This project has received fund-

Europe research and innovation programme under grant agreemen

101069732

= EUROPEAN IOT-EDGE-CLOUD

D2.77 aerOS architecture definition (2)

Deliverable No. D2.7 Due Date

Type R Document, EBIESEgllaEule]a W=
Report

Version 1.0 WP

Description aerOS final architecture design,
description.

technical components identification

31-05-2024
Public

WP2

A%52 UNIVERSITAT
ﬁ POLITECNICA
DE VALENCIA

DEMOKRITOS

? Telefénica o

COSMOTE

INFO
wial LYSiS

b o

JOHN DEERE cloudFerro

i,gquglla TrControl sIEMENS @FIUJHRE

HYDAC INTERNATIONAL

. o
D s

)
d prodevelop \ EFEC e

Innovations

9 electrum
Pomscmco @

MILANO 1863

FOUNDATION

InQbit ZFOGUS ? ﬁ»

ERICSSON

— Cyprus
University of
Technology

MADE f?sw.mm..u A nasertic

Competence Center | INNOVA!
Klmw:

D2.77 aerOS architecture definition (2) =3 aer0s

Copyright
Copyright © 2022 the aerOS Consortium. All righgserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITECNICA DE VALENCIA ES
NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL
ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES
TTCONTROL GMBH AT
TTTECHCOMPUTERTECHNIK AG third linked party AT
SIEMENS AKTIENGESELLSCHAFT DE
FIWARE FOUNDATION EV DE
TELEFONICA INVESTIGACION Y DESARROLLO SA ES
COSMOTE KINITES TILEPIKOINONIES AE EL
EIGHT BELLS LTD CY
INQBIT INNOVATIONS SRL RO
FOGUSINNOVATIONS & SERVICES P.C. EL
L.M. ERICSSON LIMITED IE
SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL
ICTFICIAL OY FI
INFOLYSIS P.C. EL
PRODEVELOP SL ES
EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY
TECHNOLOGIKO PANEPISTIMIO KYPROU CY
DS TECH SRL IT
GRUPO S 21SEC GESTION SA ES
JOHN DEERE GMBH & CO. KG*JD DE
CLOUDFERROS.A. PL
ELECTRUM SP ZzOO PL
POLITECNICO DI MILANO IT
MADE SCARL IT
NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES
SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH
Disclaimer

This document contains material, which is the copyright of certain aerOS consortium parties, and may not be
reproduced or copied without permission. This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgem@f previously published material and of the work of others has
been made through appropriate citation, quotation or both.

The information contained in this document ispheprietary confidential information of the aerOS Consortium
(including the Commission Services) and may not be disclosed except in accordance with the Consortium
Agreement. The commercial use of any information contained in this document may reqeinseafiiom the
proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information
contained in this document is capable of use, nor that use of the information is free from risk and accepts no
liability for loss or damage suffedéby any person using this information.

The information in this document is subject to change without notice.

The content of this report r ef | -Genéra foroQorhnyunichtiorss a ut
Networks, Content and Technology, Resources and Support, Administration and FinarCOKNECT) is
not responsible for any use that may be made ohfbennation it contains.

Version 1.0 i 31-MAY -2024 aerOS°- Page2 of 136

D2.71 aerOS architecture definition (2)

=Saeros

Authors

Name Partner e-mail

Carlos E. Palau PO1 UPV cpalau@dcom.upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

Rafael Vafio PO1 UPV ravagar2@upv.es

Andreu Belsa PO1 UPV anbelpel@upv.es

Salvador Cufiat PO1 UPV salcuane@upv.es

Raul San Julian PO1 UPV rausanga@upv.es

Raul Reinosa PO1 UPV rreisim@upv.es

Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr
Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr
Thanos Papakyriakou P02 NCSRD thpap@iit.demokritos.gr

Spyros Georgoulas P02 NCSRD spygeorgoulas@iit.demokritos.gr
Andreas Sakellaropoulos P02 NCSRD asakellaropoulos@iit.demokritos.

r

Roger Briz P03 INNOVALIA rbriz@innovalia.org

Andreas Locatelli P04 TTC andreas.locatelli@ttcontrol.com

Jan Ruh P04.1 TCAG jan.ruh@tttech.com

Anna Ryabokon P04.1 TCAG anna.ryabokon@tttech.com

Philippe Buschmann P05 Siemens philippe.buschmann@sie-
mens.com

José Fontalwdiernandez P05 Siemens jose-eduardo.fontalveo
hernandez@siemens.com

Korbinian Pfab P05 Siemens korbinian.pfab@siemens.com

Renzo Bazan P05 Siemens renzo.bazan.ext@siemens.com

Amparo Sancho Arellano P0O5Siemens amparo.sancho

arellano@siemens.com

Ken Zangelin

P06 FIWARE Foundation

ken.zangelin@fiware.org

Ignacio Dominguez Martinez PO7 TID ignacio.dominguezmartinez@tele

Casanueva onica.com

Lucia Cabanillas Rodriguez PO7 TID lucia.cabanillasrodriguez@telefor
ca.com

Fofy Setaki P08 COSM fsetaki@cosmote.gr

George Lyberopoulos P08 COSM glimperop@cosmote.gr

loannis Chouchoulis P10 I1QB giannis.chouchoulis@ingbit.io

loannis Makropodis P10 1QB giannis.makropodis@ingbit.io

Version 1.0 i 31-MAY -2024 aerOS°- Page3 of 136

mailto:salcuane@upv.es
mailto:rausanga@upv.es
mailto:koumaras@iit.demokritos.gr
mailto:vpitsilis@iit.demokritos.gr
mailto:ignacio.dominguezmartinez@telefonica.com
mailto:ignacio.dominguezmartinez@telefonica.com

D2.71 aerOS architecture definition (2)

=Saeros

Vasiliki Maria Sampazioti P10 1QB vasiliki.maria.sampazioti@ingbit.i
0

Katerina Giannopoulou P11 FOGUS kgiannopoulou@fogus.gr

Joseph McNamara P12 L.M. ERICSSON LIMITED| joseph.mcnamara@ericsson.con

Katarzyna Wasielewskg P13 IBSPAN katarzyna.wasielewska@ibspan.

Michniewska w.pl

Przemysgaw Ho§d P13IBSPAN przemyslaw.holda@ibspan.waw.

Wi esgaw Pawgows|P13IBSPAN wieslaw.pawlowski@ibspan.waw
pl

Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Tarik Zakaria Benmerar P14 ICTFI tarik.benmerar@ictficial.com

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Nikolaos Gkatzios P15 INF ngkatzios@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Eduardo Garro Crevillen P16 PRO egarro@prodevelop.es

Alvaro Martinez Romero P16 PRO amromero@prodevelop.es

Kyriacos Orphanides P17 ECTL kyriacos.orphanides@eurogdie
massbdcom

Alessandro Cassera P17 ECTL alessandro.cassera@eurogate
limassol.com

Jon Egafia P20 S21SEC jegana@s2lsec.com

Oscar Lopez P20 S21SEC olopez@s21sec.com

Alexander Wagner P21 JD wagnerlexander2@johndeere.
om

Artur Bargiel P22 CF abargiel@cloudferro.com

Danish Abbas Syed P24 POLIMI danishabbash.syed@polimi.it

Francesco Dellino P25 MADE francesco.dellino@madsr.ai

Lucie Stutz P27 SIPBB lucie.stutz@sipbb.ch

History

Date Version ‘ Change

15 April 2024 0.0 Initial planning and timeline, WP2 general meeting announced

22 April 2024 0.1 I nitial ToC, s eassignmentssd structu
24 April 2024 0.2 Final ToC, sectionsd structure
15 May 2024 0.3 First round of contributions

22 May 2024 0.4 Second round of contributions

Version 1.0 i 31-MAY -2024 aerOS°- Page4 of 136

mailto:vkoumaras@infolysis.gr
mailto:ngkatzios@infolysis.gr
mailto:egarro@prodevelop.es
mailto:amromero@prodevelop.es
mailto:kyriacos.orphanides@eurogate-li

D2.77 aerOS architecture definition (2) = aer0S

24 May 2024 0.5 Submitted for internal review
30 May 2024 0.6 Address nt er nal reviewerso6 comment
31 May 2024 1.0 Deliverable submitted

Key Data

Keywords 0T, aerOS, meta operating system, continuum, network & compute f
service fabric, data fabric, aerOS knowledge graph, aerOS distributed
repository, architecture, federation, orchestration, federated orchestration,
Infrastructure Element, aerOS Domain

Lead Editor P02 NCSRDVasilis Pitsilis
Internal Reviewer(s) P25 MADE,Carlo Ongini
P26 NASERTIC Daniel Cobo Boregga

Version 1.0 i 31-MAY -2024 aerOS°- Page5 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Executive Summary

This document, the second iteration of the aerOS architectural design, delivers the finalized reference
architecture, detailing all functional and technical concepts and components. Building upon the groundwork
established in the initial deliverable, thidocument not only presents enhancements and practical
implementations of the aerOS framework but also guides further instantiation and deployment for all use cases
in WP5 and through subsequent open calls. Additionally, it provides a refined prototypertieatas a robust
reference for future implementations beyond the project's conclusion.

To develop the comprehensive aerOS architecture, we adopted and refined a robust methodology throughout
the project's lifespan. This approach effectively processed incoming requirements, identified key stakeholders,
mapped critical concerns and flows, defil architectural components and their interactions, and instructed de-
ployments while incorporating feedback. These steps were fundamental to ensuring both the feasibility and
efficiency of our architectural goals.

Reflecting on the rationale for an l&ddgeCloud continuumthis deliverablemoves beyond identifying
deficiencies in the current landscapes of today, loT developers were limited in their ability to leverage
distributed capabilities across the continuum and lacked a common execution environment supportive of l1oT
service deployment and reusBuilding upon aerOS reference architectutee project has successfully
demonstrated how loT developerse enabledo leverage distributed capabilities across the continuum and
benefit from a common execution environment. This shift from isolated resource usage to a unified compute
and network fabric has been realizegroviding a cohesive orchestration and execution enviroromeody

evident in the implemented service fabfitie means to provide the most efficient and smart orchestration of
underlyingresourcess based on an innovative data fabric implementation, whittoroughly discussed along

with computing and service fabric.

As a MetaOS, aerOS manages and orchestrates underlying fabrics, presenting a seamless continuum of
compute, network, and service resources. This advancement offers 10T developers a streamlined service
deployment experience, successfully transitioningeartical concept into practical application.

The basic concepts and innovations of aerOS as aO®fetare presented. Federation of distributed resources

is the basis for a smart orchestration that can span across several administrative domains. The technologies thg
make possible the federation oftei@geneous (hardware and software) and scattered resources are explained.
An innovative orchestration architecture, which separates-@naktied decision layer from enforcement layer

is introduced.The combined activity of federation and orchestratioross all domains ensures the most
efficient usage of resources and the optimal placement of 10T applicatiorthjsisdiocumentedwithin this
deliverablealong with thesupportingnnovativedata fabric mechanisms.

The infrastructural componenenablingthe implementation of these concepte detailedalong with the
processes for integrating any compute or network resource as an aerOS element. The capabilities of aerOS
domains and the essential services running within each damnaitbemonstrated, ensuring clarity on the
operational aspects of aerOS.

This document aims to provide stakeholders with a clederstanding of the innovations introduced by aerOS

that support 10T development across the cledde continuum, the benefits of these enhancements, and the
processes involved in transitioning legacy compute and network resources to aerOS elemesrshdreytin

outlines the procedures for deploying I0T services within the aerOS ecosystem, reflecting the practical achieve-
ments and readiness of aerOS for widespread adoption.

