across various sectors—from industrial automation to autonomous vehicles. Its 

robust features enable efficient multi-robot interactions and seamless cross-platform operations, contributing 

significantly to its widespread adoption. 
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Integrating ROS2 with AsyncAPI presents an exciting opportunity to standardize interface specifications in 

robotic applications. With ROS2’s topics aligning naturally with AsyncAPI channels, and its publishers and 

subscribers corresponding to AsyncAPI’s send and receive operations, there is a strong foundation for 

synergy. However, integration must address ROS2-specific Quality of Service (QoS) settings, which lack 

direct AsyncAPI equivalents. Developing an AsyncAPI-ROS2 binding would effectively encapsulate these 

QoS parameters, facilitating precise and reliable system configurations. This integration not only promises to 

streamline the specification process but also enhances interoperability and innovation within the robotics 

community. 

3.2.3.3.1. An Experimental AsyncAPI Binding for ROS 2 

We describe an experimental binding for messages, servers, channels, and operations that enables specifying 

event-driven applications in AsyncAPI. This binding is particularly relevant for ROS 2, which can use either 

DDS or Zenoh as its middleware. 

Server Binding Object 

In ROS 2, the server binding object contains information about the server representation. Since ROS 2 can use 

decentralized middleware with no central server, the host field can be set to localhost. When using Zenoh, the 

host field specifies the Zenoh Router IP address. 

Table 13. ROS 2 Server Binding Object 

Field Name Type 

ROS 2 

Versions Description 

rmwImplemen-

tation 

string all Specifies the ROS 2 middleware implementation to be used. Valid 

values include rmw_fastrtps_cpp (Fast 

DDS), rmw_cyclonedds_cpp (Cyclone 

DDS), rmw_connext_cpp (RTI Connext), 

and rmw_zenoh_cpp (Zenoh). This determines the underlying mid-

dleware implementation that handles communication. 

domainId inte-

ger 

all All ROS 2 nodes use domain ID 0 by default. To prevent interfer-

ence between different groups of computers running ROS 2 on the 

same network, a group can be set with a unique domain ID. Must 

be a non-negative integer less than 232. 

 

 

Figure 39. Example ROS 2 server binding object 

Operation and Channels Binding Object 

AsyncAPI operations, with their send and receive actions, map directly to ROS 2 subscribers, publishers, 

actions, or services: 

• send -> publisher, action_client, service_client 

• receive -> subscriber, action_server, service_server 
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Unlike DDS, which only maps send/receive operations to publishers and subscribers, ROS 2 also includes 

request and response operations, encompassing services and actions. Each operation binding maps to a 

channel object with a ROS 2 role, node, and QoS policy object: 

Table 14. ROS 2 Operation Binding Object 

Field Name Type 

ROS 2 

Versions Description 

role string all Specifies the ROS 2 type of the node for this operation. Valid 

values are: publisher, subscriber, service_client ser-

vice_server, action_client, action_server. This defines how the 

node will interact with the associated topic or action. 

node string all The name of the ROS 2 node that implements this operation. 

qosPolicies object all Quality of Service (QoS) for the topic. 

Table 15. ROS 2 Quality of Service Object 

Field Name Type 

ROS 2 

Versions Description 

reliability string all One of best_effort or reliable. More information here: ROS 2 

QoS 

history string all One of keep_last, keep_all or unknown. More information 

here: ROS 2 QoS 

durability string all One of transient_local or volatile. More information here: ROS 

2 QoS 

lifespan integer all The maximum amount of time between the publishing and the 

reception of a message without the message being considered 

stale or expired. -1 means infinite. 

deadline integer all The expected maximum amount of time between subsequent 

messages being published to a topic. -1 means infinite. 

liveliness string all One of automaticor manual. More information here: ROS 2 

QoS 

leaseDuration integer all The maximum period of time a publisher has to indicate that it 

is alive before the system considers it to have lost liveliness. -

1 means infinite. 

 

https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Quality-of-Service-Settings.html#qos-policies


D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 54 of 97 

 

Figure 40. Example ROS 2 operation binding object 

Message Binding Object 

ROS 2 message types, defined in .msg, .srv, or .action files, are mapped to AsyncAPI message payloads. The 

following table describes how to map ROS 2 type to AsyncAPI types and format: 

Table 16. ROS 2 type map to AsyncAPI types and format 

ROS 2 Type AsyncAPI Type AsyncAPI Format 

bool boolean boolean 

byte string octet 

char integer uint8 

float32 number float 

float64 number double 

int8 integer int8 

uint8 integer uint8 

int16 integer int16 

uint16 integer uint16 

int32 integer int32 

uint32 integer uint32 

int64 integer int64 

uint64 integer uint64 

string string string 

array array -- 

3.2.3.3.2. ROS 2 code generator for AsyncAPI 

Note: The software associated to this development is not included in the compressed file since it is undergoing 

its own open-sourcing process (SIEMENS). It will be available in due time for the community.  
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The primary objective of our code generator is to utilize AsyncAPI tools equipped with ROS2 bindings to 

systematically transform the specified information into ROS2 interface definition files, including .msg, .srv, 

and .action files, as illustrated in Figure 41. 

 

Figure 41. ROS 2 interfaces represented left as the AsyncAPI specification file format and right as a .msg ROS 2 file 

format 

These generated ROS2 files, supplemented with additional details from AsyncAPI, serve as the foundation for 

deploying a comprehensive ROS2 application. The code generator is specifically optimized for integration 

with low-code tools, as discussed in Chapter 4.2.1.3. It extracts key elements such as topic names, interface 

descriptions, and Quality of Service (QoS) settings from the AsyncAPI specifications. Utilizing this 

information, the tool generates C++ code for ROS2 components, including subscribers, publishers, action 

clients, and service clients. 

The application of this generated code for low code tools facilitates efficient development workflows, 

enabling rapid prototyping and deployment of ROS2 applications. Detailed usage and benefits of this 

approach are further elaborated in the subsequent sub-chapter. 

3.2.4. Low-code tools 

The integration of low-code tools into the aerOS project represents a significant step towards democratizing 

the development process and enhancing the system's flexibility. At the heart of this integration lies the 

implementation of behaviour trees, a graphical low-code application that do not directly orchestrate services 

within the aerOS domains, but instead function as a graphical low-code interface that triggers functionalities 

within already running applications with different parameters.The behaviour trees enable users to define 

triggers that activate specific services' functionalities, without initiating or terminating the services 

themselves. This approach ensures a user-friendly method for modifying the operational logic, where users 

can interactively change the services to be triggered and adjust their parameters with ease. 

 

Figure 42. Behavior trees in aerOS. 

In this illustrative example of the application of behavior trees within the aerOS framework, showcasing their 

role in triggering functionalities across different aerOS domains. The behavior tree was strategically 

configured to initiate specific functionalities of service 1 within aerOS domain 1, as well as trigger 
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functionalities in service 2, which could be executed in an external aerOS domain 2. This cross-domain 

interaction demonstrated the interoperable design of the aerOS system and the flexible nature of the behaviour 

trees. 

In addition to the integration of behavior trees, Node-RED flows have been employed as another low-code 

tool within the aerOS project. Node-RED is a graphical programming tool that allows users to create and 

deploy applications through a browser-based interface. The integration of Node-RED flows into the aerOS 

system further enhances the system's flexibility and ease of use, complementing the capabilities provided by 

the behavior trees. 

Users will be able to leverage the intuitive, drag-and-drop interface of Node-RED to define custom workflows 

and integrate various functionalities within the aerOS ecosystem.  

This low-code approach will empower system administrators and users to rapidly configure and adapt the 

system's behavior without the need for extensive programming knowledge. 

 

Figure 43. Node-RED in aerOS 

As in the behavior tree’s example, the role of Node-RED is to trigger functionalities across different aerOS 

domains. This tool has been used within the MVP, as discussed in Chapter 3.2.5. 

The incorporation of behaviour trees and Node-RED thus represents a nuanced enhancement of the aerOS 

system's responsiveness and adaptability, providing users with powerful tools to influence the system 

behaviour dynamically while leaving the core orchestration responsibilities to the HLO and LLO. 

3.2.4.1. Generate skills from AsyncAPI for Low Code tools 

Within aerOS’ scope, two low-code tools were employed: Node-RED and Behavior Trees. Both platforms 

offer intuitive GUIs that facilitate the integration of interfaces and the management of data transmission using 

protocols such as ROS2, REST, MQTT, and other industrial standards. Code generators can be utilized to 

create specific blocks within these tools, significantly enhancing usability and streamlining development 

processes. 

 

Figure 44. Flow to generate low-code skills 

As can be seen in Figure 44, an AsyncAPI specification for the machine acts as the blueprint for generating 

these skills or blocks. This specification is transformed into C++ code for Behavior Trees or JavaScript code 
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for Node-RED. The generated blocks in the low-code tools represent specific robotic skills. Users can connect 

these skills or blocks via the GUI, efficiently deploying robust applications. 

To further streamline the process, AsyncAPI specifications for machines can be auto generated, offering 

significant benefits, particularly in brownfield environments where manually documenting existing interfaces 

in an AsyncAPI YAML file is both time-consuming and labour-intensive. For instance, in machines utilizing 

ROS2, the AsyncAPI specification can be automatically created using ROS2 interface files (.msg, .srv, 

.action), as detailed in the previous subchapter. Alternatively, information can be extracted from live 

monitoring tools, although this approach necessitates an operational machine to accurately capture real-time 

interface dynamics. 

3.2.5. Technologies and standards deployed in MVP 

Table 17. Technologies and standards deployed in MVP 

Technology/Standard Description Justification 

OpenAPI A specification for building and 

documenting RESTful APIs. 

Enables clear, standard-based documentation, 

simplifies API development, and increases 

interoperability. 

Web-based tool for 

OpenAPI (e.g., 

SwaggerUI/Redoc) 

Tools that provide visualization 

and interaction with OpenAPI 

documents. 

Facilitates easy access to API documentation 

for developers, promoting easy testing and 

reducing onboarding time for new 

developers. 

Code Generator (e.g., 

Swagger Codegen) 

Automated code generation tools 

that produce client and server 

code from an OpenAPI specifica-

tion. 

Speeds up the development process by 

generating boilerplate code for the MVP, 

allowing developers to focus on 

implementing unique business logic and 

speeding up time-to-market. 

Node-RED Graphical programming tool that 

allows users to create and deploy 

applications through a browser-

based, low-code interface. 

It provides a UI to send commands to a 

service and automatically publish the 

outcome of those commands into an IOTA 

block. 

3.3. aerOS service and resource orchestration 

3.3.1. Main functionalities 

3.3.1.1. aerOS continuum ontology entities as a single source of truth 

The aerOS continuum ontology described in section 3.1.3.1 of D4.2 has been designed having into 

consideration two essentials pillars in the aerOS architecture: (i) Domain federation and continuum 

management; and (ii) Decentralized orchestration. When it comes to aerOS orchestration, this ontology tries 

to facilitate the complex orchestration process in a distributed and decentralized environment such as the IoT-

Edge-Cloud computing continuum, so the initial Intention Blueprint (in TOSCA format), which includes 

information of the service orchestration requested by a user through the Management Portal, is translated into 

several NGSI-LD entities so as to avoid the requirement of deploying additional databases for storing these 

TOSCA files in each domain, leveraging the stablished aerOS Federation and Data Fabric to store and share 

these entities in a decentralized way. This conceptual data model will be enhanced to describe more important 

data that is being identified as the project moves further, such as advanced network or communication links 

among services, or storage requirements needed by services components. 