Version 1.0 i 31-MAY -2024 aerOS°- Page6 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Table of contents

I 101 (=3] T 1= ORI PRPPRN 7
I A 0T = o =T PP PPPPR PP 9
LIST OF FIQUIES. ...ttt eeer et e oo e e e s eenmms s et e e e e e e e e e e nnn b b s e e s emnnn s e e e e e e e e e e annn 9
IS Ao = Vo (])Y/ 1 11
Topology and Orchestration Specification for Cloud ApplicatiQns..............ooovii i ieeceieiiiiieeeeeeiiies 12
1. ADOUL thiS HOCUMEIILciiiiiiiiiiiiiiie ettt eret e e e e e e s ettt b et e e s smmt e e e e e e e e e s nbbbbeeeeeeeeenn 13
I B 1= 11T =T o] [o o]] =« 13
1.2. The rationale behind the StIUCTULE............cciiiiiiiiiiee e e eeeas 14
1.3. Outcomes of the deliVerable........... ... e 15
R S I STt RS (= 1 o RO PP 15
1.5, VerSIONSPECITIC NOTES.....cciiiiiiitiiie it eeet et e e emme e e e e s s r et e e e s st e e e e e nnb e e 16

2. Architecture definition MethodOolOgY..........ccooiiiii i e e e e e e e e e e e e e e e eeeeaaans 17
3. aerOS initial Reference Architecture validation and review motivations...............oocceemniviennnn. 19
4. loT-edgecloud continuum eCoSYStem ratioNAlE............coevvviiiiiiieeii e 20
4.1. 10T as enabler of edge and cloud COMPULING........uuuuuuiiiiiiiire e eeer e 22
4.2. Rationale towards an IGEdgeCloud CONtINUUM..........ccuiiiiiiiieee i 23
4.2.1. From heterogeneous IoT data to a unified data fahric.............coovvvvveee. 23
4.2.2. From a distributed cloud eeystem to a unified network and compute fabric............... 24
4.2.3. From monolithic applications to intelligent distributed Services...........cccovvvvvvimenneeenn... 26
4.2.4. From decentralized services to federated dOMAINS...........uvveuiiiiiccceiieeiieeeiee e 28

5. The @IrOS CONTINUUNML.......uutiiiiiiiiie e e ece e ettt e e e e e e e e smmne e s s s aeaeeeeeeaeeeassnmnnessensnsaseeeeeeeaeeesnanns 29
5.1. MetaOS approach and @erOS VISION.........cuiiieiiiiiiieemiiiiiie it e e e e s renin e e e e e s annneees 29
5.2, 2€rOS BUIldING DIOCKS.......uuuiuiiiiiieei ittt eees s eeeeseseeesrerarerannes 32
5.3. Conformance of an aerOS CONINULUIML.........uuuuruneiicre e e eee e e e ee e eeeeeeeeeess s sa s s e s s e e e e e eeaaaaeeeeas 37
5.3.1. Laying out the domains in a desired CONtINUUM:..........uuuiiiiiiiiiineee e eeens 37
5.3.2. Entrypoint domain SEIECHIAN.coiiiiiiiiiieeeie e eeen 38
5.3.3. Next steps after continuum CoONfOrMANCE.........ccoooeeiiii it 41

5.4. aerOS StacCk and MUNTIMIEeiiiieiiiiiiiiiiires e e e e e e e e e e e eeeet e nnnmmneeeeeeeeeeeeees 42
5.4.1. aerOS Infrastructure EIEMENL............uvviiiiiiiiiieeeee e cveeeveeeeeeeeeneeneneeen A2
5.4.2. aerOSdecentralised OrCheStratiON..o e 44
5.4.3. aerOS distributed State rePOSIIONY.........ooiiiiiiiiii e 48

5.5, QBIOS DASIC SEIVICES. .. .eeiieiiiieiiiiettitimeie e e ee e e e e e e e e e e e e e e e ee e e e eaaateeaaeeeaeeaeneenneenne s mmmeaaeeeeeeeaeeeeeeeees 51
5.5.1. Network and COMPULE FADKIC.euiiiiiiiiiiieee e e enens 51
5.5.2. D= 1= B = o oSSR 53
5.5.3. Y= Yot =0 - o o 55
5.5.4. aerOS cyber SECUrNtY COMPONEINTS et eeea e e e e e e e e e e e e e e e aeeeas 57
5.5.5. aerOS sel and MONITOIING.ooiiiiiiiiie e e 59

Version 1.0 i 31-MAY -2024 aerOS°- Page7 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

5.5.6. AErOS deCeNIraliSEA Al......e e e 60
5.5.7. AErOS COMMON AR ... oottt e et e e ane e 61
5.5.8. aerOS management fraMEWOIK..........ouviiii e meee e e 63
5.6. AEIOS QUXIIIAIY SEIVICES.....uuuiiiiiieiiiie st es ittt ettt eeer s s e e s e e e e e e eeaaaeaeaaeeeeeensenssrnennnrrnnes 65
5.6.1. AETOS QAUXINANY Al ...ttt e e e e e e e e enmr e e e e e e e e 65
5.6.2. Embedded analyliCS..........uuuuuiiiiiiiiiiiiiee e 67
5.7. User services and global Pilot SEIVICES..........cciiiiiiiiiiiie e 69
6. aerOS Reference ArChItECIUIE.........oooi i rrre aennaennnennnnnnnns 71
L0 S o 1o B oA = IR T PRSP 71
L 0T o] F= LY 1 PSPPSR 74
8.3, PIOCESS VIBW......uuiiiiiiiiiie e e e e s ieeee sttt e e e e e e e e s e e e sttt b ettt e e e e e e s e s b me e ssb bt be e e e e e e e e e e nannsbbannnnnes 77
L S I - | = V1 RS EESPRRRS 86
LRI 1T o] (o) 1T a1 AV = RS a8
B.6. BUSINESS VIEW....ceeiiiiieiiieeiieeeiitimmnssaesseeseeeeaeeeeaeaeeeeeeaaseessteesseensesnnsssnssssmnneaeeeeeaesaeeeeeeeeeeeeesannnns 90
7. aerOS Reference Architecture instantiations and evaluation...............ccceveeeeeee i 93
7.1. aerOS demonstrator deVEIOPMENL........cooi it ieeet et e e e e s eeenr e e e e e e e s e e eeenees 93
7.1.1. AEIOS MV P it eert ettt e e rmm et e e e e et e e e ettt e eame e nr e e e e e nnaeaaeeann a3
7.1.2. IoT application over the aerOS CONTINULIM...........uuiiiiiiieeiiare e rmmee e 95
7.1.3. Achievements and CONCIUSIOMNS..........uuuiiiiiieiiiiieee st e e e e eees s ee e e e e e e e e annnes Q9
7.2. aerOS Rference Architecture in ProjeCt PilatS.........ccooviiiiiiiiimeeiiiiiieeee e 100
7.2.1. Datadriven Cognitive Production LINES...............oooiiiiiiiieeeicccecces e 100
7.2.2. Containerized Edge Computing near Renewable Energy Sources.................cceeeeee 113
7.2.3. High Performance Computing Platform for Connected and Cooperative Mobile MadHiGery
7.2.4. Smart Edge Services for the Port CONtiNUUML...........uuiiiiiiiiiee e eeeeeens 121
7.2.5. Energy Efficient, Health Safe and Sustainable Smart Buildings............ccccovivenniinns 125
7.3. Mapping and alignment of aerOS RA to the European CEIl continuum............cccccvveeeennnnn. 129
8. CoNCIUSIONS AN NEXE STEPScci ittt eeet ettt e e eemr e e e e e e e e e e e e s e e e e e e nnnneee s 133
RS = 1= o PP 134
A. BEIOS TeIMMUNOIOGY. ... teeetiieieeiiieiittreet ettt e e e e e e rees s e et e e e e e e e s aa bbb s amanssb s e e e e e e eeeeesannnbneennans 135

Version 1.0 i 31-MAY -2024 aerOS°- Page8 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

List of tables

Table 1. aerOS Terminology table.............oe e 39
Table 2. Deployment Level of components in aerOS CONINUUML..........uuerreeermimmeeeeeeeeeieeeieeeeeeeeeereeees 90
Table 3. Granular mapping of aer OS comp.o.ne.ntds wit
Table3.Gr anul ar mapping of aer OS components within pi

.. 105
Table 5. Granular mapping of ae-upG&e RLGC Reganfig@atiandor wi t
Lot-Sizel Product i.0n.0..8.CoB Al Dt 108
Tabl e 5. Granul ar mapping of aer OS-dowo logistice & pre s wi
industrial .l.eN.el. 0. S . e.0.a 0 0 e 111
Tabl e 6. Granul ar mapping of aer OS components wi:
Ener gy SoOUrn.Ces.0. . Pl Ol e 114
Table 7. Granul ar mapping of aer OS components with
and Cooperative Moabi.l.e..Ma.c.hi.ner.yo..p.i.l.at.......117
Table8Gr anul ar mapping of aer OS components within pi
.. 122
Table 9. Granul ar mapping of aer OS components wit|
Smar t B Ui g S D —————— 126

Table 10. aerOS architecture mapping and beyond EUCEI common.blocks.........cccoovvvicccivnneennnen. 130

Table 11. aerOS Terminology talIE. ..o 135

List of figures

Figure 1. ClouekdgeloT continuum perspective source: EUCIoudEdgeloT..........oovvvviviiivieeeeeeeneenennn. 21

Figure 2. Schematic of aerOS Cloud Resource Types: Central Clenetwork Computing fabric, Edge Cloud

NG ENG DBVICES.....ceiiiiiieeiiieeiiititireee s st e e e e e eeaeeeeeeeeeeeeeeaeastaaeeaaeeaaeesseeaaesns s mmneeeaeaeaeaeeaeeteeeteeeeerannnsnsnnnnnnns 25

Figure 3. aerOS domain as part of the CoONtinUUM..............o e 31

Figure 4. Compute, Service and Data Fabrics as aerOS continuum CONSHIUENIS.............ccceeerinnnnnee 32

FIgUre 5. 8EIOS ArCITECIUIE..ceii ittt et eet e e e e e e e e e s bbb e e enes e e e e e e e e e e e annnreees 36

Figure 6. Example of domains topology design in an aerOS CONtiNUUML.......cccooeveeiiiccceieeeeeeeeeeeeeeeee, 37

Figure 7. Concept of entrypoint domain in an aerOS CONtINUUIML.........coovviiiiiieemieceee e 39

Figure 8. Simple example of entrypoint domain selection rationale................ccvmemriiiiiiiiee e 41

Figure 9. aerOS runtime component as part of aerOS.Stack.........cccccvicceeeeeiiiiiiiiiveeeccen 42

Figure 8. Possible Infrastructure Elements in a continUUM................oooiiervieveeeevveveeeevveevvrreeee . 43

Figure 9. aerOS twtevel structured orchestration for decentralised decisiaking..............cccccoeeviiiieen 45

Figure 10. Entrypoint domains in decentralised decigi@iking of aerOS...........ccovviiiiiiiimmmiiiiiieeeeee s 46

Figure 11. Example of a Distributed State Network of BraKers..........coooooviiiieerieieeeeeeveeeveeeeveee 49

Figure 12. aerOS continUuM ONEOIOGY.......cccoiiiiiiii e emmme e e e e e e e e e e e e e e e e e e s easreeeseeeeeeeas 51

Figure 13: Semantic lifting based on mappings between the conceptual and physical levels........... 54

Figure 14. HigHevel architecture of the aerOS Data FabriC.........ccccoooiiiiiiiiccciiieeeeeeeeee 55

Figure 15. Sel capabilities relationShiPS. ... e e e e e 60

Figure 16. aerOS APIs: REST APIs and event driven COMMUNICALION.............evieiiiiemeiiieeeeniiieeee e 62

Figure 17. aerOS Management Framework (left: aerOS Management Portal, right: aerOS Federat®?