In the first iteration of the continuum conceptual data model, Service entities (e.g. an IoT service) are linked to 

a set of ServiceComponents (e.g. the IoT Edge and Central Cloud service components), which indeed are the 

core entities of the orchestration as the whole orchestration process is performed independently for each 
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ServiceComponent. In addition, these entities contain specific attributes that will be later used by the 

orchestrator components: location requirements, Service Level Agreements, execution information, etc. 

Moving to the specific interaction of aerOS orchestrator components (see section 4.3.2) with the ontology, 

HLO Data Aggregator uses the IErequirement attribute value to perform a preliminary filtering to select the 

candidate IEs that are able to run the component of a service in terms of computing resources, location, real-

time capabilities, …  Furthermore, the monitoring data of the IEs status is retrieved (IE entities) and sent to 

the HLO Allocation Engine, along with additional ServiceComponent running requirements (e.g. custom 

SLAs), to feed the Allocation AI Algorithm. After the allocation decision of this algorithm, the 

Implementation Blueprint (as a K8s Custom Resource) is sent to the selected LLO, which retrieves the 

execution information (container image, cli arguments, environment variables, network ports, …) included in 

the ServiceComponentArtifacts entity of the ServiceComponent to deploy the requested workload in the 

selected IE. Finally, the ServiceComponent entity is updated with the result of the orchestration process 

(deployed IE, status, …) to allow its further monitoring. 

3.3.1.2. High-level Orchestration components decomposition 

As described in deliverable D3.1, the High-level Orchestration part in the multi-level orchestration 

architecture is responsible for the smart placement of the services inside the federated domains taking into 

account the services requirements and the infrastructure constraints. It interacts with the Low-level 

Orchestration to communicate the final decision. 

Considering its complexity and the engagements of many partners in its development, the high-level 

orchestration has been decomposed into different components illustrated in Figure 9. Each component is 

responsible for specific duties of this orchestration level.  

The HLO Storage Engine is responsible for converting the user service definition in TOSCA format and 

transforms it into a set of data entities to be stored using NGSI-LD endpoint. 

The HLO Data Aggregation and Alert system is responsible for aggregating all the required data for the 

smart allocation. It also triggers the remaining stages in the placement process. 

The HLO Allocation Engine is responsible for the AI part in the HLO. It receives the services requirements 

and infrastructure elements constraints to provide the allocation decision. 

The HLO Deployment Engine is the component interacting with LLO and transforms the allocation decision 

from the HLO Allocation Engine and converts into a deployment request to the LLO.   

3.3.1.3. Multi-Low Level Orchestrators support for multiple resource 

orchestrators 

In the aerOS architecture, different types of infrastructure elements are considered to support rich types of 

compute resources such as Kubernetes clusters, limited compute modules such as Raspberry PIs etc.  From the 

D3.1 deliverable, Operators watching an aerOS-specific custom resource in the Low Level Orchestrator  

handle the actual deployments of so-called Service Components in these compute resources. 

The support of such resources requires flexibility and decoupling in the development of these operators.  

Depending on the containerization runtime deployed in the infrastructure element defining its type, a 

corresponding operator manages the deployment of service components. 

The components constituting two types of low-level orchestrators (dockerd and K8S) have been described in 

previous deliverables. It is important to note that each operator watches a different set of Service Components 

Custom Resources. To allow such separation, different kinds of Custom Resources Definitions are provided 

for each low-level orchestrator type but are consistent in their schemas. 
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3.3.1.4. Connectivity and energy support orchestration in aerOS continuum 

ontology 

The aerOS continuum ontology has provided the modelling tools for the internal functioning of the aerOS 

orchestration system. Nevertheless, certain models were missing but are important for the optimization of the 

allocations of Service Components into the IEs. In this regard, two modelling aspects were added. The first 

one being the connectivity, Network Link and Network Port have been added to the continuum ontology. They 

allow to model how Service Components in the current topology are connected, creating a network overlay 

that is automatically orchestrated as part of aerOS. These added concepts can also be augmented with 

optimization constraints such as latency and bandwidth. These allows further adaptation to the application 

nature of the user. The second one, related to energy ontologies have been added to accommodate two 

modelling needs. Energy efficiency has been integrated as part of the IE requirements and defines the required 

compromise between computation and energy of the running IE. The Energy Source ontology independently 

defines the percentage of green energy supplied to the infrastructure. The user can provide a minimum green 

energy requirement in the application blueprint. 

3.3.1.5. High-level Orchestration Allocator AI algorithm 

As part of the architecture of the HLO, the AI algorithms constitute the core of the smart mechanisms in the 

allocation of the services resources and deployed in the HLO Allocator. Any proposed AI algorithmic 

approach passes through different steps before final integration. 

1- Design of an AI algorithm for the continuum. 

2- Test and validation with simulation data. 

3- Input and Output adaptation for the HLO Allocator data formats. 

4- Final deployments and tests. 

In the context of aerOS, different algorithms have been designed, then tested and validated. However, due to 

the current stage of the project, only some of them have been able to be deployed over real data (those used in 

the MVPv2). Others have been developed and tested over simulated data (compliant with aerOS data models 

and structure). 

In the next pages, a summary of the algorithmic approaches developed can be found. 

- A Deep Reinforcement Learning (DRL) Allocator 

This has been the algorithm used in the MVPv2 validation of aerOS. Therefore, it has been the only one 

applied over a real, functional aerOS continuum (composed of three domains: CloudFerro (entrypoint), 

NCSRD and mobile domain). 

In this case, the development of a HLO Allocator AI Algorithm utilizing a Deep Reinforcement Learning 

(DRL) approach based on the stable-baselines3 framework was performed. The work encompasses the 

creation of a synthetic dataset for training the DRL model, the integration of the allocator into the HLO, and a 

performance comparison with a Mixed Integer Linear Programming (MILP) approach, which has been 

identified as significantly slower. The development adheres strictly to Machine Learning Operations 

(MLOps) best practices to ensure scalability, reproducibility, and maintainability. 

The decision to employ a DRL algorithm stems from the need for an efficient and scalable solution to the 

allocation problem within the HLO. DRL offers the ability to learn complex policies that can generalize over a 

wide range of scenarios, making it suitable for dynamic and diverse environments. Unlike traditional 

approaches such as Mixed Integer Linear Programming (MILP), which re-calculate the optimal allocation for 

every request, DRL shifts the computational overhead from online calculation to offline training through 

back-propagation. During inference, the allocation action is computed using a neural network, resulting in 

significantly reduced computational effort for each allocation request. 

In the context of the aerOS federation, which supports large networks and distributed systems across multiple 

domains, scalability is a crucial requirement. DRL enables higher scalability on a per-request basis, allowing 

for a larger number of devices within the same domain. For example, while a MILP approach with similar 

objectives requires approximately one minute to compute allocations for a network with 60 devices, our DRL 

https://stable-baselines3.readthedocs.io/
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approach requires less than one second. This translates to a saving of approximately 59 seconds per allocation 

request compared to MILP. 

The HLO Allocation Engine receives as input the service component to be placed and a pre-filtered list 

of IE candidates from the HLO Data Aggregation and Alert System, as defined in the protobuf message 

format. The DRL approach utilizes the service component definition, including its constraints, and the 

resources of an IE, such as memory usage, to minimize the expected latency between service components and 

the overall power consumption. The output of the HLO Allocation Engine is an allocation mapping between 

the service component and an IE, and optionally, the previous IE if the service was deployed previously. 

 

 

Figure 45. MLOps inference pipeline structure for the HLO Allocator AI algorithm. 

As illustrated in Figure 45, the HLO Allocation Engine based on an MLOps pipeline structure to ensure future 

scalability and maintainability has been implemented. The approach is divided into three main parts, each 

subcategorized into specific functions: 

- ML Foundation: 

o Redpanda Data Aggregator Endpoint: Collects data from the HLO Data Aggregation and 

Alert System. 

o Data Modeller: Structures and models the incoming data. 

o Data Schemer: Defines and manages the schema of the data for consistency. 

- ML Core: 

o Anomaly Handler: Detects and handles anomalies in the data. 

o Feature Engineer: Processes and transforms raw data into meaningful features for the model 

inference. 

o Data Validator: Ensures data quality and validity. 

o Model Inferencer: Performs inference using the trained DRL model. 

o Output Post Processor: Refines and formats the model output for downstream applications. 

- ML Auxiliaries: 

o Output API / Redpanda Broker: Manages communication and data exchange between HLO 

Allocator Engine and HLO Deployment Engine. 
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Figure 46. Deep Reinforcement Learning of the HLO Allocation Engine. 

In DRL, an agent learns to make decisions in a complex environment by interacting with it and receiving 

rewards or penalties for its actions, as shown in Figure 46. The goal is to learn a policy that maximizes the 

cumulative reward over time. The MaskablePPO algorithm is employed, a variant of Proximal Policy 

Optimization (PPO), which is a popular model-free, on-policy DRL algorithm. 

 

Concrete Example of DRL in HLO Allocation 

In the aerOS DRL approach, the action during inference is the selection of an IE for a given service 

component. For instance, the agent might select "IE 2" for the service component "Server". To prevent the 

selection of unsuitable IEs, such as those exceeding certain resource thresholds (e.g., IEs larger than "5"), 

action masking to exclude these possibilities is employed. The reward function is defined as: 

𝑅𝑒𝑤𝑎𝑟𝑑 = −∆𝑐𝑜𝑠𝑡 

The cost includes factors such as: 

• Latency between service components. 

• Estimated power consumption of the service component on the IE. 

• Penalty for CPU overload if the allocation would exceed the IE's CPU capacity. 

Since DRL algorithms aim to maximize the reward, multiplying the cost by -1 effectively turns the problem 

into a cost minimization task. The state and reward are used by the critic to train the actor neural network, 

which then selects the actions. By continuously interacting with the environment and receiving feedback 

through rewards, the agent improves its policy over time. 

Synthetic Dataset Generation for Training 

Although the environment is fixed and could, in theory, generate random states, training can be improved both 

in efficiency and time by using a pre-defined dataset that resembles real-world scenarios. To achieve this, a 

synthetic dataset with different-sized networks in a hierarchical form and services with one or more 

interdependent service components was generated. This dataset contains: 

- One hundred samples for each network size between 1 and 100. 

- Zero to 200 samples for services with 1 to 30 interdependent service components. 

By matching services with networks in the dataset, we can train the DRL model effectively. The pre-trained 

network can then be used for inference on actual allocation requests. 
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Multi-Tenancy Gaming approach from Slice Resource Provisioning perspective (theoretical)  

aerOS consortium suggested the investigation of the maximization of total profit for all users through a Profit-

aware Slicing Resource Provisioning approach with Multi-Tenancy Gaming (PS-MTG) algorithm, towards 

the orchestration of microservices across aerOS domains. In this context, the microservices are considered as 

Slicing Resource Provisioning due to its direct connection with mobile communications domain. 