Figure 18 Al WOrkflow in the CONTINUUIML..........uuieiiieii e e 66

Figure 21. Embedded Analytics TOOI ArChItECIUIE..........ooiiiiiiiie e 67

Figure 22.aerOS Template for authorised function 0N EAT..........cooiiiiiiiiimmii e 68

[(oW1 =J22C T oW (g Tod o] o N Ui o o] g o T 68

Figure 22. 2erOS NIGIRVEI VIBW.........uuiiiiiiiieeeeeeeeee sttt e s ee e e e e e e e e e e e nsssnnnsssnnneeeeeeaeeas 72

Figure 23. aerOS entities and aCtOrS OVEIVIEW..........cciiuriiiiiiemriiiiie et e e s s e e anneas 76

Figure 24. aerOS domain functional DIOCKS..............u e 77

Figure 25.nstallation and aggregation of computing resources to the continuum.............................. 79

Figure 26. Optimally deploy a service by leveraging the aerOS continuum orchestration processes80

Version 1.0 i 31-MAY -2024 aerOS°- Page9 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Figure 27. Detailed interaction among aerOS orchestration companentS............ccvvvvveeeeeeeieeiiiieeeeennn. 81

Figure 28. Service reorchestration triggered by theasetiestrator module................oooiiiiieeeiiiieenneeen. 82

Figure 29. Secure access to data within the continuum through the Management.Portal.................. 83

Figure 30. loT Service (monitoring and actuation) deployment and functioning.................ccecccvveeeee 84

Figure 31. Trustworthy exchange of immutable and irrepudiable messages across the continuum..85

Figure 32. Decentralized Al task coordination and exXecution PraCess.............ccuvveeeneeiiiereessnieneenns 86

Figure 33. Workflow during onboarding and creation of data products in the aerOS Data.Eabric.....87

Figure 34. Federated architecture of the aerOS Data FabriC...............oooiiieeeiiiiiiiiiicccecree e, 88

Figure 35. Deploying an aerOS domain and rendering resources as part of the continuum.............. 89

Figure 32.BUSINESS VIEW INTEIACTIANSuiiieiiieieeeiiice ettt e e e e e e rmmee s r e e e e e e e e mnee s 91

Figure 33.Exploitation perspective intertwining aerOS architecture views and decisians.................. a1l

FIGUIE 36. MVP tOPOI0OGY. ... cceiiiiiiiiiieiee et eeee ettt e erer et e e e e e e e e e et e e s emme e e e e e e e e nn e n e e e e e e eeenn 94

Figure 37. aerOS domains and IEs in management dashboard...............ccoceiiiiiiiiii i 95

FIgure 38. @erOS BGar IE.........coo oo mm e e e e e e e e e e et e e et e e e et e e e s s a s s e a e e n e an e 96

Figure 39. Monitoring 10T service deployment process With.K9S.........cccoooiiiiiiicceiieeeveeeeeeevee e 97

Figure 40. aerOS EAT integrated in 10T @appliCAtION..........ccuuviiiiiie e 98

Figure 41. Mobile domain INtEOIratiQN.iiiiiiiiii it e e eeer e e e e e as 98

Figure 42. |Es status in management dashboard, IE Overloaded................oooivcccriiieiiieivieevveeeeeeee 99

Figure 47. aerOS compliant highe vel di agram for .p.i.l.ot. . 1.SILEBABBO sce
Figure 48. ZDM dimensional metrology continuum part of aerOS Trial...........cccceeviiiiceniiiiiiiiiieenen. 103

Figure 49. ZDM dimensional metrology service suite deployable in the aerOS continuum............. 104

Figure 50. aerOS compliant highe v e | di agram for pil ot 1 A6AuUt om
Manufact uri.ng.0.0...8.C.00 8.0 0.0 e 105

Figure 47. aerOS compliant highe v e | di agr amp SaferPLOIREenfigurativa forg-8ize 1
Producti ono US...C.a.5.L..5.C.0.0 a8 0l 107

Figure 52.aerOS compliant high e v e | di agram f or -downllogisticsht p@nduStiial z er o
VA T O o S o = NN o - O O o RO 111

Figure 49. aerOS compliant highe v e | di agram for fAContainerized Ed
SO T o = o 1P OPSSRPR 114

Figure 51. aerOS complianthighe vel di agram for AHigh Performance
Cooperative Mo.hi.d.e..Machi.ner. Y0 .. 117

Figure 52. Port Continuum use case scenarios of aerOS.........ooooiiii e 122

Figure 53. aerOS compliant highe v e | di agram for AEnergy efficien;
buildingso pi.l.ot..at. . COSMOATE. i, 125

Figure 54 EUCloudEdgeloT Working Grougsat the right, WG5 aerOS leadership.......................... 130

Version 1.0 i 31-MAY -2024 aerOS°- Pagel0 of 136

D2.71 aerOS architecture definition (2)

=Saeros

List of acronyms

Acronym Explanation

AAA Authentication, Authorization anflccess
AGV Automated Guided Vehicles

CB Context Broker

CEl CloudEdgeloT

CMF Container Management Framework
CNF Cloud Native Function

CNCF Cloud Native Computing Foundation
CNI Container Network Interface

CR Custom Resource

CRI ContaineRuntime Interface

CRD Custom Resource Definition

Csli Container Storage Interface

CSR Context Source Registration

DSNB Distributed State Network of Brokers
DSR Distributed State Repository

FaaS Functionasa-Service

FQDN Full Qualified DomairName

HLO High-Level Orchestrator

IE Infrastructure Element

laaS Infrastructureasa-Service

loT Internet of Things

JSONLD JavaScript Object Notation for Linked Data
K8s Kubernetes

LCM Life Cycle management

LLO Low-Level Orchestrator

MANO Management and Orchestration
MEC Mobile Edge Computing

MetaOS Meta Operating System

MVP Minimum Viable Product

NFV Network Function Virtualization
NGSHLD NextGeneration Service Interfaté.inked Data
OAuth OpenAuthorization

oIbC OpenlID Connect

Version 1.0 i 31-MAY -2024 aerOS°- Pagell of 136

D2.77 aerOS architecture definition (2) =3 aer0s

OPC UA Open Platform Communications Unified Architecture
PaaS Platformasa-Service

Protobuf Protocol Buffers

RA Reference Architecture

RDF Resource Description Framework

REST Representational Staleansfer

RPi Raspberry Pi

SDN Software Defined Network

SPARQL SPARQL Protocol and RDF Query Language
TOSCA Topology and Orchestration Specification for Cloud Applications
URL Uniform Resource Locator

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VPN Virtual Private Network

Version 1.0 i 31-MAY -2024 aerOS°- Pagel2 of 136

D2.71 aerOS architecture definition (2) =3 aer0s

1. About this document

The primary aim of this deliverable is to offer a comprehensive overview of the architecture that underpins
aerOS as a Met@S instantiation, reflecting the culmination of developments and enhancements made since
the initial version. This document delvesep into the system's structure, elucidating its design principles,
components, and their interplay. It delineates the-réghl vision and objectives, introduces fundamental
architectural concepts, and details how various elements synergize to achielesited functionality and
performance across the continuum.

Furthermore, the document outlines the technology stack, data flow, communication protocols, and key
integration points, providing a definitive roadmap for both the development and deployment of the system. By
capturing all essential architectural aspetiés deliverable aims to serve as a definitive reference for
stakeholders, engineers, and decigitakers. It is designed to ensure a unified understanding of the system's
design and to guide its successful implementation and ongoing evolution.

As the second and final document in this series, it integrates all advancements since the first deliverable, based
on the deployment of Minimum Viable Product (MVP)
component implementation detailsierging from the activities of WP3 and WP4. These elements have been
essential in refining and finalizing an efficient and accurate architecture for aerOS, tailored to meet both current
and anticipated future needs.

1.1. Deliverable context

Item Description

Objectives 01 (Design, implementation, and validation of aerOS for optimal orchestration): De
MetaOS approach, based on open sources components, for efficient resource prov
and services orchestration on heterogeneous nodes across-duagzioud conthuum.

02 (Intelligent realization of smart network functions for aerOS): Design networking
gration and components development to support programmable functions, servic
methods, and secure communication channels between distributed resources. Desi(
dustry IoT communication technologies and protocols integration.

O3 (Definition and implementation of decentralized security, privacy, and trust): Des
holistic cross layer solution for cybersecurity and federated and distributed data gov,
ance. Design for dedicated components seamless integration, with aerOS stwime
bersecurity, privacy, and trust.

Work plan D2.7 receives input from

1 T2.1 (stateof-the-art): Novel components and technologies research for furthg
signchoices.

 T2.2 (use cases and requirements): Receives requirements to drive arch
building and components design. To be evaluated and fulfilled with the pro
architecture blueprint.

D2.7 defines WP5 process as it guides:

9 T5.2 which undertakes the implementation in vertical industry pilots based
produced architecture blueprint.

D2.7 establishes a close collaboration with:

1 WP3, in the way to develop, deploy, and connect infrastructure components
port continuum implementation as a product of network and compute fabri

Version 1.0 i 31-MAY -2024 aerOS°- Pagel3of 136

D2.77 aerOS architecture definition (2) =3 aer0s

service fabric orchestration.
1 WP4 to employ data fabric features to optimize usage of data based on data
omy, interoperability governance and provide data as a product to Al consu

Milestones This deliverable accomplishes the realisatioM&5i1 Final architecture defined

achieved in M21, and contributest$6i Final integrated software soluticthat will be
achieved in M24ndto the realisation dfIS7i Final Software Components releaséuat
will be achieved in M30.

Deliverables | This deliverable is part of an iteration of living deliverables. The first version is in M1

the second in M21. This deliverable receives inpguten fiD2.6 aerOS architectur
definition (1)0, which is the initial version, and which indirectly integrates inputs fiofn1

Stateof-the-Art and market analysis reporfiD2.2 Use cases manual, requirements, |
and reqgulatory analysis @.)Additionally, it receives input froniD2.3 Use cases manu;i
requirements, legal and regulatory analysie &3dfD5.2 Integration, evaluation plan a
KPIs definition (2).

It is expected to suppofinal technical deliverables versiori#3.3 Final distributeg
compute infrastructuteand fiD4.3 Software for delivering intelligence at the edge fi
release andfiD5.4 Use cases deployment and implementai®)a.

1.2. The rationale behind the structure

The content of the deliverable is organisedightmain sections, that can efficiently present T2.5 and explain
the architectural structure of aerOS as a M2fa

T
1

Section 1. Provides the overview, context, and structure of this deliverable.

Section 2. Provides the methodology and the standards consultation used to provide a solid and
structured architectural design approach.

Section 3. Provides insights on the feedback received since the initial version of the deliverable, the
received validation of the design and the motivation behind any adaptations towards finalizing the
architecture.

Sectiord. Provides the status, as of today, across the I0T edge to cloud systems and the emerging needs
that guide the transition to a continuum across the path from edge 10T devices to cloud resources. It
highlights the fragmented nature of computing and netwes&urces, of services deployment and the

data heterogeneity and the need to move towards unified fabrics to proceed from monolithic
applications to intelligently distributed services across the continuum. agn®@&achas a MetDS,

to enable ad orchestrate the continuuhat integrates all thiabrics is presented in detail.

Section 5. This section introduces the basic concepts and the vision that aerOS introduces-as a Meta
OS across the continuum. The implementing building blocks that aerOS employs towards continuum
establishment and operation. Architectural decisions anid sigmificance and consequences are
detailed. Technologiesemployed towards dederated orchestration of distributed resources are
explained. The basic components serving as building blocks undertaking aerOS services deployment
are exposed and aerOS seed are described.

Section 6. Building on the foundational concepts and components introduced earlier, this section offers
a comprehensive exploration of the aerOS reference architecture through multiple viewpoints. It
systematically delineates the roles and functionalities of eesmponent, clarifies their
interconnections, and maps their interactions. This structured analysis ensures each component's
placement and interaction are optimally aligned with achieving the operational goals of aerOS. The
section breaks down into hidével, functional, process, deployment, and business views, each
providing targeted insights to inform and guide effective system implementation

Section 7This sectiorexamines the practical applications and efficacy assessments of the architecture.
It detailsthe, MVP based, aerOS demonstrator as an applied 10T service orchestration over the
continuum, describes thmapping of aerOSarchitectureconceptsn each of the pilots which guides

Version 1.0 i 31-MAY -2024 aerOS°- Pagel4 of 136

https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

componentsntegrations demonstrating practicalpplications and adaptabilignd finally discusses
how aerQOS aligns with and supports European strategic goals, ensuring compliance and relevance in
broader initiatives

9 Section 8. Concludes the document by summarizing the key findings and achievemerisotdtiyee
aerOS Reference Architecture. This section reflects oartttétecture achievemenasd challenges,
outlining the significant impacts on the kidgeCloud continuum. It also delineates the next steps for
aerQOS, proposing directions for future developments, enhancements, and broader implementation
strategies to ensure continued relevaame optimization in realorld applications.

1 Appendix A. Finally, this section contains a brief presentation of main, commonly, and frequently
aerOS related, and for its purposes produced, terms usage.