The results of this work have been published in the article: “Profit-Aware Proactive Slicing Resource 

Provisioning with Traffic Uncertainty” 

A summary of this work is as follows: 

The proposed approach consists of two main steps. First, a Slicing Request Pre-Check Algorithm is developed 

to verify whether the slicing satisfies predefined conditions related to anticipated bandwidth requirements, 

slots, and wavelengths. After the pre-check, the set of slice requests that can be served by the tenant is 

determined. Next, the Slice-Tenant Matching for Credible Prediction Algorithm begins, involving a loop that 

matches tenants with users. Each user selects the most profitable tenant. If network congestion occurs after 

serving a user, the algorithm updates resource information and costs for all tenants before finalizing the match 

and updating the related costs, profits, and paths. 

The proposed profit-aware resource provisioning algorithm using a 14-node network was elevated. For this 

evaluation, 200 services are generated by intercepting and scaling real-world data, with the sliced data traffic 

constrained to a range of 0-10 Gbps. The delay for each slice is randomly selected within the range of 40 ms 

to 100 ms, with 10 ms intervals. AI-based (GRU-based) prediction, as discussed in (1), is used to make 

predictions and assess the credibility of the results. The experiment spans 24 consecutive time steps. The PS-

MTG algorithm achieved an overall accuracy of 7.26%, slightly trailing behind the FIX algorithm at 7.95%. 

However, PS-MTG offers a marginal advantage in terms of overall user benefit accuracy. Additionally, the 

refusal rate of sliced services across the different schemes was assessed. To highlight the algorithm's 

effectiveness, the services were intentionally overloaded, which resulted in a higher rejection ratio. Notably, 

the PS-MTG algorithm demonstrates the lowest service rejection rate, while the FULL algorithm consistently 

shows a high rejection ratio. In contrast, the FIX algorithm exhibits a fluctuating rejection rate, peaking at 

23%. 

- Adaptable Computing and Network Convergence algorithmic approach (theoretical) 

aerOS consortium proposed a fundamental framework called Adaptable Computing-Network Convergence 

(ACNC), designed to address the challenges of autonomous orchestration of cloud and network resources. 

ACNC is an ML-aided framework that integrates computing and networking resources to efficiently manage 

dynamic and voluminous user requests with stringent QoS requirements. Even though this algorithm has not 

been able to be deployed over aerOS infrastructure (due to several reasons), it is being further explored and 

has been tested over certain 6G infrastructure conditions.  

The results of this work have been published as a pre-print in arXiv: “Towards a Dynamic Future with 

Adaptable Computing and Network Convergence (ACNC)” 

A summary of this work is as follows: 

ACNC comprises several key components: 

• State Recognition and Context Detection: ACNC employs dimension reduction techniques to 

generate live, holistic, and abstract system states in a hierarchical structure. Continual Learning 

(CL) is used to classify these system states into contexts, each managed by dedicated ML agents. 

• Resource Orchestration: The framework includes an end-to-end orchestrator that collaborates with 

domain orchestrators (network and computing) to allocate resources efficiently. The orchestration 

process is closed loop, ensuring that resources are dynamically adjusted to meet changing 

demands. 

As the system size increases, ACNC has demonstrated over a simulated environment optimal performance in 

terms of energy consumption and total profit. The DDQL-GNN approach in ACNC, which uses Graph Neural 

Networks (GNNs), outperforms the standard Double-Deep Q-Learning (DDQL) approach, indicating the 

effectiveness of incorporating graph-shaped system states in decision-making.. 

https://ieeexplore.ieee.org/document/10622595
https://ieeexplore.ieee.org/document/10622595
https://arxiv.org/abs/2403.07573
https://arxiv.org/abs/2403.07573
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Predicting Network Metrics for Managing Mobility and Reallocation (theoretical) 

aerOS consortium proposed a prediction-based intelligent network analytics framework so that the allocation 

of microservices can be done based on the forecasted behaviour of the network. Anticipating user demand and 

network conditions, would enable proactive adjustments by HLO in aerOS whenever deploying services. 

Since this approach has not been validated over real aerOS continuums, the demonstration is supported over 

6G theoretical infrastructure, including historical data. 

The results of this work have been published as a scientific article: “Network Slice Mobility for 6G Networks 

by Exploiting User and Network Prediction” 

A summary of this work is as follows: 

The work exposed operated within a distributed Cloud-edge-IoT environment, where resource predictions 

guide decisions on scaling, migrating, or reallocating services. By prioritizing high-value services and 

leveraging complementary load profiles across servers, the approach ensures that resources are utilized 

efficiently while reducing the costs associated with mobility/reallocation. It assumes a time-slotted system and 

uses traffic prediction methods to obtain accurate prediction information. The scheme prioritizes based on 

their importance and uses the prediction information to decide on scaling up/down or migrating slices to 

different servers. 

Anomaly Prediction and Resource Allocation (theoretical) 

aerOS consortium proposed a framework to locate the potential microservices/slices anomalies and decide the 

resource allocation strategies simultaneously by predicting the users’ future requests. Although departing from 

a slice-only perspective, the alignment with aerOS was permeated across this effort, so that the inner dynamic 

adjustment (e.g., slice splitting, merging, and scaling) can be applied.  

Also, building on top of the work n T3.5 of aerOS (self-awareness), this approach, by monitoring the running 

status of physical/virtual nodes, the connectivity of physical/virtual links, and the latencies of different service 

function chains in the sub-slices level and slice level, slice anomaly detection can improve the users’ quality 

of service/experience (QoS/QoE) by ensuring users’ specific requests for resources, service latencies, 

computing capacities, and content availabilities. 

The results of this work have been published as a scientific article: “User Request Provisioning Oriented Slice 

Anomaly Prediction and Resource Allocation in 6G Networks” 

Markov-Decision Process as the based for joint Service Migration and Resource Allocation in 

Edge IoT System (theoretical) 

aerOS team also proposed a comprehensive approach to address the joint optimization of service migration 

and resource allocation in Cloud-Edge-IoT computing continuums. Here, the approach had as main target to is 

to minimize access delay while maintaining service continuity for IoT users in a dynamic environment 

characterized by user mobility and constrained edge server resources. 

The results of this work have been published as a scientific article: “Joint Service Migration and Resource 

Allocation in Edge IoT System Based on Deep Reinforcement Learning” 

. The proposed methodology relies on a deep reinforcement learning (DRL)-based algorithm to dynamically 

adapt to changes in system conditions and user requirements. The problem of allocation is formulated as a 

Markov Decision Process (MDP) with defined states, actions, and a reward function. The state includes 

information about predicted user locations, edge server resource availability, and user-server associations. The 

actions consist of binary migration decisions and continuous resource allocation parameters. The reward is 

designed to incentivize minimizing total task processing delays. The algorithm offers a scalable and intelligent 

solution for optimizing service migration and resource allocation in aerOS computing continuums. Its 

integration of mobility prediction, hybrid action space handling, and DRL-based optimization ensures 

enhanced service continuity, reduced delays, and improved resource utilization. 

A Priority-Aware Energy-Efficient Approach for Latency-Sensitive Applications (theoretical) 

https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10279739
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10622281
https://ieeexplore.ieee.org/document/10317883
https://ieeexplore.ieee.org/document/10317883


D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 64 of 97 

aerOS consortium proposed a priority-aware solution for the autonomous orchestration of cloud and network 

resources that had as basis the configuration of 6G networks. Applicability to aerOS would be demonstrated in 

a future initiative.  

The results of this work have been published as a pre-print in arXiv: “ORIENT: A Priority-Aware Energy-

Efficient Approach for Latency-Sensitive Applications in 6G” 

A summary of this work is as follows: 

The approach is designed to address the joint problem of service instance placement and assignment, path 

selection, and request prioritization, collectively referred to as PIRA (Placement, Instance Assignment, 

Request Prioritization, and Allocation). The primary objective is to maximize the system's overall profit, 

defined as a function of the number of concurrently supported requests, while minimizing energy consumption 

over time. This is achieved while considering end-to-end latency requirements and resource capacity 

constraints. The proposed approach leverages a combination of Double Dueling Deep Q-Learning (D3QL) 

and GNNs to encode the state of the system and make optimal resource allocation decisions. The solution is 

particularly suited for latency-sensitive applications in 6G, where stringent QoS requirements must be met 

efficiently, however, as mentioned, it would be for interest in the regular aerOS implementation cases.  

Customizable Hybrid Isolation for Vertical Slicing approach (theoretical) 

aerOS consortium proposed a novel flexible hybrid isolation model and addresses challenges in slice resource 

provisioning with uncertain traffic in transport networks. After this scientific work under task T3.3 of aerOS, 

that targets resource (mobile network slices) allocation, a dynamic programming algorithm efficiently handles 

grouping, and an iterative adjustment algorithm fine-tunes resource allocation based on probabilistic analysis. 

The results of this work have been published as a scientific article: “Probabilistic-Assured Resource 

Provisioning With Customizable Hybrid Isolation for Vertical Industrial Slicing” 

Multi-Agent Actor-Critic (MAAC) algorithm for Heterogeneous Edge Caching Learning with 

Attention Mechanism Aiding approach (theoretical) 

aerOS consortium proposed a novel multi-agent, neighbour-aware actor-critic (NAC) framework, inspired by 

the Multi-Agent Actor-Critic (MAAC) algorithm was developed in order to optimize edge caching strategies. 

The work uses an attention-based multi-agent caching replacement strategy. Agents can learn from 

neighbouring Base Stations (BSs), improving caching decisions through shared knowledge. Consequently, 

caching states can be exchanged between BSs, facilitating better information sharing, such as content size and 

type. In this approach, both time and space factors were incorporated as observations to analyse the influence 

between BSs through the critic network, using an attention mechanism. Each BS, acting as an agent, has its 

own critic network and can observe the historical caching states of neighbouring BSs. This process combines 

distributed local training with centralized global learning. 

The results of this work have been published as a scientific article: “Heterogeneous Edge Caching Based on 

Actor-Critic Learning With Attention Mechanism Aiding” 

Joint Network Slicing, Routing, and In-Network Computing approach (theoretical) 

aerOS consortium proposed a slicing-based solution for the autonomous orchestration of computing 

continuum network resources, particularised in next-generation mobile networks.. The solution involves 

formulating a Mixed-Integer Linear Programming (MILP) problem that considers end-to-end capacity and 

QoS constraints. Given the NP-hard nature of the problem, a heuristic algorithm is proposed, WF-JSRIN 

(Water Filling-based Joint Slicing, Routing, and In-Network Computing), which provides near-optimal 

solutions with significantly reduced execution times compared to optimal approaches. This makes it highly 

suitable for practical real-world applications, particularly in the context of autonomous resource orchestration. 

The goal was to align with aerOS principles and to maximize the number of accepted users while minimizing 

energy consumption, thereby ensuring sustainable and efficient network operations 

The results of this work have been published as a scientific article: “Joint Network Slicing, Routing, and In-

Network Computing for Energy-Efficient 6G” 

https://arxiv.org/abs/2402.06931
https://arxiv.org/abs/2402.06931
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/9940477
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10079172
https://ieeexplore.ieee.org/document/10571186
https://ieeexplore.ieee.org/document/10571186
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3.3.2. Structure diagram 

 

 

Figure 47. aerOS High-Level Orchestration Components 

 

Table 18. aerOS High-Level Orchestration Components’ description 

Component Description Interactions 

HLO Storage Engine Component of the High-Level 

Orchestrator (HLO) exposing a 

REST endpoint responsible for 

receiving IoT service LCM 

(deployment, update, delete) 

requests. These requests originate 

Management portal, located in entrypoint 

domain. Receives TOSCA descriptor through 

REST endpoints. 