1.3. Outcomes of the deliverable

The outcome of the deliverabis the finadocument of aerO®leta-OSreference architecture

aerOS manages to integrate diverse resources across+ddeTloud continuum under a common exposure
facility. This integration provides a seamless environment where resources can be managed and utilized
efficiently, irrespective of their physical wirtual nature.

aerOS provides a cohesive management and orchestration of these resources via the integration of them within
peer entities, the aerOS domain, which provide all the set of core functionalities needed to securely expose their
resources and support decisioakimg for services placement within their jurisdiction or over any other domain
across the continuum.

aerOS significantly enhances the flexibility and scalability of 10T applications. by federating all integrated
domains exposes a unified runtime which supports reusable applications that are built once and can run on all
underlying hosting nodes, despitgyarchitectural variations.

1.4. Lessons learnt.

Building a MetaOS for the continuum emerges as a complex and multifaceted endeavor, demanding a very
careful approach to navigate through its intricacies. Recognizing this, our journey underscored the importance
of breaking down complexities intmanageable steps and proceeding methodically, analyzing, and refining
each component along the way. From the outset, it became evident that a careful design approach is paramount
as the convergence of numerous technologies and interactions necesstditegcaindation from day one.

Without this foundational design, the risk of encountering obstacles is not unlikely, potentially leading to dead
ends and setbacks.

It is of paramount importance to keep the commitment to guide efforts according to the perspective and
expectations of industry 10T developers. It became clear that deviating from this focal point, however innovative
the solution may seem, could resulsmiutions that fail to meet market needs. Thus, maintaining a continuous
dialogue with stakeholders, validating ideas, and incorporating feedback throughout the development lifecycle
proved indispensable.

Furthermore, our journey underscored the value of creating a dedicated playground for idea validation, where
concepts could be tested, refined, and adapted irtimeal Leveraging Minimum Viable Products (MVPS)
emerged as a powerful tool in this regarffering a tangible platform for experimentation and iteration,
enabling rapid validation and course correction.

Something equallymportant was the realization that the employment of existing standardized open source
frameworks adds a great advantage as it enables the integration of already battle tested solutions which also
offer the community support. For example the integrationeaaehsion of FIWARE Orioi.D CB provided a

robust basis for building aerOS data fabric core storage engine and federation mechanisms.

Lastly, as pioneers in a field with limited prior knowledge, we recognized the importance of community
validation. Engaging with the broader community, soliciting feedback, and integrating valuable insights
emerged as essential components of our procgskevBraging the collective wisdom of the community, we

were able to refine our ideas, address blind spots, and ensure alignment with industry standards and best

Version 1.0 i 31-MAY -2024 aerOS°- Pagel5 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

practices. Through these lessons learned, we forged a path forward that not only addresses the complexities o
building a MetaOS for the continuum but also fosters innovation, collaboration, and continuous improvement.

1.5. Version-specific notes

This document represents the second and final version in a series of two architecture deliVetabtgsver

from the first version, which provided an initial framework, this document is designed to be a comprehensive
and selcontained reference. It not only includes the changes and updates made since the first version but also
incorporates the foundational contémbffer a complete and coherent overview of the architecture.

The content of this deliverable is the result of the collaborative work of partners in most of the workackage
of the project, as their experiences and input were instrumental in driving the architecture revisions. While most
of this document has been prepared in the gtofifask 2.5 (which is the responsible one for this deliverable),
input and feedback is coming from technical and integration work pacR&gSWP4 and WP5 hee tacitly

but effectvely collaborated for thisersion.

For sections that are more research and theoented, this document largely replicates the content from the
first version. These sections, written just a few months ago, remain relevant and accurate, and thus, do not
require significant updates.

In contrast, sections that detail the actual design and implementation of the architecture have been significantly
enhanced. This final version includes all the updates and improvements that have emerged from the technical
components' implementation, contobus feedback loops, and integration of the Minimum Viable Product
(MVP).

The sections thanheritfrom D2.6 (althougtsubstantially ipproved when relevant aje4, 5.5, 5.6, 5.7and 6.
Thenew sections, and those thadve been largely modified afel. 52,5.3 6.6 7, 7.1,7.2and 7.3.

The work done all this perigdrom first version to this final version has provided valuable insights which
support clarifcation ofcomponent8responsibilities and interactiorBased oramore complete understanding

of the MetaOSand its expected operations over the continuuenhave made notable changes that result in a
clearer presentation of thimtegrated aerOSabrics explained in detail in this documenand their
functionalities. This enhanced clarity allows far enhancedlepiction of the vaous components and their

roles within the aerOS architectursdditionally, we have strengthened aspects related to the security policy
framework to offer seamless and automatic federation of user information and integrate associations with all
integrated entities, thereby enhancing the access management framBuvasd.improvements collectively
contribute to a more resilient and effective orchestration of resources across the continuum, from edge to cloud,
thereby providing a flexible, trusted, and uedf development and execution environment for IoT service
developers across multiple industry verticals.

These updates reflect the latest developments and refinements in our architectural approach, ensuring that this
document serves as a definitive guide for stakeholdéis.final version is not just a summary of changes but

a standalone document that integrates the foundational elements from the first version while providing
comprehensive updates and enhancemBeftectingon the latest advancements and feedback from ongoing
development and MVP integratipit ensures that stakeholders have a completerstaihding of both the
theoretical underpinnings and practibédtaOSimplementatiorpossibilities based on aer@&hitecture

Version 1.0 i 31-MAY -2024 aerOS°- Pagel6 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

2. Architecture definition methodology

An architecting process should raise early in the overall development process of a system definition. Such is the
case of aerOS, that aimsdalivering a MeteOperating System (Met@S) for governing the lo€dgecloud
continuum. The process must begin with the discussions about what is feasible, efficient, hard, costly, etc., most
commonly in parallel with systems analysis and requirementgiti®i activities, resulting in a set of
requirements and finally in an architecture that meets those requirements. Identified stakeholders along with a
set of technical/user/system requirements and architectural decisions should provide the necasdary inp
coming up with an architecture description which most probably in turn will lead to updated requirements as
architecture evolves through a reviewing process where more architectural decisions are taken. A precise
architecture description will provid detailed technical specifications and drive the development process
towards realization of the system architecture.

To this end, ISO/IEC/IEEE 42010 standard "Systems and software engirie@rtigtecture Description" and

first published back in 201[l], provides valuable guidelines by defining what should be considered when
building an architecture description, while it does not mandate how to produce one. Without mandating any
specific architecting process, it provides a conceptual model of architetgscription and best practices for
defining a hopefully highly efficient one. aerOS reference architecture definition is based on the methodology,
principles and best practices included in the latest update of the standard, issued in 2022.

I n the standard, the ar cfuidanema aoncepts orfproparties of a system ini s
its environment embodied in its elements, relationships, and in the principles of its design and évolutigan
Architecture Description (AD) is used to express an Architecture of a System. Stakeholders have interests in a
System; those interests are called Concerns. A sy:¢
over a wide spectrum of interests (umting technical, personal, developmental, technological, business,
operational, organizational, political, economic, legal, regulatory, ecological, social influences). The terms
"concern" and "requirement” are not synonymous. A concern is an area e$tingw, i.e., system reliability

might be a concern/area of interest for some stakeholders.

Systems have Architectures. Every System inhabits its Environment. A System acts upon that Environment and
vice versa. Architecture Descriptions are comprised of AD Elements. Correspondences are used to identify or
express named relations within and betwe®D elements. Creating an Architecture involves making
Architecture Decisions. In the process of how to best answer the questions listed as the stakeholders' concerns
Architecture Views provide what the answers are, while Architecture Viewpoints proeidehey can be
captured. An Architecture View is important to capture the rationale for the key decisions and to include them
in the architecture description. Architecture Viewpoiatsan abstraction that yields a specification of the whole
system related to a particular set of concerns, reflects the architecting purpose, typical stakeholders and their
perspectives, identified concerns, defined aspects of the entity of interesaricudar AD ElementsA well-

defined set of viewpoints, reviewed bgletholders and developers, facilitates capturing architectural decisions.
Although the difference between Views and Viewpoints is quite clear, we will use the terms interchangeably
for the rest of the document, as this is a common practice for a morsiblecesntent, while in fact we are

closely following the approach of the methodology.

This document provides the aerOS reference architecture. The main difference between software architecture
and reference architecture is that software architecture is a design solution for a specific software system; on
the other hand, reference architeetoffers a highlevel design solution for a class of similar software systems
belonging to a given domain. Thus, reference architecture is more abstract than software architecture and must
be instantiated and configured to attend to the specificitidseofdftware being built. Such instantiation will

be exhibited in the various aerOS pilot use cases in the revisions of this document to follow.

Although an Architecture Framework maybe considered to offer a higher level of abstraction than a reference
model; defined in the standard as the conventions, principles and practices for the description of architectures
established within a specific domaodf an application and community of Stakeholders; however, minimum
requirements set for a framework are considered common for a reference model as well: (1) Information
identifying the architecture framework, (2) The identification of one or more stalexlp(3) The identification

of one or more stakeholders' concerns, (4) One or more architecture viewpoints that frame those concerns, (5)
Any correspondence rules.

Version 1.0 i 31-MAY -2024 aerOS°- Pagel7 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

aerOS architecting process is comprised of the following steps:
1. Identification of aerOS Stakeholders.

Recording of technical, user, and system Requirements.

Identification of system Purpose and Environment.

Identification of Stakeholders Concerns.

Identification of core Architectural decisions.

S e

Architecture Views/Viewpoints development.
7. Reevaluation of Viewpoints, croséiew consistency, Architectural decisions, and Requirements.

This documentbeing the second and final versiaarOS architecturembodies requirements (item 2 in the
above mentioned list) of botteliverablesiD2.2 Use cases manual, requirements, legal and regulatory analysis
(1)0andfiD2.3 Use cases manual, requirements, legal and regulatory a(2)gswhich provide the initiand

the final version of requirements, use cases and scenarios definition as well as legal and regulatory analysis.

A selection of architectural viewpoints that address aerOS stakeholders' concerns, capturing their requirements
to provide for a consistent aerOS reference architecture description, is documented in this deliverable and
comprises of the following viewpoistt

1. High-level view It describes interactions, relationships, and dependencies between the system and its
environment.

2. Functional view. It describes the main functional elements of the architecture, interfaces, and
interactions.

3. Process viewlt deals with the dynamic aspects of a system, describes the system processes and their
interactions, and focuses on the run time behaviour of the system.

4. Data view. It describes data models, data flows, and how this data is manipulated and stored.

5. Deployment view It provides a consistent mapping across the existing and emerging technologies
and the functional components specified in the Functional View.

6. Business view It addresses the business processes, organizational structures, roles, responsibilities,
and strategic objectives that the system supports.

In the following sections all the prerequisite information is provided to describe the aerOS environment,
concepts, terminology, and architectural decisions, before presenting and documenting the various architecture
viewpoints considered to provide fopeecise aerOS reference architecture description.

Version 1.0 i 31-MAY -2024 aerOS°- Pagel8of 136

https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

3. aerOS initial Reference Architecture validation and
review motivations

This section details the methodologies and approaches employed to validate the initial Reference Architecture
of aerOS and to gather crucial feedback that informed the updates and revisions. Understanding these methods
is key to appreciating the contextdarationale behind tharchitecture concepts acceptance andcanges

adopted

The motivation behind the comprehensive review and validation process of the initial architecture stems from
the need to ensure that the architecture remains robceliable, and adaptive to the rapidly evolving
technological landscape and user requirements. As the foundation upon which all project functionalities are
built, the initial architecture must not only meet current specifications but also anticipateefgtansions and
integrations. The review process was driven by the objective to validate the architecture agaivmideal
scenarios through the deployment of a Minimum Viable Product (MVP), ensuring that it effectively supports
all intended use cases Whimaintaining high standards of performance and security. Furthermore, the review
sought to incorporate feedback from all project partners, including technical teams, arsgenaind industry
experts as final c 0 n s u megnsnd fuhctonatity This preactivehapproach was i t e
designed to identify and mitigate potential deficiencies early in the development cycle, thereby enhancing the
overall system resilience and user satisfaction.