Orion CB, to which it pushes (using ngsi-ld 

API) service requirements. 
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from the aerOS entrypoint domain 

in TOSCA format and are 

translated into the internal aerOS 

data model, represented in NGSI-

LD format. 

Internal breakdown includes, 

HLO FE EP (HLO Front end 

endpoint) is exposing REST API 

and HLO FE Handler 

implements the business logic of 

this component, including data 

validation, translation, storage.  

Data Aggregator is triggered to proceed 

with the orchestration pipeline, utilizing the 

Redpanda message broker with protobuf 

formatted data. 

HLO Data 

Aggregation and Alert 

System 

Component of the High-Level 

Orchestrator (HLO) responsible to 

receive service deployment or 

migration requests and 

subsequently filter and retrieve, 

from data fabric, all computing 

resources (aerOS IEs) capable to 

support service requirements. 

Internal breakdown includes Data 

Aggregator, which is responsible 

to receive service requirements, 

filter and retrieve capable IE 

information and forwards all this 

information to HLO Allocation 

engine. 

IE resource alert end point, 

responsible to receive alerts from 

IEs self-orchestration component 

regarding service component 

migration. 

IE resource alerts handler, 

responsible to forward service 

component, that needs to be 

migrated, id to Data aggregator 

(again using Redpanda and 

protobuf format). 

HLO Storage Engine, from which it 

receives service deployment request, when 

event is triggered through Redpanda message 

broker (with protobuf formatted payload). 

Self-orchestration component which triggers 

event, also through Redpanda message broker 

with protobuf formatted payload, with 

information of service component that needs 

to be migrated to other aerOS computing 

resource (IE). 

Local Orion-CB (part of aerOS data 

federation) is queried using filtered requests 

based on service component requirements, to 

retrieve IEs, across all aerOS continuum, 

capable to host newly deployed (or migrated) 

service component.   

HLO Allocation Engine to which it 

forwards service components requirements 

and list of IE capable to host each 

component. This information is conveyed 

using Redpanda message broker in a protobuf 

formatted message. 

HLO Allocation 

Engine 

Component of the High-Level 

Orchestrator (HLO) implementing 

smart algorithm which enables the 

most efficient allocation of each 

service component to the most 

suitable aerOS IE and forwarding 

decision to next orchestration 

level. 

Since all input and output is going 

through Redpanda message broker 

and is modeled using protobuf 

formatted messages, a variety of 

implementations may exist, and 

HLO Data Aggregation and Alert System 

(specifically Data Aggregator sub-

component) is contacting, asynchronously, 

HLO Allocation Engine using Redpanda and 

submitting protobuf formatted messages 

including information about service 

components and candidate IEs for each of 

them. 

HLO Deployment engine is contacted, from 

HLO Allocation Engine, using Redpanda and 

submitting protobuf formatted messages 

which include selected IE id, LLO id, service 

component id. 
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internal components (e.g. data 

engineering, feature cleaning, 

specific AI algorithm, etc.) are 

specific to each of them. 

 

HLO Deployment 

Engine 

Component of the High-Level 

Orchestrator (HLO) receiving (de-

)allocation decision, and which 

can identify and addressing LLO 

which is responsible to access 

selected IE. 

If a link between referenced IE 

and service component exists, it is 

identified as a delete request 

otherwise it is a deploy request. 

If LLO, responsible for selected 

IE, is located internally, to current 

aerOS domain, request is 

forwarded to local domain 

allocator otherwise it is sent to the 

aerOS domain to which LLO, 

responsible for the selected IE, is 

located. So LCM requests arrive 

through Redpanda (message 

broker) and then allocation request 

is submitted in REST API, also 

exposed by this component. This 

API can be accessed either 

internally for local deployments, 

or from other domains for 

deployments (or migrations) 

decided in other domains of the 

continuum.  

All updates regarding IEs and 

service components decisions 

(de)allocations are sent to local 

CB to keep aerOS continuum state 

updated.   

Based on the above functional 

description, the components 

internal to HLO Deployment 

Engine are: 

Inter-domain 

Allocation/Migration Manager, 

which is the sub-component 

receiving decision from HLO 

Allocation Engine, accessing 

Deployment API (either locally or 

to external domain) and updates 

state of local domain by 

submitting Orion-CB ngsi-ld API. 

HLO Allocation EP, which 

HLO Allocation Engine, is sending selected 

IE for specific service component and related 

LLO information, elaborating Redpanda 

message broker and protobuf formatted 

messages. 

Exposed HLO Deployment Engine API 

(HLO Allocation EP) is accessed from 

Inter-domain Allocation/Migration 

Manager (either form local or a remote one) 

receiving IE and LLO id and service 

component data. 

LLO, is receiving, from HLO Deployment 

Engine, service definition template (CRD). 

Orion-CB Rest API, is accessed from HLO 

Deployment Engine, for updating domain 

status based on decisions and LCM 

performed. 
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exposes Rest API for LCM actions 

on indicated service component 

and connected IE. 

Local Allocation Manager, 

responsible to transform service 

requests to CR and forward this to 

the proper LLO which is 

connected with the selected IE. 

IE LLO (Low Level 

Operators) 

This component acts as a thin 

layer abstracting all heterogeneous 

computing resources (aerOS IE) 

access. 

Low level orchestrators have the 

knowledge of accessing specific 

selected computing resources (IEs) 

within each aerOS domain. Upon 

receiving service definition 

templates, they access actual 

computing resources for 

workloads LCM activities (create, 

destroy, update). 

Receive Service Definition Templates 

(CRDs) from HLO Deployment Engine. 

Receives Implementation Blueprints 

custom K8s resources from HLO 

Deployment Engine. Depending on the 

information included in these blueprints 

and on the LLO type (K8s, Docker, …) it 

will deploy the requested workloads in the 

selected IEs,  

Access computing resources (IEs) for 

workloads (service component deployments). 

 

 

Figure 48. aerOS Multi Low-Level Orchestration Components 
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Table 19. aerOS Multi Low-Level Orchestration Components’ description 

Component Description Interactions 

 

Local Allocation 

Manager 

The Local Allocation Manager 

sits behind the HLO Allocation 

Endpoints and receive requests 

from the Inter-domain 

Allocation/Migration Manager. 

Its role is to manage the allocation 

of the service components in a 

specific infrastructure element of 

the domain. 

The Local Allocation Manager interacts 

with the Operator inside the Low Level 

Orchestrator by submitting Custom 

Resources of different types to it, depending 

on the target infrastructure element for the 

deployment. 

Low Level 

Orchestrator 

At the Low Level Orchestrator, 

different deployments requests for 

the target infrastructure element 

type are received from the Local 

Allocation Manager through 

Custom Resources submission.  

Depending on Custom Resources 

data, deployment requests to target 

infrastructure element type are 

generated. 

The Operator inside the Low Level 

Orchestrator watches the Service 

Components Custom Resources of the 

corresponding type. 

The Operator then manages the deployments 

by submitting different types of requests to 

the corresponding infrastructure element. 

Infrastructure 

Element 

Depending on the type of 

infrastructure element (e.g. 

dockerd or K8s), it receives 

compatible service components 

deployments requests from the 

corresponding operator.   

N/A 

 

 

3.3.3. Technologies and standards deployed in MVP 

Table 20. Technologies and standards deployed in MVP 

Technology/Standard Description Justification 

Protobuf A language-agnostic data 

serialization format developed by 

Google. It's a binary serialization 

format used to efficiently serialize 

and deserialize structured data and 

it is commonly used for 

communication between different 

services or systems. 

It has been chosen for the communication of 

HLO components as it provides: 

Efficiency and performance benefits, as a 

binary format is more compact than JSON, 

XML and other human readable commonly 

used formats making it less demanding in 

transfer and faster in processing. 

It is language agnostic; message structures 

are defined using a neutral interface 

description language. 

Code generation is automated with the use 

of available tools for every programming 

language. 

It is easily extensible also without breaking 

existing implementations if fields are added 



D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 70 of 97 

providing thus compatibility. 

The main benefit, based on all the above, is 

that it provides independence in components 

development, so all partners working on all 

HLO/LLO different components can work 

without waiting one another or having to get 

informed about APIs. 

Redpanda event 

streaming platform. 

Platform which provides high-

performance distributed event 

streaming capabilities, enabling 

messaging and data streaming 

based on a defined API. 

Offers the capability to trigger events and 

stream data that should be processed when 

these events rise. 

It provides a well-known and defined API for 

clients to stream or receive events and data. 

Development language neutral as all 

programming languages offer their 

implementing libraries. Light implementation 

as compared to Kafka. 

Decouples components and provides the 

capability to later expand the list of 

components that might need to subscribe to 

events and act accordingly. The choice of 

Redpanda provides to the development 

teams, working on different HLO/LLO 

components, to proceed independently and 

bind components dynamically. 

Python Fastapi A web framework for building 

APIs with Python based on 

standard Python type hints. It is 

designed to be easy to use, 

efficient, and to provide automatic 

validation and documentation of 

API endpoints. 

It is used for the implementation 

of HLO REST APIs as needed in 

HLO FE EP and HLO 

Allocation EP components. 

Provides support for fast REST endpoints 

implementation. 

Natively provides asynchronous support. 

Enables strong typing and validation for 

input and output data. 

Produces automatic API documentation, by 

generating interactive OpenAPI and JSON 

Schema documentation based on the Python 

type hints used within code, enabling thus 

testing and understanding. 

confluent-kafka-

python 

confluent-kafka-python provides a 

high-level Producer, Consumer 

and AdminClient compatible with 

all Apache Kafka brokers >= v0.8. 

Confluent-Kafka python is backed by 

counfluent which is the leading company 

regarding Kafka, also it is good for redpanda 

cause it’s 100% Kafka compatible, also 

another important aspect is the community 

and documentation, because it is the most 

used library in python regarding interacting 

with Kafka/redpanda. 

Operator SDK Go is a simple and efficient 

programming language developed 

by Google, which is used in most 

of the cloud-native developments 

(e.g. Kubernetes is written in Go). 

The Operator SDK is an open-

source toolkit for Go to manage 

(build, test and package) 

Low level orchestrators are based on 

Kubernetes operators, so the most used and 

mature framework for developing them 

should be tested and used, among other 

alternatives. Furthermore, it uses Go, which 

is the most common language for building 

K8s native applications. 
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Kubernetes Operators. 

Orion-LD Open-source implementation of 

an NGSI-LD Context Broker. 

This component is responsible for 

managing and providing real-time 

contextual information about 

various entities and their 

environments. In aerOS, the 

continuum will be represented and 

monitored through this contextual 

information. 

Federated instances of Orion-LD will be in 

charge of retrieving all the needed data in the 

orchestration process from the continuum. 