The cornerstone ofhe validation process was the development of an MVP, designed to test the core
functionalities of the Reference Architecture. The MVP provided a practicalyoell environment to evaluate

the architectureds eff ect ifiomaystamsdevalopdrs apchintdgratorbisa c t i o
approactmade it possible to botlkentify and address critical shortcomings and to refine the user experience
based on direct interaction with the deployed syst€he process of MVP deploymeand architectural
concepts realization and validation was also supported by weekly meetings, supervised and coordinated by the
technical leader and with the participation of all technical partners, with the task to bring up and address any
issues regardg the transition from design to implementation.

Alongside the MVPdetailedpilot uses teedbackwas received via WP5 tasks. Regular meetings concerning

the transfer and implementation of architectural concepts to aerOS pilots were held. Each pilot actively engaged
in dedicated meetings designed to facilitate the effective transfer of architecturaeptoto its specific use

cases. Complementing these focused discussions, regular meetings of WP5 provided a strategic overview of the
ongoingintegration strategies and mapping of components to pilatasEs These meetings acted as a source

of input regarding the efficiency and usability of aerOS architecture.

MetaOS design as an innovative fielddoes not demonstrate much prior examples to follow and thus aerOS
participation in the European Cloudgeand IoT Continuum initiative has been instrumental in validating
design and obtaining feedback on the strategic diredfingaging in extended discussions within asserably

all sibling projectsallowedaerOSto presenits innovative concepts and, in turn, gather insights that are not
readily available in existing literature or practice. This collaborative environment facilitated a rich exchange of
ideas and experiences, offering a valuable external perspective. The feedbaislked through these
interadions confirmed thaherOS architectural design pashaligned or even complementafgee?.3), with

what other researchers and development teams are building and with emerging industry trends and emerging
standardsThis procesitroduced the possibility teefinedesign but also reinforcembnfidencée n t he pr o]
direction

The methodology employed to design the aerOS Reference Architecture, as explagetibnz, is based on

the ISO/IEC/IEEE 42010 standard "Systems and software enginéekiayitecture Description”. No changes

have been made to this approach and as a result, the architecture continues to be described in this documer
through its diverse viewpois and by illustrating the interfaces of the various components.

Overall, the key ideas afrchitecturénave not changed to any significant degree dinEe2 aer®S architecture

def i ni .tThavismbedausgerdShadalready foreseen to create a modular architecture, which allows the
system to flexibly integrate and scale various services and components. This modularity is crucial in supporting
a range of functionalities from the edge to the cloud, seamlessly adaptihgrse operational requirements

Version 1.0 i 31-MAY -2024 aerOS°- Pagel9 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

and environments. This foresight in design has ensured that the core principles remain relevant and robust
againstiverse deploymemequirementsand thg can support the integration and orchestration of heterogenous
resources in a diverse and extentihnological landscape, maintaining consistency in strategic direction and
depl oyment capabilities. Finall vy, the key concept
objectives and targeted outcomes have not chafdedfederation of aef® domains, for example, not only
supports a common execution environment across the-tedgeud continuum but also allows for
administrative autonomy and nuanced control over resource expokariglea of an orchestration framework

which introduces separation of concerns regarding, the Al supported, decision engine and the enforcement layer
seamlessly alignwith the underlying federation of resources and theidemandandsemantically enriched,
discoveryandexploitation,across the continuunfkurthermorejntegraing all aerOS domains as peavghin

the continuumeachequipped with the same set of core serviws proven to be a solid approacmfirming

the service fabricds ability to orchestrate servi
fabric. The aerOS continuum model, essentially a knowledge graph that correlates and semantically describes
all integrated resourse has exceeded our initial expectations and has proven to be a cruciaitaleme
deploying robust services and fostering collaboration across all domains on diverse processing units.

A short referencef most noticeablepdates would include:

1 Aclearer view of Network and Compute fabric and Service fabric: These updates detail their respective
levels of concern, their interactions, and their support in establishing a continuum for resource
abstraction and service orchestration.

1 Robust integration of asynchronous communication within each domain: Standardization based on
AsyncAPI extends the seamless integration of components, enhancing the overall system's efficiency
and interoperability.

1 Integration of LDAP in the Identity Management (IdM) system: This enhancement provides more
efficient and granular control over resources, whether they are APIs or data, thereby strengthening
access management and security

1 Updates in the deployment proceseluding thedetailing of sgcific flows sich as loTmonitoring
and actuation seise materializationjmmutable &change okey messges,tailoredre-orchesration
and others.

1 Clear mapping to the tentatiyge-standardisation activityrtven by EUCE] and how aerO&ligns
with the building blocksand compaents, ad goes beyond, techngjically.

Instantiation of the reference architecture and mapping afealign concepts and component to pilots are
presented in section 7

4. loT-edgecloud continuum ecosystem rationale

The outstanding evolution in the last few years of technologieslikesrnetes (K8s)OpenStackStarlingX

and others (mainly related to cloud computirtipat allow a significatively advanced management over the
previous machine virtualization techniquéms opened the possibility of optimizing usage and maximizing
efficiency of computing resources. The daittogether with the advent of edge computing as a real alternative
for IT ecosystems deployment (mainly due to their benefits in privacy and latency) and the increased
miniaturization level and computing capacity of devices in the edge, is creatind scgwiario to build on for
generating advanced combined approaches. &iatide technologies are also spreading their influence beyond
classic, centralized systems and are proposing more lightweight alternatives, compliant with edge computing
principles(such as<CNCF, which stands for Cloud Native Computing Founddgtion

The aforementioned combination of both approaches has nurtured the coi@lepteEdge 10T continuum.

The term, and the research around it, has been fostered specially in EU during the last few years, being mainly
promoted by the EC via a joint coordination and support action nagieediEdgeloT.euPragmatically, the

goal behind this initiative consists in the creation of a paradigm (CGElbudEdgeloT) as a result of the
convergence across the whole digital spectrum driven by the advancement in computing technologies. It

Version 1.0 i 31-MAY -2024 aerOS° - Page20 of 136

https://kubernetes.io/
https://www.openstack.org/
https://www.starlingx.io/
mailto:https://www.cncf.io/mailto:https://www.cncf.io/
mailto:https://eucloudedgeiot.eu/

D2.77 aerOS architecture definition (2) =3 aer0s

embraces the idea of approaching the inclusion of a wide variety of heterogeneous computing resources as a
single manageable entity (spanning from I0T devices, edge nodes, private or public clouds, etc.).

loT Edge Cloud
n... xR BB = 2% oo
eo'. @0 . @ﬂ . =...:
. Apps feee)
Device 3 Private Cloud 1
Device 1 faj: - o=
& s Public Cloud 2
Edge ‘1.‘—))'; (cor) =
Device 2 i@} Node Middle !ﬂ_ Public Cloud 1
) = ware
Device 4 I3 @ :
______ €56
Local Global =
Device5 ™ Model Model

CEIl Continuum

EUCIloudEdgeloT

Technologically, the continuum approach should achieve better management of the widespread and
heterogeneous computing resources stretching along the line from small devices to lardatat®mdresThe
continuum must enable and simplify the executior
leveraging aspects like network virtualization, energy management, performance, dynamic demagary on
services, etc. The underlying classificatafrthose elements (nodes) in the continuum, their adt#tn, and a

common way of accessing and managing them will allow to alleviate the fragmentation and the isolation of
technologies for handling those resources, which is the situation nowadays.

In addition, the management of distributed resources in such a way will open up the capacity to support data
intensive applications (data consumers) that make use of data sources which might be located in any spot acros:
the continuum. This will also enabladvanced access policy management, ensuring data governance and
allowing the emergence of concepts like data spaces or data fabric. Also, manipulating workloads and network
in a MetaOperating System (Met@S) for the continuum will enable the reductiohlatency in certain
distributed services, like real time verticals, multimedia streams, or banedwadtrained applications. Here,
security and privacy also play a key role, as well as automated discovery and adjustment, enablieigamiulti
(multi-stakeholder) participation in a continuum. All the previous will require interdisciplinary approaches, like

the one proposed in aerOS.

According to the most prominent initiative in the field, the compelling need of solutions for managing the
computing continuum is expressed by the following list of requirements (that must be covered in years to come):

I I |~L‘ " v t tegrate tsa i I
e Automation of resource/den atching utomated prioritisatior

aerOS tackles the 6 aspects, focusing mainly on the signalled traits. It is within the objective of the project to
deliver a MetaOS, deployable in heterogeneous resources and across verticals, that will serve as the first (and
main) solution for orchesttiag the continuumAnd that is exactly what thidocument deliers: the reference
architectureof aerOSMetaOS.

Version 1.0 i 31-MAY -2024 aerOS°- Page21 of 136

https://eucloudedgeiot.eu/

D2.77 aerOS architecture definition (2) =3 aer0s

aerOS shares this quest with five other-fadded projects (ICOS, FLUIDOS, NEPHELE, NEMO and
NEBULOUS), that share their ideas and advances periodically, collaborating in the pursue of a reliable, unified,
European vision of the continuum and its managémiéns unification starts with the definition of the terms

that rule the functioning of ,itand corihues by defining the building blocksequired functionalities and
prominent examples and success storiHsis is being done by gathering representatives of EU -Ka&a
projects to work collaboratively on the development of a common standardised taxonomy for @lSVieta
European project®esidesthe CloudEdgeloT ecosystenhas developda shared taxonomy in the field of the
continuum, eliminating ambiguities and duplication of terminology and being as specific as possible.

Among the previous, aerOS is introducing their specific proposals into the new paradigm of continuum. A full
list of terms is included in the Appendix A, however, the most representative terms (that will repeat over the
document are):

1 Infrastructure Element: the most granular entity of computing (able to execute workloads) in the
continuum. It carbe instantiated imany forms.

1 Domain: grouping of Infrastructure Elements according to certain aspects defined by aerOS.

9 Data Fabric (thus, federation):the conception of all data available in a continuum as a single box that
can be queried and will forward the proper information. Mechanisms within are rather sophisticated.

4.1. 10T as enabler of edge and cloud computing

As the years go by, increasing data volumes keep forcing the leveraging of data processing capabilities into on
demand available computer system resources, knowt
solutions, the distributed edgtoud compiting complexity must be managed via standards and deployment
models. To face this challenge the Next Generation Internet of Things (IoT) has emerged to define the
requirements and appropriate approaches to harness the power of 0T actbedgkevicesloT elements

consist of physical objects with sensors, computational power and connectivity capabilities that connect and
exchange data over the Internet.

However, the challenge of latency arises, among other glaring issues. To start off, data need to travel back and
forth between the edge devices and the cloud. As a result, traditional cloud computing models suffer from
latency problems. 10T can alleviatadd issue by bringing the computational power closer to the data sources;
thus, reducing latency. However, certain factors such as network distance limitations may persist and cannot be
eliminated by loT alone. Another problem of increasing the load iolthil is bandwidth consumption, since
sending large amounts of data from the edge devices into the cloud can consume significant bandwidth, straining
the network. 10T devices can ease this by employing-edg®uting techniques, processing, and filtedata

locally, sending only the relevant data to the cloud. This selective data transmission reduces bandwidth usage
and optimizes the usage of the network resources. However, bandwidth limitations will persist and need to be
addressed at the infrastructlegel.

To exploit the advantages that 10T offers, an innovation shift is required towards ad@aheomputing
continuum, in which computing resources, as well as storage resources can be located everywhere in the
network. With this, an expanded network conepfabric is created, spanning over both the devices and the
cloud.

In aerOS, the role of 10T will be crucial, as the ewmereasing number of devices will be an intrinsic part of the
continuum. Those will be considered as an active part of the complexity and heterogeneity of the continuum,
providing relevant data to bothanage the infrastructure and facilitate addeldie services to stakeholders.

Data served by IoT devices will be integrated in the global {@&dollowing specific mechanisms (i.e., Data
Fabrici see5.5.2, posting data in a way that will be accessible by any participant of the continuum. In addition,
IoT devices will be associated to an element of the global ecosystem (even being an active part of it), whenever
they have the required computing capacityisTdesign choice is aligned with the miniaturization trend.

Version 1.0 i 31-MAY -2024 aerOS°- Page22 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

4.2. Rationale towards an loT-Edge-Cloud continuum

Each one of the computing layers that enable I0T applications, namely loT Devices, Edge computing, and Cloud
computing, exhibit distinct characteristics concerning data handling and sovereignty. loT devices are
responsible for data collection and interaativith the physical environment. They possess limited resources
and focus on redlme data processing, often transmitting only essential information to conserve bandwidth.
Edge computing, located between 0T devices and the cloud, aggregates, -pnocgsses data locally,
reducing latency and ensuring faster response times. The cloud, on the other hand, provides extensive
computational power and storage capacity, enabling-ssgke data analysis and letegm storage. Each layer

plays a vital role irthe overall architecture, addressing specific requirements and challenges.

Certain applications benefit from leveraging the vast computatiesalirces of the cloud. These applications
involve intensive data processing, complex analytics, or require access to sophisticated Machine Learning (ML)
algorithms. By harnessing the power of the cloud, organizations can analyse massive volumesaiwdata, d
meaningful insights, and execute resotirdensive tasks efficiently. On the other hand, some applications
demand low latency and retine responsiveness. These applications operate on the edge, closer to the data
sources, to minimise delays andable neainstantaneous decisionaking. Edge computing ensures faster
response times, reduced network congestion, and improved overall performance for-datesitbye
applications.

However, a growing number of new applications necessitate a dynamic approach that intelligently utilises the
resources of all three computing layers (I0T, edge, and cloud) to achieve optimal performance while adhering
to data sovereignty and privacy restions. These applications will leverage the strengths of each layer while
optimizing resource utilisation. They will employ intelligent data routing and processing mechanisms to
determine where and how to handle data most effectively. By intelligentijpdithg tasks across I0T devices,

edge servers, and the cloud, these applications strike for a balance betwéarerazdponsiveness, efficient

data processing, and compliance with data regulations. This dynamic utilization of resources allows
organiations to achieve higherformance outcomes, while respecting data sovereignty, privacy, and
compliance requirements.

The dynamic capabilities of those new applications drive the innovative concepted¢@lCloud Continuum;
an architecture approach where the management of data, services, network resources, and computing
capabilities is performed with an overarching andying view across the three computing layers.

4.2.1. From heterogeneous IoT data to a unified data fabric

The IoT landscape has experienced a proliferation of heterogeneous data, somted@singdata in different
encodingformats and structures, but alesposing these datarough different access protocols depending on
the technologyf each data source.

The composition of a continuum based on multiple technological domains ranging from loT devices, Edge sites,
to the Cloud, highly increases the complexity of the data management actD#iassourcesre not only
staticallylocated in physical locations, such as 10T sensors, buttmisobespreadacrosanultiple physical

and virtual locations across the different domaliss constitutes highly changing environmenthereinnew

data sources become availalbhmveto other domains, and even disapdeaexpectedly or orchestrate@uch

an intricate and heterogenous data landsqaesentsseveral challenges in two main aspects: i) data
consumptiorand ii) data governance.

Vertical servicesleployed on the continuymsuch asML/Al applicatiors, that aim tofind and analyse these

data to realize their businedsmandswould have to deal with such a complex and heterogenous data landscape.
Vertical services first would have to find and understand the data of interest for their use case. They would also
need to implement specific mechanismsifigesting processing, and consuming the data of interest. Moreover,
advanced use cases would require ML/Al applicatioostelate ad combinéeterogenoudata from multiple

data sourceslhis whole workflowentaik an extremely time&onsuming effort that, in addition to having data
engineering skills, requires a deep understanding of the available data.

Similarly, data governance processes must be able to cope with this diversity of data in a dynamic environment.
The security and privacy teams must ensure that data are properly classified and protected, accessed only by

Version 1.0 i 31-MAY -2024 aerOS°- Page23 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

authorised consumers, and used for a specific reason. Keeping track of all these activities calls for a holistic
view of the available data and how they are exchanged within the continuum.

The aerOS Met®S achieves to delivea feeling of a continuumthus, when it comes to data management,
aerOSprovides auniform access to athe data, regardless of their locationthe continuumtheir original
encodingformat,ort he under |l yi ng t ec h ndath sogce. Tathizetdd, derddldslore A g o
a semantic layer over the continudhat abstracts data consumers from téehnologicalcomplexitiesand
facilitates the discovery, understanding, and access to alhthehrough aniforminterface. Precisely, this is

the idea behind the data fabric paradigm; however, aerOS goes beyond that, byng@xtemdiata fabric
throughout the loFEdgeCloud continuunfollowing federated and distributed architecturése aerOS Data

Fabric aims to become a eswpshop for data consumers to easily find, understand, and access any data
available in the continuum; whereas the data governance team is provided with a complete view of how these
data are being used withilne continuum.

4.2.2. From a distributed cloud ecesystem to a unified networkand
compute fabric

Over the course of time, the field of computation has witnessed the evolution of diverse paradigms, ranging
from traditional parallel and grid computing to the advent of cloud computing. Cloud computing, encompassing
service models like Infrastructussa-Service (laaS), Platforrasa-Service (PaaS), and Softweasa-Service

(SaaS), offers numerous advantages and capabilities. These include scalabitgmamd resource
provisioning, a paasyou-go pricing model and streamlined provisioning of applice and services.

The emergence of 5G and beyond has brought forth a multitude of novel applications, such as massive Internet
of Things, mobile video conferencing, connected vehicldeadthcare, online gaming, and virtual reality. As
indicated by both industry and acade research initiatives, these applications require high data rates ranging
from 1 to 100 Gbps, as well as low latency in the range of 0.1 to 1 ms fotowtdatency applications.
However, cloud computing alone falls short in meeting these evolvingyeetents due to several issues.

The primary challenge lies in the considerable distance between cloud resources and end devices, as the
connection is established over the Internet, resulting in latency issues. Additionally, the processing capacity of
cloud servers is insufficient to effively cater to the emerging demands. For instance, the latest generation of
generalpurpose computing instances in Amazon EC2 cloud service possess processing capabilities on the order
of 5 to 50 Gbps. Nevertheless, this level of processing powerdaildequately accommodate the vast number

of applications and the traffic generated by 0T, where high data rates are necessary for many applications, such
as data rates of multipl8bps for highquality 366degree video.

The concept of edge computing, encompassing paradigms such as cloudlet, mobile edge computing, and fog
computing, was introduced as a solution to address the challenges associated with cloud computing. While edge
computing improves latency and enhancesgssing capacity by providing resources at the network edge, it is

not expected to sustain the continuous growth in traffic volume. Additionally, the latency achieved through edge
computing falls short of the stringent requirements for #tivelatency aplications, which demand rouridp

latencies of less than 1 ms, possibly as low as 0.1 ms.

The concept of distributed cloud computing has recently emerged as a solution to enhance the performance of
cloudlet, mobile edge computing, and fog computing paradigms. It achieves this by utilizing the computational
and storage capabilities of nearbyeiligent devices for offloading computations or caching data. However,
there are significant challenges related to the limitations of computation and power, the mobility of
neighbourhood devices, and particularly the security concerns associated wétinffloomputations to these
devices. To address these challenges, there is a need for a more securesffmoevey and reliable
computational infrastructure with a high processing capacity, which can complement the existing computational
paradigms.

In this regard, the imetwork computing paradigm, which is based on programmable data plane technology (an
evolved concept of Software Defined Networkin§DN), can provide poweefficient network elements with

high processing capabilities at the networdge. By effectively utilising inetwork computing, packets can

be processed at limate, along the path, and before reaching the edge/cloud servers. This paradigm offers faster

Version 1.0 i 31-MAY -2024 aerOS° - Page24 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

processing capabilities at locations closer to end devices, surpassing the performance of edge or cloud server:
employed in traditional edge and cloud computing paradigms.

Figure2 provides a schematic representation of the different computing resources that may be utilised by aerOS
whereby its Infrastructure Elements can be hosted. It illustrates thetiwork computing fabric, which
comprises network elements such as programnsatitehes, Field Programmable Gate Arrays (FPGASs), and
smart Network Interface Cards (NICs) accelerators embedded within a host. These network elements can be
strategically positioned between edevices and servers offered by edge computing, includingdatess

Edge Computing (MEC) servers, fog nodes, and cloudlets. Alternatively, they can also be deployed between
enddevices and cloud datacenters, or even between edge servers and cloud servers. This architecture enable
efficient utilization of computig capabilities across various computing resources. The different resource types,
shown inFigure2, mayserve different purposes. Below a limited selection of examples is provided:

® Analytics: The available resources can be leveraged for conducting analytics tasks. This includes
ML, data aggregation, heavy flow detection, query processing, control operations, and deep packet
inspection. Such tasks can be performed either on themtith case of kiNetwork Computing or
at specific locations such as central cloud servers, edge cloud servers, or end devices.

(i) Caching: The diverse resources can be utilised to establish a caching infrastructure stotagef
servers. This aims to reduce data access time and is relevant-f@lieystore applications as well
as informatiorcentric caching.

(iii) Security: The resources distributed across different locations, nameétviork computing and
edge cloud, can be employed to fulfil specific or comprehensive functionalities necessary for
detecting and mitigating attacks on the infrastructure or theédedwservices. This approach aims
to minimise attack mitigation latency and operational costs associated with dedicated security
servers.

(iv) Technology Specific Applications: Applications can either run exclusively on a single resource
type, such as the central cloud, or specific components of the applications may be distributed across
alternative resource types, such as the edge cloud andigegices. End devices may also offload
their computations to virtual resources running in the edge cloud, in order to overcome the limited
available resources at the devices. These virtual resources at the edge cloud can expand and shrink
dynamically anawill have scalability with respect to the service requests. End devices can offload
their computations to the edge cloud in their proximity, thereby overcoming the poorness of
resource limitation in the device, as well as guaranteeinginealinteractie responses. In cases
where the edge cloud or cloudlet is inaccessible in proximity, there remains the possibility of
connecting to a remote central cloud. However, such a connection may result in a degradation of
response time for obtaining the requiredvice.

Central Cloud

Edge Cloud g
- ! End Devices

In Network
Computing

Version 1.0 i 31-MAY -2024 aerOS°- Page25 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

In the presence of diverse cloud resources, including cloud, near and far edge cloudetndrikicomputing,
ensuring efficient orchestration of these resources is of utmost importance from various pergggciiiese

exist different strategies for resource orchestration, spanning from initial resource selection to service and
resource migration. A significant research direction lies in orchestrating a wide array of resources to meet
application requirements, oessitating solutions for resource allocation and traffic steering to deploy desired
applications effectively. While some studies have addressed resource allocation in hybrid environments
consisting of network elements and cloud computing n¢g8kd4], with the aim of maximizing request
admission or minimizing deployment costs, their scope remains limited. Further research is warranted to explore
orchestration approaches that encompass additional objectives, such as maximizing throughput, minimizing
bandwidth utilization, reducing power consumption, and optimizing quality of service metrics, including latency
and reliability.

Effectively, the current cloud ecosystem is comprised of multiple cloud providers, each representing a separate
cloud domain. These domains are characterised by their individual Virtual Infrastructure Managers (VIMS) or
controllers, which govern the virtlised infrastructure. This decentralised architecture necessitates the
management of applications and resources across multiple cloud domains, leading to challenges in scalability,
complexity, and cosgeffectiveness. With the advent of near and far edgepating, the diversity within the

cloud ecosystem is further accentuated. Edge cloud providers bring computation closer to the point of data
generation or consumption, enabling reduced latency, improved responsiveness, and enhanced user experience
However integrating these edge cloud domains into the existing elalid environment amplifies the
complexity of managing applications across diverse infrastructiveseover, considering that such
hybrid/multi-cloud environments currently rely on containeanmagement framewosksich asKubernetes,

which are not properly serve the requirements of such heterogenous and distributed loT services and equipment,
the need for developing a homogeneous overlay management system is becoming a necessity. To achieve
specific objectives such as geaphical distribution, low entb-end latency, efficient bandwidth utilization,

and other applicatieapecific requirements, it becomes imperative to deploy applications across multiple cloud
domains, but under a unified management framework, which maydacatering to a dispersed user base,
reducing latency for cloubdlased services, accommodating bandwidtensive applications, and more.