 

3.4. Cybersecurity components 
The definition of aerOS AAA, namely Authentication, Authorisation, and Accountability, shows the 

importance of creating a comprehensive security framework that ensures secure access, trust and transparency 

in the project's resources. The embodiment of these concepts and their integration into the project was realized 

through the technical implementations carried out in Task 3.4. More specifically, the terms Authentication and 

Authorisation were covered by the aerOS IDM, while Accountability by the aerOS Secure API gateway. The 

combination of these three concepts through the technical implementation enhance data security and ensures 

operational integrity from insider threats or external attacks. 

The following subsections describe the final result developed in task 3.4 since D3.2, namely during the 

months M19-M30. More specifically there is a thorough description of the components, an architectural 

diagram of aerOS AAA infrastructure which illustrates the relationships between the components, and a final 

subsection which describes the technologies and protocols deployed in MVP v2. 

3.4.1. Main functionalities 

As aforementioned, the aerOS Identity Management (IdM) and aerOS API Gateway components are essential 

for ensuring secure and efficient operation within the aerOS ecosystem, each serving a different purpose. The 

main objective of the aerOS IdM is to provide secure and dependable authentication and authorization for 

aerOS clients. Also, it prevents unauthorized access, by implementing advanced security mechanisms, such as 

token-based authentication and Single Sign-On (SSO) through the usage of OpenID Connect (OIDC). 

Additionally, it enforces Role-Based Access Control (RBAC), assigning users specific roles that determine 

their access to resources and data, thereby aligning access privileges with organizational policies.  

The API Gateway is designed to provide a centralized entry point for all interactions with aerOS components. 

Its purpose is to streamline communication, eliminate redundancy from multiple access points, and enforce 

security policies. It applies access controls defined by the IdM system based on user roles and groups. 

Additionally, the API Gateway plays a critical role in safeguarding the aerOS Data Fabric by managing API-

level security and preventing unauthorized interactions, ensuring the integrity and confidentiality of the 

system’s data.  

The progress of aerOS IdM and aerOS API Gateway is described in the following sub-sections. 

3.4.1.1. aerOS Identity and Access Management 

The Identity and Access Management (IAM) of aerOS, as discussed in D3.1, has been based on Keycloak14, 

while the authentication and authorization has been performed using the OpenID Connect (OIDC) protocol 

and access has been granted to aerOS users based on their roles (i.e., Role-based Access Control). Keycloak, 

 

14 https://www.keycloak.org/  

https://www.keycloak.org/
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OIDC, and RBAC thoroughly presented in D3.1; hence, in D3.3 there is no further elaboration on these tools 

and protocols.  

In this deliverable, the advances in IAM are discussed presenting the intermediate implementation of 

Keycloak, OIDC, and RBAC. Furthermore, enhancing the IAM of aerOS the consortium decided to 

implement Keycloak with OpenLDAP15 in order to enhance the adoption of aerOS IAM by stakeholders since 

with this approach all the user information of an organization can be federated automatically from the LDAP 

directory without needing to pass the user information to the aerOS IAM (e.g., Keycloak) manually, as it can 

be seen in Figure 49.  

 

Figure 49. Synchronisation of OpenLDAP users in Keycloak. 

In the following it is described the setting up of Keycloak as well as the main functionalities of IAM such as 

the authentication and authorization using OIDC protocol, the RBAC, and the federation with OpenLDAP.   

The aerOS user roles that have been deployed so far to support the RBAC activities are the listed below (after 

analysing the needs of the project, the users have been updated): 

• Continuum administrator: can access all the aerOS services, generate new deployments, access all the 

data (read only) and is able to generate new users. 

• Data product owner: can create new data sources that will be integrated in the domain. 

• Vertical deployer: can deploy new services in his domain. 

• aerOS user: can consume the data of his domain, but it has not any permissions to create new data or 

change the configuration of the domain. 

In order to facilitate the installation of the aerOS IdM, a new version of OpenLDAP has been packaged in a 

Helm chart where the default users defined in the project have been created. Once the first Keycloak 

connection to the OpenLDAP has been set up, the new users/groups/roles are managed directly from the 

Management Portal. Figure 50 shows the groups that have been generated in OpenLDAP and that can be 

visualised in Keycloak by means of the federation that has been programmed. As the groups are generated 

using the Management Portal, it has been decided to only generate a Default group in the first OpenLDAP 

installation. 

 

15 https://www.openldap.org/  

https://www.openldap.org/
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Figure 50. Groups generated for 2nd MVP in OpenLDAP (and federated in Keycloak) 

Figure 51 shows the roles generated by default in the OpenLDAP image and the federation of the OpenLDAP 

image in the Keycloak. In Figure 14 the same can be seen with the default generated users. 

 

Figure 51. Roles generated for 2nd MVP in OpenLDAP (and federated in Keycloak) 
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Figure 52. Users generated for MVPv2 in OpenLDAP (and federated in Keycloak) 

3.4.1.2. Secure API Gateway  

aerOS is comprised by multiple APIs that form the innovative meta-OS that is designed and developed in the 

project. However, these APIs do not incorporate security mechanism to tackle security threats, such as 

unauthorized access. Thus, one of the most essential elements of the aerOS architecture is the Secure API 

Gateway. The Secure API Gateway simplifies the process of exposing the various aerOS APIs by providing a 

unified exposing interface and offering advanced features for secure API management and performance, such 

as omitting unauthorized users from accessing the aerOS APIs. Based on these observations the KrakenD API 

Gateway is employed in aerOS to both enhance the aerOS cybersecurity capabilities by ensuring the security 

of all aerOS APIs. The rest of the section elaborates on the implementation of KrakenD in aerOS ecosystem 

and provides insights about its integration with the other aerOS components. 

KrakenD is a stateless, distributed, high-performance effective Open-Source API Gateway written in GO that 

is used to fill the architecture gap about the gateway. It is used in aerOS to provide security to the API’s that 

may be exposed to the Internet as well as control which users have access to which API’s and which endpoints 

in said API’s. This control is determined according to the roles and groups established in the Identity 

Management component. Another objective of the gateway in the project is to homogenise the entry point to 

access all the resources, so the different components can access all the API’s from the same place. KrakenD 

was also chosen for its capability to modify the incoming and outgoing traffic to suit specific needs, as well as 

making additional internal petitions and verifications with added scripting support. The following figure from 

the KrakenD Community Edition Documentation website16 showcases these features: 

 

16 https://www.krakend.io/docs/overview/  

https://www.krakend.io/docs/overview/
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Figure 53. KrakenD and its capabilities 

KrakenD has been successfully deployed in the entrypoint domain of the MVPv2, alongside with the 

Keycloak IAM. The integration between Keycloak and KrakenD has been performed, as well as integration 

between KrakenD and the backend elements (i.e., aerOS APIs). Furthermore, a federated OpenLDAP 

database was agreed upon to act as the database for the IAM (see Section 4.4.1.1) and was subsequently 

integrated into the Kubernetes cluster. KrakenD was expanded so only certain allowed testing roles are 

allowed to access the backend, Ingress compatibility has also been installed in the cluster and KrakenD is 

ready and could be exposed for testing. Additional functionalities were added as time went on and the 

different components required extra endpoints such as the implementation with the federator, the aerOS Portal 

and IOTA. A simplified installation process via helm charts has been integrated alongside the new installation 

instructions. Connection to the Keycloak to retrieve user tokens is still necessary although token caching has 

been implemented to reduce latency. 

3.4.2. Structure diagram 

Figure 16 illustrates the aerOS authentication, authorization, and access control procedure along with the 

relevant components that are implemented. In the presented scenario, the client (e.g., a user) is authenticated 

in the management portal that redirects the authentication request to Keycloak IAM, which retrieves user 

information from OpenLDAP. Afterwards, Keycloak responds with the ID token, which is deployed by the 

client to request access to an aerOS API. The request pass through KrakenD that validates the ID token with 

Keycloak and grants access to the API. In case that the ID token is invalid, namely the role of the client does 

not allow access to the requested API, the access is blocked.    

 

Figure 54. aerOS Authentication, authorization, and access control 
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Table 21. List of cybersecurity tools 

Component Description Interactions 

Client Any deployed element within the 

aerOS continuum that wants to 

access a protected endpoint. 

The client obtains an ID token from 

Keycloak and then makes the petition to the 

API using the ID token. 
Keycloak (IAM) Responsible for implementing the 

authentication and authorization of 

aerOS users. 

KrakenD GW API to validate the ID token. 

OpenLDAP to retrieve user information and 

support user federation. 
OpenLDAP (user 

federation) 

Registry that contains user 

information. 

Keycloak to send user/group/role 

information. 

KrakenD (API GW) Access control and management of 

aerOS APIs. 

Receives petitions from the client, verifies 

the ID token with Keycloak and if it is valid, 

allows access to aerOS APIs. 
API An aerOS API, such as OrionLD, 

HLO, etc. 

KrakenD that manages the access to all 

aerOS APIs. 

 

3.4.3. Technologies and standards deployed in MVP 

The aerOS AAA components have been deployed in the MVPv2 in order to demonstrate the cybersecurity 

capabilities and protection mechanisms for a user that wants to access the OrionLD API. In this set up, all the 

aerOS APIs are protected by the KrakenD API Gateway that validates the access requests and allows or 

blocks the access based on the aerOS RBACs. In order to accomplish this, as presented in Figure 55, KrakenD 

retrieves the access token from the IAM, using its public IP, as well as the special API endpoint created to get 

the tokens. 

 

Figure 55. KrakenD retrieving access token from Keycloak 

Afterwards, as depicted in Figure 56, the access token could be used to access an aerOS API, such as Orion-

LD endpoint. 
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Figure 56. Deploying token to access an aerOS API 

Table 22. Tools deployed in the MVP 

Technology/Standard Description Justification 

Keycloak Detailed in D3.1. Detailed in D3.1. 

OpenID Connect Detailed in D3.1. Detailed in D3.1. 

OpenLDAP An open-source implementation 

of the LDAP protocol. 

Free and open-source tool that can be 

integrated with Keycloak provide user 

federation capabilities. 

KrakenD Detailed in D3.1. Detailed in D3.1. 

RBAC Assigning permissions to aerOS 

entities based on the roles of 

aerOS users. 

It is a well-known access control mechanism 

that can be easily applied is aerOS due to its 

distinct user roles. 

3.5. Node’s self-x and monitoring tools 

One of the main features of aerOS is the wide variety of IEs that exist across the computing continuum. This 

variety depends on its physical components, its operating system, its capabilities and even its location on the 

continuum. One of the objectives of aerOS is to achieve all these nodes autonomously, that is, they can func-

tion without human interaction. This particularity allows the IEs that exist in the continuum to execute actions 

and decisions autonomously, in addition to being able to monitor their health status in real-time. 

This section of the document describes the characteristics that the aerOS nodes shall have to be able to exe-

cute certain operations. These IEs are described by a set of attributes and are considered independent entities 

in the continuum that can execute workloads and perform internal functionality to report or modify their state 

towards the continuum. Making the IEs of the continuum more autonomous allows it to be more reliable in the 

event of outages in part of the network or services. 
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The following subsections describe the updated functionalities that have been designed for aerOS IEs, the 

architectural diagram of a node's self-capabilities and relationships between components, and the technologies 

and standards deployed in the MVP. This section corresponds to the evolution and developments carried out 

in the aerOS task T3.5. 

3.5.1. Main functionalities 

To allow nodes that connect to the aerOS compute continuum to be autonomous, they need to have certain 

capabilities. These features are offered through the aerOS self-* capabilities suite to all IEs that connect to the 

continuum, which are: 

• Self-awareness: considered one of the main self-* capabilities of an autonomous system, this compo-

nent analyses and obtains information from the node, continuously monitoring its health status and 

workload. Due to the need to offer real-time information on the status of the IE, this module is subdi-

vided into two components, which are executed continuously. One (power_consumption) is in charge 

of obtaining the energy consumption of the node, which requires more computing time. The other 

(hardware_info) is responsible for obtaining the rest of the parameters. The component that obtains 

the power consumption needs an average of 20-25 seconds per execution to obtain new valid values 

and the other only needs about 3-15 seconds to update its information, depending on the amount of in-

formation to be collected by the sub-module. This amount is specified by environment variables in the 

sub-module deployment files. The purpose is to provide updated information to the rest of the self-* 

capabilities as fast as possible to modify the operation of the IE, if necessary. Currently, this self-* 

capability is able to obtain the following information from each node: hostname, addresses (internal 

IP and MAC), CPU (architecture, number of cores, max frequency and current usage), RAM (total 

capacity, available capacity and current usage), disk (type, total capacity, available capacity and cur-

rent usage), network (speed up, speed down, traffic up, traffic down and lost packages), power con-

sumption (current and average), capability to execute workloads in real-time and operating system. To 

obtain all these parameters, both sub-modules use external packages and libraries such as PowerTOP, 

iproute2, psutil, getmac or speedtest-cli, as detailed below. On the other hand, each sub-module has a 

REST API that allows the sampling frequency of the information in each node to be set independent-

ly. This makes it possible to optimise the operation of the node within the domain to which it belongs 

and reduce the consumption of resources. Below are screenshots of the two sub-modules running on 

the continuous development and integration cloud infrastructure of the project (provided by partner 

CF). 

 

 

Figure 57. Hardware info sub-module running on a test cluster of infrastructure 

 

Figure 1. Hardware info sub-module running on a test cluster of infrastructure 
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• Self-orchestrator: considered one of the main self-* capabilities of an autonomous system, this com-

ponent is composed by a Rules Engine, a Facts Generator, a Trigger and wrapped by a REST API. It 

is capable of managing facts, rules and alerts, obtaining information from the self-awareness, self-

realtimeness, self-healing and self-optimisation and adaptation modules to send warnings about prob-

lems in the IE to the aerOS EAT (Embedded Analytics Tool) of the domain, with the goal to improve 

the management and coordination of their own workloads. This improves the scalability of tasks and 

reduces the number of errors that occur during task execution. This self-* capability uses libraries 

such as json-rules-engine or jsonschema, as detailed below. 

In order to be able to manage the rules for detecting faults, malfunctions or anomalous situations 

within a node, the module exposes a REST API that allows CRUD (Create, Read, Update and Delete) 

operations to be performed on these rules. Moreover, by means of persistent storage in the node, this 

module maintains an updated backup copy of the rules to restore them to their last state in case of 

failure in the IE. 

On the other hand, this REST API also allows to receive alerts in a predefined format coming from 

other self-* modules in order to carry out the necessary corrective measures through the aerOS EAT. 

In addition, when a rule is triggered or an alert is received at the corresponding REST API endpoint, a 

message is sent to the domain's IOTA hornet node to register the event. 

Below is a screenshot of the module running on the continuous development and integration cloud 

infrastructure of the project (provided by partner CF). 

 

Figure 58. Power consumption sub-module running on a test cluster of infrastructure 

 

Figure 2. Power consumption sub-module running on a test cluster of infrastructure 
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• Self-security: developed using Suricata (open-source network analysis and threat detection software), 

it monitors traffic logs in real-time from the network card to detect threats and abnormal behaviours 

through Log Monitoring module. The ETL (Extraction, Transformation, Load) processing module 

then collects the security logs, converts them into structured JSON format and sends alerts to an end-

point (Trust Manager). These alerts allow to discover different types of network attacks to detect vul-

nerabilities and threats at the IE level. An API has also been created so that the Trust Manager can 

make requests each week, with the intention of collecting the alerts for the whole week and saving 

them in the history. The alerts generated by self-security are deleted once a week by a new service 

with the intention of minimising the space that this component occupies on disk.  

Below is an example of the alerts generated by the self-security running on the continuous 

development and integration cloud infrastructure of the project (provided by partner CF). 

 

Figure 60. Self-security alert example 

 

• Self-API: this self-capability consists of a global API deployed in each IE of the aerOS continuum 

that exposes the functions that can be executed on the rest of the self-* capabilities installed on the 

node, controlling the input and output data flows.  

Below is a screenshot of the self-API module running on the project's continuous development and 

integration cloud infrastructure (provided by partner CF): 

 

Figure 59. Self-orchestrator module running on a test cluster of infrastructure 
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Figure 61. Self-API module running on node-8 of test K8s cluster-2 of infrastructure 

• Self-healing: capability of autonomously recovering affected parts of the system both at the hardware 

and software level caused by failures or abnormal states. It also can restart the system to pre-

established routines scheduling, if necessary. This module detects and remedies abnormal states of the 

network, outlier values of sensors connected to the IE, and issues with the IE’s power level. Since the 

self-healing module detects abnormal states or outlier values, it generates a JSON alert message and 

sends this message to the Trust Manager component for the health score calculation algorithm. The 

following is an example of a POST JSON message: 

 

 

Figure 62. Example of JSON alert from self-healing to Trust Manager 

Furthermore, the module collects these alert messages generated from scenarios and exposes a GET 

API endpoint, which is consumed by self-API component. An example of these JSON alerts is shown 

below: 
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Figure 63. Example of JSON alerts from self-healing to self-API 

• Self-scaling: possibility of horizontally increasing or decreasing the hardware resources dedicated to 

workloads of a node running Kubernetes. These changes depend on the needs of each workload, are 

executed in real-time, and are based on time series inference and custom logic. 

• Self-configuration: ability to maintain the desired state of the system with the help of an abstract and 

reactive management of its configuration. Both the configuration itself and its possible evolution can 

be defined/represented based on the concepts such as “resource”, “requirement”, and action/reaction. 

Development has focused on evolving an existing open source tool (originated in H2020 project AS-

SIST-IoT), by integrating the innovative needs of aerOS and incorporating automated configuration. 

• Self-optimisation and adaptation: ability to optimise the dissemination of the data and control the 

performance of IE. On the one hand side, by using dynamic sampling techniques and the current 

metric streams (i.e. the IE’s operational data obtained from self-awareness), the component suggests 

optimal sampling periods, allowing control over the frequency of data monitoring by the self-

awareness component. On the other hand, it incorporates an estimation model monitoring the shifts in 

the metric streams to detect data points with significant differences that may indicate potential 

anomalies, aiming to prevent the overutilization and underutilization of IE resources. 

• Self-realtimeness: an experimental capability that continuously monitors the performance of real-

time services using their time utility (TU) that degrades with the tardiness of deadline misses. The 

component automatically adjust the CPU time (quota) granted to a real-time service every period to 

trade-off CPU utilisation and TU achieved on an IE. If a real-time service’s TU degrades below a con-

figurable threshold self-realtimeness issues a re-orchestration request as illustrated in the following 

figure: 

 

Figure 64. Self-realtimeness relocating real-time workload with bad time-utility from node 1 to node 2 (2) 
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In the next subsection the relationships between the components and their interactions are described. 

3.5.2. Structure diagram 

The aerOS self-* capabilities set is comprised of 9 software components that act together and run on the nodes 

connected to the computing continuum. Each module is considered an independent entity within an IE and 

fulfils a specific function. However, to offer the described functionality they must interact with each other, 

creating intertwined relationships. This means that some modules depend on the information generated by 

others to complete their functionality and vice versa. Despite this, depending on the needs and performance of 

the node, one or more modules will be installed, divided into two categories. Core components are those self-* 

capabilities set tools that are always installed in an IE. Non-core components are those that are installed based 

on the performance of the node and the needs of a specific deployment. The core modules are self-awareness, 

self-orchestrator, self-security and self-API. The non-core modules are self-configuration, self-healing, self-

optimisation and adaptation, self-realtimeness and self-scaling. To offer a clearer vision of the set, a diagram 

has been created that represents the interactions between the different components and tools of the set. 

 

When an aerOS computing continuum node has IoT peripheral devices connected, self-configuration and self-

healing modules can be installed in the IE. These systems continuously analyse the health status of these 

devices, sending alerts to the self-orchestrator module in case of failure or malfunction so that it 

communicates with the aerOS EAT in order to improve the management and coordination of the node's 

workloads. The possibility of exposing node actions to the outside is done through the self-API, which will 

include the necessary security layers. This security can be extended to the interior of the node thanks to self-

security. In order to improve its own orchestration and, therefore, that of the continuum, each node has the 

self-orchestrator, which, fed through self-awareness, self-realtimeness, self-healing and self-optimisation and 

adaptation, determines whether to send alerts to the aerOS EAT. The self-awareness module sends data on the 

current state of the IE, the self-realtimeness sends alerts when the real-time characteristic is not met, and the 

self-optimisation and adaptation (powered by self-awareness) sends warnings when it is expected that there 

may be problems in the near future with the workload. Lastly, those IEs that are within a Kubernetes cluster, 

through the self-scaling component, will be able to horizontally scale their resources up or down. 

In the next table, the specific functionalities, details and interactions are further described: 

 

Figure 65. Relationships between the different self-* capabilities of an IE 

 

Figure 3. Relationships between the different self-* capabilities of an IE 
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Table 23. Self-* capabilities components, description and interactions 

Component Description Interactions 

Self-awareness This is the self-* capability that allows to get real-time 

information about the status of the IE. It gathers information 

about the IE and submits it to the associated Data Fabric and 

self-* components, and is divided into two sub-modules. This 

module can: 

• Obtain parameters such as hostname, addresses (inter-

nal IP and MAC), CPU (architecture, number of cores, 

max frequency and current usage), RAM (total capaci-

ty, available capacity and current usage), disk (type, 

total capacity, available capacity and current usage), 

network (speed up, speed down, traffic up, traffic 

down and lost packages), power consumption (current 

and average), capability to execute workloads in real-

time and operating system. 

• Define custom parameters such as Infrastructure Ele-

ment ID, Infrastructure Element Tier and Infrastruc-

ture Element Status. 

• Works on Kubernetes clusters and Docker, on AMD64 

and ARM64 architectures and physical or virtual ma-

chines. 

• It is capable of inform about their health status in "re-

al-time". 

• Sends data periodically (the sampling period may vary 

through its API). 

This is the current schema of the development carried out in 

the module: 

From the last iteration of this deliverable until M30 of the 

project, the connection with the self-optimisation and 

adaptation module has been carried out and tested, the amount 

and type of information that the module is capable of capturing 

in each installed IE has been extended, the data model used to 

define an IE has been refined and adapted, and the option to 

modify the sampling period through an exposed endpoint has 

been added. 

It obtains information 

about the state of the 

node and directly feeds 

the self-orchestrator and 

the self-optimisation and 

adaptation modules. 

Additionally, it provides 

context information to 

the Context Broker 

associated with that IE. 