As applications become hypdistributed, they rely on computing resources (clouds, edge, data centres in
general) belonging to different providers, connected via networks with varying bandwidth, latencies, and
probability of connectivity loss, often beywnthe control of the application owner. These computing
infrastructures consequently operate as isolated aggregations with fragmented resources, making seamles:
provisioning of hypedistributed applications challenginlylanaging such deployments througdividual
interfaces to each cloud Vilkdecomes highly complex, has limited scalability and lackseffsttiveness.

The complexity of managing applications across multiple (cloud) domains is further exacerbated by the need
for external networks and the maintenance of Quality of Service (QoS) requirements. Applications rely on
communication among their components or wservices, necessitating network connectivity between different
(cloud) domains. QoS parameters such as latency, bandwidth, jitter, and packet losses must be maintained tc
ensure optimal application performance. Managing this netemmkpute fabric in a ufied and uniform

manner poses challenges at several levels, as mentioned above. To address the complexities and limitation:
associated with managing mutfioud environments, there is a growing need for a unified framework. Such a
framework would provide centralised management approach for the diverse cloud domains and the associated
network infrastructure. The offer of a unified interface would streamline application deployment, resource
allocation, and network connectivity across cloud domains. Thigedrnframework aims to resolve the
aforementioned challenges and maintain QoS requirements across the entire-cetwmrte fabric.

4.2.3. From monolithic applications to intelligent distributed
services

In a typical clouecentric approach, applications and services usually have a monolithic, albeit highly scalable,
architecture. It assumes the existence/availability of a specific set oflzémed computing resources but may

also include selected loT/eglgesources, playing mainly the role of data sources. A monolithic application is a
single, closely connected software system that is designed and delivered as a single entity. The use of the clouc
astoday'sultrp ower f ul Amai nf r anegeofis indrediblespoténtial, huia dt the sante vinaen

Version 1.0 i 31-MAY -2024 aerOS°- Page26 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

it introduces obvious latency and privacy issues. This is exacerbated when applications becoerdritatas
data typically does not come from the cloud and may be sensitive imposing additional restrictions on centralised
processing.

The term "monolith” is frequently associated with something big and glacial, which is not far from the truth of
a monolith architecture software design. A monolithic architecture is a single, vast computing network with a
single code base that connectshaisiness concerns. Making changes to this type of application necessitates
accessing the code base and developing and delivering an updated version of thsiderinterface. This
makes updating difficult and timeonsuming. A monolithic architectuhas the following advantages:

1 Simple deployment A single executable file or directory simplifies deployment.
1 Development It is easier to build an application when it is developed using a single code base.

1 Performance In a centralised code base and repository, one APl may frequently perform the same job
asseveral APIs using microservices and communication between internal components does not cause
additional cost overhead.

9 Testing is simplified since a monolithic application is a single, centralized entity, allowing for faster
endto-end testing than a dispersed program.

1 Simple debugging With all code in one location, it's easy to track a request and identify a problem.
However, a monolithic application has the following drawbacks:

1 Slower development pace A huge, monolithic prograncomplicates and slows development
(specifically with time and growing complexity of the system).

9 Scalability- Individual components cannot be scaled or scaling requires some essential modifications.
1 Reliability - If any module fails, the availability of the entire application may suffer.

9 Adoption of technology is hampered since any changes to the framework or language influence the
entire program, making modifications costly and ticomsuming.

1 Lack of adaptability A monolith is confined by the technology that it presently employs.

1 Deployment- Making a little update to a monolithic program necessitates redeploying the entire
monolith.

1 Singleownership assumption is made omitting the problem of potential restricted data sharing and
processing.

Moreover, the monolith application cannot take advantage of the heterogenous infrastructure on top of which
the solution could be deployed in a distributed way. TheHd@eCloud Continuum governed by aerOS
introduces an agile architecture and mechanigmas allow for dynamic (re)allocation of resources (both
computational and dat@lated), and efficient deployment/configuration of services. Thanks to the application

of thoughtfully selected mechanisms and intelligent decigiaking techniques aerOS Wwibe able to
intelligently manage the execution of application workloads and deployment of services across the continuum.
In particular, it will support dynamic distribution and placement of services and user applications, offering user
confi guriaebd ee. Afpddiitci onally, thanks to the concept
based on them, will be able to flexibly manage data access policies and mechanisms as close to the data origir
as possible, minimizing possible security anaguy risks.

A proper application type that can take the advantage of this distributed aerOS architecture is based on a
microservices architecture software design. A microservices architecture, commonly known simply as
microservices, is an architectural solution tlsabased on a collection of independently deployable services.
These services have their own deployment requirements, business logic and database, and they serve :
specialised purpose. Each service has its own lifecycle undergoing updates, testing, aé¢pdmyhsealability.

Version 1.0 i 31-MAY -2024 aerOS°- Page27 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Microservices split important business issues into separate, independent code bases. Microservices do not
diminish complexity, but they do make it visible and controllable by breaking activities down into tiny processes
that work independently of one anethwhile contributing to the overall total. Moreover, with the proper
deployment, micro services can optimise the utilisation of the underlying infrastructure with respect to
computational costs and energy consumption.

However, microservices come also with their challenges, which aerOS comes to address. When establishing a
microservice application in the cloud, the scheduler must properly plan each service on dispersed compute
clusters, which may have varying resourceadeds. Furthermore, network connection between various services
must be managed carefully, as communication circumstances have a substantial impact on service quality (e.g.,
service response time). It is becoming increasingly vital to ensure the regaifedrance of serviebased
applications, particularly the network performance between the relevant services. Therefore, the unified
networkcompute fabric that aerOS envisions becomes fundamental for the optimal microservice placement
process, while thenified management the aerOS offers as a NOSafacilitates this orchestration process.

Considering additionally the distributed nature of the aerOS across the continuum, the orchestration of the
microservices is also evolved. In a microservice architecture, orchestration and choreography are two techniques
of interacting with other softwareomponents. In general, orchestration is used when there is a need for a
centralized authority to control the interactions. Orchestration is based arctestranotion, in which
numerous artists are masters of their instrument, which is a service in our microservices design. The conductor
of an orchestrator directs everyone in relation to the nodes. Similarly, when a parent service administers the
request, it fowvards the request to the appropriate service and gathers the data. The final answer is created in the
primary service known as orchestrator and delivered to the client application.

Microservices, unlike orchestration, function in parallel in choreography, which is used when there is a need for
a more decentralized and autonomous interaction between services, which is the case for the agdSS Meta
Substantial parts of thegstems arduilt on an eventriven architecture, in which a service gets data from a
message bus, performs business logic, and then submits data to another message bus.

There are several subjects in microservice choreography to which a service may subscribe and update anothel
topic. The microservice's task is specified, and it simply checks whether the subject is empty or not. Unless the
subject is empty, it continues &@complish the work at hand. In a choreographed microservices architecture,
adding and deleting services is significantly easier. All that is needed is to connect (or detach) the microservice
from the proper channel in the event broker. The installatidmeanoval of microservices does not compromise
current logic with loose service coupling, resulting in reduced development turnover.

aerOS is proposing a hybrid approach in the management of service placement between the typical Orchestration
and Choreography approach, which is based on the combination-téuglamrchestrators and an intelligent

load balancer that are coordinated indecentralized and autonomous way, adopting the elremn
choreography principle.

4.2.4. From decentralized services to federated domains

In recent research trends, there has been a significant shift towards developing more-effsganteand
effectively managed distributed computing environme@isirent esearch5] suggest the transition from
traditional centralized and sementralized models to advanced federated architectures. These federated
systems represent a paradigm shift, offering a more egalitarian framework where all nodes within a network
operate as peers, eaefth equal access to resources and decisiaking capabilities. Such an approach not

only enhances autonomy but also promotes a more granular level of control over distributed resources,
fundamentally altering the ecosystem for orchestrationresmlrce utilization.

Federation in distributed systems transcends basic decentralization by embeddibgspdeoperational
equivalence across the network. This ensures that each node can retain its autonomy and does not have to deper
on other nodéscapabilities to be fully functional and at the same time no single node bears excessive burden
or possesses undue control, thereby eliminating operational bottlenecks and facilitating a more streamlined and
resilient orchestration process. The move towéederated architectures is driven by the necessity for systems

Version 1.0 i 31-MAY -2024 aerOS°- Page28 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

to adapt to diverse and dynamic operational environments without compromising on autonomy, efficiency or
scalability.

In contemporary distributed computing environments, the centralized orchestration model often results from a
fragmented understanding of the state across the continuum. Each adminisprativeroud posses only a

partial view, limited to its local resources. This fragmentation compels a centralized approach where local state
fragments are aggregated at a central location, typically where the orchestrator resides, enabling efficient service
component placeent decisions across the continuum.

However, this centralized model introduces inefficiencies and hierarchies in deuskimy. Some alternate
designs attempt to alleviate complete centralization by establishing a hierarchical structure in orchestration
capabilities. In these designs, "derentral” nodes possess an expanded, albeit incomplete, view of the
continuum's state. These nodes can make limited decisions or escalate them téevedhwrdes that
encompass a comprehensive view of the continuum, thereby enabling final orcheskeatgions. Such
hierarchical models inherently create disparities in node capabilities, leading to a more complex, energy
intensive, and slower orchestration process.

Againstthis paradigm, architectures which integifaigeraion, by treating each domain as an equal peer within

the continuum, ensure that all domains have equal and direct access to comprehensive state information of all
resources. This democratization of information underpins the ability to deploy a uniform sdtesti@ion

services across all domains. Consequently, any domain can make informed placement decisions and manage
resources anywhere across the continuum, from the far edge to the cleuse&thiased architecture not only
simplifies the orchestration process but also enhances the autonomy of each domain

As the discussion often revolves around how to achieve optimal orchestration, ensure data consistency, and
handle the complexities of credemain transactions and interactions in a secure and efficient mémmer
integration of cuttingedge technologies such as artificial intelligence, distributed ledger technologies, and
advanced cybersecurity measures strongly support the development of these federated systems. Atrtificial
intelligence can further enhance daoirmaking with predictive analytics and automated management tasks,
distributed ledger introduces immutable records and enhanced security protocols for transactions across the
network, and cybersecurity advancements ensure robust protection mechamismptaae to safeguard against
evolving threats. Together, these technologies provide the essential tools needed to manage and secure
distributedloT-Edge-Cloudnetworks effectively and promote the adoption of federated architectures.

Thus, the shift towards federated models not only represents a significant innovation in the way distributed
services arerchestrated but also sets a new standard for the future of networked systems. It shifts away from
hierarchical and centralized models, promoting an equitable and efficient framework where each node or domain
retains full autonomy and capabilities, mirragia truly distributed network that leverages collective intelligence

for operational excellenc&his research trend points towards an ecosystem where distributed computing not
only meets the demands of modern applications more efficiently but alsoodines manner that is inherently
secure and scalable, driven by the latest advancements in technology.

5. The aerOS continuum
5.1. Meta-OS approach and aerOS vision

A MetaOSaims at mimicking cruciadervices and functionalities of an operating system, operating within an
environment that integrates numerous distributed input/output resources in an infodnggonmannerThe

type and number of functionalities offered may categorize it as neither an operating system nor a framework. A
good example of a Met@S approach is the popular Robot Operating System (FBBP®)the robotics domain.

ROS, a MetaDS for robots, is an opesource platform whose functions are equivalent to that of an operating
system; functions include ledevel device control, hardware abstraction, message passing between processes,
implementatio of commonly used functionality, and package management. The ROSJ8aibso provides
libraries and tools for obtaining, building, writing, and running code across multiple computers while
accommodating different combinations of hardware implementatitets: OSs developed in various domains

Version 1.0 i 31-MAY -2024 aerOS°- Page29 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

enable different levels of coordination among heterogeneous devices (physical or virtual), operating systems,
andservices[7] [5].

aerOS builds on the MefaS approach to intelligently manage and integrate a distributed set of resources into
a seamless continuum, supporting the orchestration of Hoygteibutedapplications across the I6Edgé

Cloud spectrumaerOS aims to implement a Mels that unifies and orchestrates computing and network
resources in the most efficient way, providing a common and unified execution environment for 10T service
developers across a distributed computing environment. Theserces are located in various geographical

and administrative domains and have significant diversity in their capabilities and operating systems. End users,
i.e., loT developers from various industry vergaasing aerOS, should experience seamless integration of these
underlying resources and transparently benefit from the smart, -@fOi8ed orchestration and federation
decisions in their effort to deploy services in closest possible alignment todfeireaments leveraging the

most appropriate and efficient resource capabilities exposed from the entire infrastructure, from edge to cloud.