 

Figure 66. Self-awareness schema 
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Moreover, it has been tested in more types of different IE and 

it has been deployed in several continuums (including those of 

the Pilots of the project) to check the reliability and 

performance of the module, as well as to determine that it is 

free of faults. Currently, the module is finalised, unless bugs 

are detected and need to be corrected due to the tests carried 

out. 

The next steps are to continue integrating the module into the 

Pilots' domains to enable full synergy between self-awareness 

and the other components of each of their domains. 

Self-

orchestrator 

This self-* capability allows to interact with aerOS Embedded 

Analytics Tool. This module is composed of: 

• Rules Engine: contains the rules and facts (rule activa-

tion thresholds) to be evaluated. These rules represent 

the situations in which it is necessary to send an alert 

to the aerOS EAT of the domain where the node is lo-

cated. The facts represent the current state of the IE 

and the network, and are fed directly from the self-

awareness module. 

• Facts Generator: allows to generate the activation 

thresholds of the rules based on the information re-

ceived by the self-awareness module. 

• REST API: allows to execute CRUD (Create, Read, 

Update and Delete) actions dynamically on the rules 

stored in the rules engine, insert facts and receive 

alerts from other self-* modules. 

• Trigger: generates alerts from the self-orchestrator and 

sends them to the aerOS EAT of the domain where the 

node is located. 

This is the current schema of the development carried out in 

the module: 

 

It obtains information 

directly from four 

components: (1) self-

awareness (values to 

generate the facts), (2) 

self-healing, (3) self-

realtimeness (to 

determine if the node 

meets the real-time 

characteristics) and (4) 

self-optimisation and 

adaptation (to determine 

whether future states of 

the IE should trigger 

corrective or 

compensatory actions in 

advance). 

 

Figure 67. Self-orchestrator schema 

Figure 4. Self-orchestrator schema 
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From the last iteration of this deliverable until M29 of the 

project, the last pending functionalities of this module have 

been carried out to complete its development. The REST API 

has been refined to allow a common endpoint that can be used 

by the rest of the self-* modules to send alerts to the domain's 

aerOS EAT and the Facts Generator has been modified to 

adapt it to the new data model of the Context Broker's 

Infrastructure Element entity. 

In addition, work has been done on the interactions between 

the different self-* modules and the self-orchestrator, as well 

as the integration and testing in the domains of the Pilots. 

Self-security Adapted to work in Kubernetes and non-Kubernetes 

environments, the three components that compose the module 

(Log Monitoring, ETL processing and the API) generate 

cyber-intrusion alerts that are sent to the Trust-Manager. 

Self-security is able to detect 3 types of network attacks: port 

scan attack, denial of service attack (DoS) and brute force 

attack. It is expected to expand the portfolio of detected 

attacks with specific attacks that can be performed on the 

services installed in the Pilots. 

This is the schema of the development carried out in the 

module: 

 

Gets information from 

the network card and 

sends alerts to the Trust-

Manager via the ETL 

module (for real-time 

alerts) and API (for 

weekly alerts). 

Self-API It allows to expose a single point of connection to the self-* 

capabilities of each node, being the global API of each IE. It 

will be able to retrieve certain aspects of management and will 

allow, for example, dynamic rules to be parametrised in the 

self-orchestrator module. In addition, it will be able to take the 

form of an API Gateway, being aligned with OpenAPI and 

will have the capacity to control the volumes of information 

that can enter and leave an IE. 

This is the current structure of the development carried out in 

the self-API module: 

It will interact with all 

the rest of self-* 

capabilities in order to 

manage their 

configuration / 

parameters / data. 

 

Figure 68. Self-security schema 

Figure 5. Self-security schema 



D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 87 of 97 

 

Figure 69. Self-API schema 

Self-scaling A feature of an IE that allows it to adapt to the demand for 

services and to be able to horizontally scale the resources 

dedicated to a specific workload dynamically, based on time 

series inference and custom logic. This is reserved for IEs 

within Kubernetes environments. The progress up to M30 has 

been the complete adaptation of the previously developed 

component (TRL3, from the ASSIST-IoT project) to the data 

model and the deployment configuration of the aerOS meta-

operating system through configurations according to services 

and service components, in addition to an API to execute 

processes in a non-sequential way and modify the default 

parameters according to the needs of the user and the system. 

This is the current schema of the development carried out in 

the module: 

 

Figure 70. Self-scaling schema 

It interacts mainly with 

the Kubernetes metrics 

service and it is possible 

to interact with its API 

through the Self-API 

component. 

Self-

configuration 

The self-configuration component can be used for reactive 

configuration management of heterogeneous resources within 

an aerOS deployment. 

Using the REST interface the administrator/user is able to 

define a multi-stage configuration structure using abstract 

concepts, such as resource, functionality, action, and reaction, 

and provide fallback configurations. Actions represent external 

events and can trigger predefined reactions that may induce 

configuration evolution, as well as communication with 

This component is one of 

the few that are be able to 

operate autonomously, 

without the need to 

interact with other aerOS 

self-* functions. It only 

has to interact with 

external resources. 
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resources. 

 

Figure 71. Self-configuration schema 

Internally, the configuration is represented via a Directed 

Acyclic Graph (DAG). Its vertices can be of two kinds: 

resource and functionality, whereas edges represent the 

“requires-to-function” relationship. Different labels can be 

associated with each vertex, allowing categorization/grouping 

of vertices, without changing the overall graph structure. 

Taking numerical values – called “weights” – into account, the 

self-configurator can autonomously decide which fallback 

configurations should be applied to the system in case of an 

error in any of the system components. 

For the self-configurator to function, it must be able to 

communicate with (external) resources. The communication is 

done through connectors. Their duty is to perform direct 

manipulation on the resource and inform the self-configurator 

of the resource’s status. 

Self-healing This module periodically monitors the target metrics of an IE 

in relation to certain analytics associated to sensors status. 

Depending on the value obtained and the type of metric 

analysed, the module determines whether the value is correct 

or abnormal. If the value is not correct, the module is then able 

to applies some recovery actions into the IE and to check if the 

remediation attempt was successful. If the remediation is 

successful, the IE resumes normal operation. Otherwise, it 

retries a different remediation. If the number of remediation 

attempts exceeds a threshold, the IE is considered permanently 

down. 

Here below there is a diagram flow that represent the 

functioning of the module. Software-wise, there are custom 

PoCs being developed to analyse the status of the IEs and to 

identify abnormal status. The theoretical approach for certain 

cases has been completed, and up to M18, such cases have 

been replicated in a scenario with DHT22 Digital Humidity & 

Temperature sensors and Raspberry Pi IEs. 

To implement the self-healing capability, a suite of abnormal 

scenarios has been defined, along with the proposed healing 

actions to be taken: 

1. Sensor Failure: 

◦ Scenario: No measurement or measurement value 

that indicates outlier. 

In the case of detecting 

abnormal states, or 

healing actions to be 

taken, this will feed the 

health score of the IE. 

The self-healing module 

interacts with the self-

API and the Trust-

Manager modules. 
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◦ Healing: Alert messages to exclude sensor from 

the set of those that provide input to the system. 

2. Device Power Alert: 

◦ Scenario: Power level of the device drops below a 

threshold. 

◦ Healing: Alert messages for battery replacement 

or recharging. 

3. Network Protocol Violation: 

◦ Scenario: Protocol-specific violation, e.g., over-

whelming the radio resources (LoRa, Duty Cycle 

violations). 

◦ Healing: Enforce reconfiguration to the IE. 

4. Link Quality Issues: 

◦ Scenario: Radio values drop below a threshold. 

◦ Healing: Report to self-orchestrator, instruct de-

vice to change link parameters. 

5. Communication Failure Indication (no messages re-

ceived by IE): 

◦ Scenario: Substantial amount of time without 

message reception might be attributed to connec-

tion lost. 

◦ Healing: Set up dedicated communication channel 

and poll (check-alive) the target IE. 

The general software flow of all self-healing scenarios is as 

follows. The node is powered on and starts its normal 

operation. There is a value of interest (specific to each 

scenario) that is monitored. Once this value exceeds a 

threshold, a remediation attempt takes place. The success of 

the remediation attempt is evaluated either by the node itself or 

by another node (this depends on the scenario). 
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In order to meet its objectives, the module consists of three 

main components: the normal operator, the abnormal detector 

and the remediation evaluator. The flow may differ slightly 

depending on the type and capabilities of the IE or the 

execution scenario, however, the main flow always consists of 

these three components and the corresponding operations. 

After M18, enhanced versions of all defined scenarios have 

been completed, and the custom software has been developed 

and tested in more refined scenarios. The self-healing module 

has been evaluated in an experimental environment and the 

test cases of all scenarios have been replicated using DHT22 

Digital Humidity & Temperature sensors and Raspberry Pi 

IEs, demonstrating the improved capabilities and the resilience 

of the module. Also, the module has been deployed in the 

aerOS environment and the interactions with self-API and 

Trust-Manager components have been tested. 

The following figures show the network related scenarios in 

action, within this local experimental environment, with the 

self-healing module successfully detecting network abnormal 

states. 

 

Figure 72. Self-healing schema 

Figure 6. Self-healing schema 
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Figure 73. Link Quality Issue scenario 

 

Figure 74. Network Protocol Violation scenario 

Also, preparations are in progress for utilizing self-healing in 

the appropriate aerOS’ pilots. 

Self-

optimisation 

/adaptation 

The goal of this module is two-fold. First, it aims to react in 

advance to potential scenarios when the IE would like to act 

upon (e.g., overload, network down, demand peak…). Second, 

it dynamically adjusts the sampling frequency of the self-

awareness to optimize the monitoring and data dissemination. 

Ultimately, self-optimisation brings the 

smart/predictive/proactive fashion to the self-* capabilities of 

an IE in aerOS. 

From the technical perspective, the module consists of the 

following components: 

• Collector/Parser: monitoring the metric streams ob-

tained from the self-awareness service and optionally 

parsing them to the format acceptable by analytics 

models. 

• Sampling Model: model that computes the next opti-

mal sampling period. 

• Shift/Anomaly Detection Model: model that returns 

information indicating when the significant change in 

a metric stream is detected and what type of anomalies 

it may indicate. 

• Recommender: component exposing computed infor-

mation for self-orchestrator and self-awareness. 

There below is a summary of the flow that this module 

Fed with data on the state 

of the node via the self-

awareness module, it 

sends alerts to the (1) 

self-orchestrator module 

about detected anomalies 

and (2) self-awareness 

about new optimal 

sampling period. 
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follows: 

 

Its most important components are the Shift/Anomaly 

Detection Model and Sampling Model. 

The Shift/Anomaly Detection Model’s internal structure is 

presented on the following diagram: 

 

Figure 76. Schema of Anomaly Detection Model 

The component separates the detection of anomalies per each 

type of IE’s operational data. Initially, only the types detecting 

CPU, RAM and Disk usage-related anomalies have been 

implemented and tested. However, due to the modular 

 

Figure 75. Self-optimisation and adaptation components schema 

Figure 7. Self-optimisation and adaptation schema 
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structure, it is simple to extend this component to detect more 

types of anomalies as well (e.g. power consumption-related). 

Internally, each model uses a statistical-based (density-based) 

approach to detect shifts in the metric stream obtained from 

self-awareness. The sensitivity of the detection for each model 

type is specified using configuration parameters that can be 

seamlessly modified by the user on runtime. Before passing 

the information of anomalies to the self-orchestrator, it is a 

role of Recommender module to map them into their 

respective codes recognizable by self-orchestrator. 

The next component is the Sampling Model, which internal 

structure is presented in the following diagram: 

 

Figure 77. Schema of Sampling Model 

This Sampling Model performs all computations in the 

Adaptive Sampling Model internal component. It accepts the 

IE’s operational data and for each relevant metric (CPU, 

RAM, Disk usage) computes the optimal sampling period. The 

computation of sampling period is done by estimating the 

evolution of the metric stream using the PEWMA calculation. 

Then, among different proposed sampling periods, the one 

with the smallest value (i.e. signalling the need of the most 

frequent monitoring) is selected as the optimal 

recommendation. Similarly to the Shift/Anomaly Detection 

Model, the performance of the module is controlled through 

configuration parameters (e.g. maximal or minimal sampling 

period) that can also be modified using exposed API 

endpoints. 

Both of the aforementioned components are resource-efficient 

since they do not require performing complex operations and 

need to store only individual variables in the local cache (no 

need for storing historical data). 

All of the presented components of self-optimisation and 



D3.3 – Final distributed compute infrastructure specification and implementation 

 

 Version 1.0   –   17-MAR-2025   -  aerOS© - Page 94 of 97 

adaptation have been implemented, successfully deployed and 

tested with the integration of the remaining relevant self-* 

modules. Moreover, internal experimental testing of the 

performance of individual models was also completed on both 

real IE operational data and external synthetic data set. 

Self-

realtimeness 

The self-realtimeness aims at controlling the real-time 

performance of those containerised services (i.e., containers 

running in an IE) that are tagged for that purpose. 

It is composed of two components: 

Modified kernel module: 

Monitors performance of real-time services (periodic services 

with a soft deadline) deployed on an IE by periodically 

adjusting quota of containers based on the time utility and 

tardiness of their tasks. 

User space component: 

Calculates each real-time service’s time utility from its 

tardiness and issues a reorchestration if the tardiness drops 

below a user-configurable threshold. The self-realtimeness 

component relies on a patched Linux kernel version (v5.10) 

that enables hierarchical container-based scheduling (HCBS). 

We have evaluated the self-realtimeness component in an 

experimental environment. 

Figure 43 above shows the real-time performance of a 

workload by means of its response time (left axis in light blue 

and light green) and its derived time-utility (right axis in dark 

blue). The time-utility is at 100 if a soft real-time workload’s 

response time falls within its deadline (red) or degrades 

(linearly, exponentially, or as a step function) with its 

tardiness. We can see that the workload running on node 1 

exhibits poor response times (light blue) and accordingly a 

degraded time-utility. As a result, the self-realtimeness 

component on node 1 issues a re-orchestration request so that 

the workload is relocated to node 2. We observe an improved 

response time and time-utility on node 1 (light green). This 

highlights how the self-realtimeness component effectively 

detects poor real-time performance of a workload on a node 

and issues a relocation request resulting in improved real-time 

performance as a result of a relocation of the affected 

containerized workload. 

In addition, we will evaluate the functionality, interoperability, 

and effectiveness of the self-realtimeness components within 

the controlled and closed environment of Pilot 3. 

Modified kernel 

module: 

Receives containers’ TU 

from user space 

component via the /proc 

filesystem. 

User space component: 

Reads real-time services 

(containers) tardiness 

from and writes updated 

TUs to the kernel module 

via the /proc filesystem. 

Communicates with self-

orchestrator if relocation 

of a real-time service is 

required. 

 

3.5.3. Technologies and standards deployed in MVP 

Table 24. Self-* capabilities technologies/standards, descriptions and justifications deployed in MVP 

Technology/Standard Description Justification 

iproute2 Set of utilities for managing 

network connections and 

It allows to obtain the desired information 

about all physical interfaces of the aerOS 
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(self-awareness – 

hardware info) 

controlling incoming and 

outgoing traffic. 

nodes. In addition, its small size after 

installation makes the final Docker image a 

contained size. 

psutil 

(self-awareness – 

hardware info) 

Cross-platform library for system 

and process monitoring in Python. 

The ease of use and different functions allow 

for agile development and its speed allows 

for very short execution times. 

speedtest-cli 

(self-awareness – 

hardware info) 

Cross-platform library for 

measuring the upload and 

download speeds of a node's 

Internet connection. 

It allows measurements to be carried out very 

simply and efficiently with only a few lines 

of code. 

getmac 

(self-awareness – both 

hardware info and power 

consumption) 

Cross-platform library to obtain 

the MAC address of a node. 

It allows to easily obtain the network 

interfaces of the node and its MAC address 

with a single line of code. 

quart 

(self-awareness – both 

hardware info and power 

consumption) 

Cross-platform framework for 

creating asynchronous web 

applications. It is an asynchronous 

reimplementation of Flask. 

It allows a REST API to be executed 

asynchronously in the same thread as the rest 

of the module's functions. It also allows 

extensions to be added for more specific 

needs and functions. 

requests 

(self-awareness – both 

hardware info and power 

consumption, self-

healing and self-API) 

Cross-platform library that allows 

HTTP requests to be executed. 

Allows HTTP requests to be executed in a 

simple way, with error handling, response 

codes, headers, data sending, etc. 

PowerTOP 

(self-awareness – power 

consumption) 

Open-source diagnostic tool that 

provides energy consumption by 

host and by process (per PID). 

Allows experiment with various GNU/Linux 

power management configurations and obtain 

power consumptions from Intel, AMD, ARM 

and UltraSPARC processors. 

pandas 

(self-awareness – power 

consumption) 

Cross-platform library that allows 

to analyse and manipulate 

structures and datasets easily and 

quickly. 

Used to analyse the results of PowerTOP, it 

allows the management of possible missing 

data in the resulting report, the use of column 

sets to extract information or the analysis of 

CSV files. 

axios 

(self-orchestrator) 

JavaScript library to perform 

HTTP requests (client side). It can 

be considered the equivalent of 

requests in Python. 

It allows to execute HTTP requests with few 

lines of code, use Node.js promises, 

automatically transform JSON data, 

configure the HTTP request, easy response 

and error handling, etc. 

express 

(self-orchestrator and 

self-API) 

A flexible minimalist web 

application suite that provides 

functions for developing web 

applications. 

It allows to create powerful, lightweight and 

simple REST APIs. Its small size after 

installation allows the final Docker image to 

have a contained size. 

fs-extra 

(self-orchestrator) 

JavaScript library that allows 

extra functionality to be added to 

the standard fs library. 

It allows to delete all files in a single 

directory with a single line of code, allowing 

to quickly and efficiently complete the 

functionality of the DELETE /rules self-

orchestrator endpoint. 
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json-rules-engine 

(self-orchestrator) 

Rules engine and alert-based 

system to trigger orchestration 

requests to upper layers in the 

domain. 

The rules are generated through simple 

schemas in JSON and is developed in 

Node.js, which is fast and lightweight. 

jsonschema 

(self-orchestrator) 

Library that allows easy 

validation of JavaScript objects 

using JSON schemas. 

It allows in the self-orchestrator to create a 

validator to validate the body of the requests 

received in JSON format, add sub-schemas, 

create recursive schemas, determine if there 

are errors in the JSON received, etc. 

Suricata 

(self-security) 

High performance, open-source 

network analysis and threat 

detection software. 

It has been integrated with Kubernetes to 

provide real-time security, efficiently 

processes and analyses data, and enhances 

network security and incident detection. 

FastAPI 

(self-healing) 

Lightweight Python framework 

for building APIs. 

Enables fast and asynchronous API 

development with automatic validation and 

OpenAPI support. 

getmac 

(self-healing) 

Cross-platform python library to 

obtain the MAC address of a 

node. 

Provides a simple and efficient way to obtain 

network interface details of the node and its 

MAC address with minimal code. 

Swagger / OAS 

(self-API) 

Widely adopted framework for 

designing, building, documenting, 

testing and consuming RESTful 

APIs. It allows to define API 

endpoints, request/response 

models, and more in a structured 

and standardised format using a 

YAML or JSON specification. 

Swagger aids in the automation of testing, 

deployment, and monitoring of APIs. It 

accelerates development cycles and reduces 

human error, ensuring that any changes to 

aerOS self-API are quickly validated and 

deployed. 

OAS is also supported by a rich ecosystem of 

tools. 

Custom development Many of the self-* capabilities 

incorporate custom developments 

to achieve their functionality. 

Lightweight languages and code are used. 

Best practices coming from DevPrivSecOps 

are used too. 
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4. Conclusions 

The WP3 in aerOS project has made significant advances in developing a unified, scalable, and secure 

distributed computing infrastructure that seamlessly integrates IoT, edge, and cloud resources. The journey 

from the initial Minimum Viable Product (MVPv1) to the final implementation (MVPv2) has been marked by 

continuous refinements in networking, orchestration, cybersecurity, and self-monitoring. 

Key Outcomes and Advancements in WP3: 

1. From MVP to MVPv2 – A Refined Execution Environment 

a. The MVP, delivered at M18, provided the foundation for a Meta-Operating System (Meta-

OS), ensuring interoperability across diverse computing environments. 

b. By M30, the MVPv2 introduced smarter networking, AI-driven orchestration, and stronger 

security, making aerOS a robust and industry-ready platform. 

2. Smart Networking & Communication Services 

a. The final implementation refined network programmability, enhancing cross-domain 

connectivity with technologies like WireGuard, ONOS SDN, and OpenCAPIF. 

b. Standardized APIs (OpenAPI, AsyncAPI) ensured easy integration with telecom and IoT 

ecosystems, enabling interoperability across diverse platforms. 

3. AI-Driven Orchestration & Automated Resource Management 

a. The orchestration engine introduced energy-aware workload selection, federated 

orchestration, and real-time monitoring, optimizing resource efficiency. 

b. AI-powered self-* capabilities (self-awareness, self-healing) reduced manual intervention and 

improved system resilience. 

4. Cybersecurity & Access Control Enhancements 

a. Stronger IAM, RBAC, and secure API gateways ensured controlled access to aerOS 

resources. 

b. Security mechanisms were tested and validated, making aerOS WP3 components reliable for 

deployment in real-world scenarios. 

5. Deployment in Pilots 

a. The aerOS framework components of WP3 are now ready for large-scale deployment, with 

real-world pilots validating its efficiency, adaptability, and security. 

b. Continuous work will focus on integrating AI-driven orchestration, and further refining 

security protocols showcasing in different pilots as part of WP5. 

The final implementation of aerOS in WP3 transforms the initial MVP into a fully operational, federated 

computing platform in MVPv2 capable of dynamically managing networking, orchestration, security, and 

monitoring across distributed IoT-edge-cloud environments. 

With AI-driven automation, secure APIs, intelligent networking, and self-adaptive capabilities, aerOS 

emerges as a scalable, efficient, and deployment-ready solution for IoT, smart cities, industrial automation, 

and cloud computing. 

Having completed final testing and validation of components developed in WP3, it enables WP5 for 

deploying them in aerOS pilots, driving digital transformation across various industries. 

 