This necessitates aerQOS, as a Mef, to implement, operate, and manage the continuum across all involved
layers. To understand aerOS as a M8 it is necessary to explore the concept of the continuum as a derivative

of layered fabrics supporting etto-end and edg&o-cloud orchestration, lifecycle management, and federation

of computing and networking nodes (physical or virtual), services, and data. Thus, aerOS can be perceived as
the enabler and administrator of the continuum, acting as a keyafacikitith the dual role of i) orchestrating
diverse resources and ii) establishing a unified execution environment for 10T services deployment. This enabler
effectively bridges the edge-cloud pathway, offering functionalities akin to an operating sytt@tmanages

legacy hardware resources.

To ensure that network, compute, and data resources work together, enabling optimal performance, scalability,
and reliabilityforhyped i st ri buted applications aer OS buil ds on
a unified framework that seaedsly integrates and orchestrates these resources. Within this contét, i

highly distributed computing environment encompassing a diverse range of physical and virtual computing and
network devices, the establishment of theaer OS Net wor k Fa b d éndbiesngeantess
connectivity, unified exposure, and orchestrated management of the underlying infrastructure. This fabric spans
from the edge to the cloud and across multgenainsand staeholders Currently, many nowconnected,

distinct computing islands host applications with specific demands. Elements in these [slavide
processing, storage, or networking capabilities only to a certain extent and often rely on big cloud providers to
execute intensive computing tasks. The aerOS Network and Compute Fabric aims to expand these capabilities
by providing federated accesstoesned and avail able resources from ed
of resource exposure.

Built on the foundation of theNetwork andCompute fabric,'aerOS offers a comprehensive framework for
building and managing microservices and contabased applications. It provides the infrastructure to deploy,
manage, and scale services efficiently across various environments. Essential mechanisms, deggo&i a
microservices, facilitate seamless and transparent resource sharing, orchestration, and federation, supporting
core aerOS functionalitie§'his is thefi a er OS Ser vSewiee Fabd inaudes thanagement and
orchestration (MANO) capabilities for full lifecycle management (LCM), including development, deployment,
and scaling of loT applications and services. This abstraction empowers developers to create scalable, reliable,
and highly aailable applications by simplifying access to underlying infrastructure and ensuring efficient
placement, resiliency, and migration of services. It enhances overall performance by continuously selecting the
most efficient placement of services on appiaipr resourcesaerOS Service Fabric consists of basic and
auxiliary services running within each registered domain on top of their network and compute elements. This
fabric exhibits key characteristics for effective service management. Orchestration decisions waan®dhe

Service Fabric break down loT service deployment requests into microservices, provisioning them based on
resource availability and required capabilities. This provides comprehensive support for 10T developers to
deploy applications aoss vertical domains, from the edge to the cloud (public or private). Features include
lifecycle management, intelligent orchestration, resilience, scaling, discoverability, messaging, monitoring, and
more.

The Network & Compute fabric as well as the Service fabric encompass extensive information about their
capabilities, availability, and conteslated information (e.g., location). Each computing resource and service
produces substantial runtime data, pdowy insights into their current state and how their capabilities and

Version 1.0 i 31-MAY -2024 aerOS° - Page30 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

availability change over time. A comprehensive layerfttee r OS D a t isimgfemnénted to facilitate

the efficient management, integration, and access to all this data across distributed systems and diverse date
sources. The Data Fabric provides a unified and consistent data layer. Methodpipgiess,and tools,
constituting this layer, abstract the complexities of datguisition, processing, semantic and syntactic
homogenization, storage, governance, provision, enaddn@S data producessd consumers across discrete
administrative domains to transparently exchange data. At the heart of aerOS Data Fabric a knowledge graph is
employed to storetepresentand correlate a@Sintegrated resources (hardware and services) and their
properties. This choice allows resources, along with their state, to be depicted as entities with connected
properties and attributes. Relationships deployed within the knowledge graph represemhyhisal,
multilevel connections, with flexible relationship oldjes vi sual i zing a potential/l
presence of computing resources and IoT services may change anytime, triggered by unforeseen events. This
contextualized provision of aerOS information, representing and interrelating, deldtaesnd resources is

used as the substrate for cognitive operation related to both continuum orchestration and services peer support

Thus, aerOS builds both on the concept of developing an unprecedented graph of interconnected or interrelated
computing, networking, services, and loT resources for the continuum and on the mechanism to distribute this
information on demand and in re@he among all connected domains and elements. These capabilities enable
access to information about all aerOS entities deployed, providing a full overview of the ecosystem at any time
for any consumer, and the exploitation of this information across thgstews from edge to cloud, to develop
mechanisms that recursively adapt and reconfigure resource usage and orchestration to meet user or owne
criteria.

aerOS verticals

- e e

aerOS Services Fabric
(Basic & aux)

aerOS
Data Fabric

aerOS Network & Compute

Fabric

N e e e e e, e e e, e e, —————— ———

aer0OS domain

All the above highlight a system that can seamlessly integrate a wide spectrum of computing and network
resources and services, spanning from the edge to the cloud. It represents a unified architecture where computing
capabilities distributed across diféet administrative domains and physical locations, are federated, and
orchestrated allowing thus for the most efficient and optimized placement of workloads. This seamless
integration and orchestration of resources, services, and data across multiplesgdoeitions, and
heterogeneous devices and operating systems, along with the data fabric capabilities to share and distribute dat:
under interoperable mechanisms, establish a continuum. A continuum that spans distinct administrative
domains, diverse des& capabilities and architectures, and different connectivity networks, working seamlessly
and leveraging all underlying resources for the benefit of 10T developers and users. A continuum that provides
a common execution environment for this community.

As a resultaerOS, as a MetaOs, intelligently establishes and manages a seamless continuum that integrates
resources and services, generating valuable data continuously monitored, processed, and utilized by distributed
Al services to enhance continuum functionality. Insights derivech fAl-based data pipelines feed into the

Version 1.0 i 31-MAY -2024 aerOS°- Page31 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

orchestration processes, adapting and reconfiguring resources and services, enablirg& $ddtastaining

loop. This process operates under azeuch management paradigm, where automation and intelligence drive

the continuous evolution and optimizen of the continuum ecosystem. Ultimately, aerOS provides a
comprehensive framework to establish a seamless continuum across computing, service, and data layers. As ¢
MetaOS, aerOS supports the establishment, sustainability, and efficiency of thisuoamtioffering loT

service developers, in industry verticals, a unified execution environment built upon a transparent ecosystem of
resources. This unified environment streamlines the development, deployment, and management of loT
services, fostering effiency and innovation within the industry.

- Y=
= —.e D) = @ /\ = A
O A -
- o = Layer . P S

aer0OS = g
. O Services I_F =8 =,
L 5

5.2. aerOS building blocks

To develop aerQOS, following a Me@S approach that encompasses all continuum aspects discussed earlier
and addresses the projatdijectives, the architecture design incorporates key building blocks structured to
realize its fundamental concepts. This section provides a comprehensive overview of the aerOS system,
consolidating the main concepts and building blocks. Subsequent sadtior into precise descriptions and
thorough analyses of the core elements, services offered, and functionalities exposed by the system.

The approach chosen to describe the overall capabilities and components of aerOS is incremental, reflecting the
evolving demands of transitioni ng-O8fordhalo&Clold&Edgacy |
continuum. We gradually introduce thgstem's fundamental concepts, implementing components, and exposed
capabilities, acknowledging the dynamic nature of this transformation.

The design and establishment of the aerOS continuum, which seamlessly integrates 10T devices and resource:s
from the edge to the cloud, is built upon multipégOS domains Each of these domains consists of a collection

of Infrastructure Elements (IEs), with at least one |IE per domain. Among all aerOS domains, the Entrypoint
Domain is assigned a special role across the continuum, functioning as the primary access point for the system.
While uniquely instantiated in one domain, it is capable ahsess migation to any other during runtime. The
integration of these domains and their constituent IEs forms the fundamental building blocks of aerOS. This
architecture leverages these building blocks to deploy a comprehensive suite of services, all the wagefrom ed

to cloud, thereby creating a federated environment exposed as a conflimigistructured approach ensures a
scalable framework that embodies the capabilities expected from aO&etth supports the orchestration of
diverse and dynamic loT applicatioaquirements across the continuum, as well as the orchestration of the
underlying resources providing the hosting environment for these applications.

To facilitate the seamless integration of resources and the deployment and management of services across al
domain® from the far edge to the clo8dwo key concepts play a prominent roliederation and
orchestration. aerOS incorporates its own design, perspective, and implementation of these concepts as
functional enablers for the realization of an efficiently governed continibeit interdependent and mutually
supportive integration establishes an innovative federated orchestration process. Before detailing the tangible

Version 1.0 i 31-MAY -2024 aerOS°- Page32 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

building blocks that constitute the aerOS stack, it is essential to explore these concepts from an aerOS
perspective and understand their integration within the aerOS architecture.

Federation plays a crucial role in leveraging the collective capabilities and resources across multiple aerOS
domains within the loFEdgeCloud environment. It is built as a set of services within each domain which
collaboratively establish the backbone to suppsburce sharing across the continuum. This is primarily built

on the capability to publish and share, under a common and interpretable schema, all information regarding
capabilities and status of all constituting elements of each domain. This thigepossibility to components that

need it, regardless of their hosting domain, to havdemand access to this information. This transparent
access empowers components to make informed decisions regarding resource engagement, even beyond th
boundarie of their respective domains. By breaking down silos and enablingdwossn communication,
federation promotes efficient resource utilization and collaboration, ultimately enhancing the overall
functionality and performance of the aerOS ecosystem.

aerOS federation is implemented based dnfae d e r emdblerr(c@mponent) included within each aerOS
domain and a central registry informed of all integrated domains in the continuum. The Federator is
implemented as a set of services and functionalities, facilitating the bidirectional exchange of infasitiation
other domains of the continuum. The central registry is located in the Entrypoint deeei8.9, and its role

is to keep an inventory of all integrated domains and promote new domains registration and connection with
those that are already part of the continuum. Once the registrations are set, all continuum information is
disseminated across aerO$nthins, through the federator functionalities inherent to each domain. This
distributed approach mitigates the risk of single points of failure and minimizes runtime dependencies, ensuring
the robustness and reliability of the federation framework. Fudiigils regarding this design are elaborated

in section5.4.3

Federation incorporates mechanisms for efficiently transporting information and facilitates resource sharing
across all domains within the aerOS ecosystem. Its underlying framework leverages functionalities provided by
the various aerOS fabrics discussadier. Microservices, as part of these fabrics, are utilized to retrieve data,
expose information, and facilitate resource sharing.

While federation provides the essence of continuDnghestration is the complementary counterpart which
enables aerOS to act as a M@&& over the continuum. It is vital for managing and coordinating the deployment
and execution of containerized workloads across multiple domains spanning from the edge to the cloud.
Building upon the foundation laid by federation, aerOS orchestration elevates standard orchestration principles,
particularly those of CNF, by integrating distributed Adriven decision support systems, trust services, and
knowledge graptibased aerOS state models. This integration empowers aerOS orchestration to optimally
allocate workload placement based on a comprehensive understandieguwte availability and capabilities
across the continuum. Leveraging the capabilities provided by federation, aerOS orchestration exploits cross
domain communication facilities to coordinate activities over resources situated in various administrative
domains throughout the aerOS ecosystem. Furthermore, facilitated by the aerOS Data Fabric enabled as part o
the federation process, orchestrator components gain a holistic view of resource availability and capabilities
across the entire continuum in rgimhe. This extensive information equips orchestrators with a multitude of
options for workload placement decisions.

In each aerOS domain, an orchestrator component plays a pivotal role in making informed decisions regarding
workload placement. The architecture of the aerOS orchestrator comprisedayeteal design. At the higher

layer, theHigh-Level Orchestrator (HLO) receives deployment requests using a templated descriptive model.
Supported by Al algorithms and trust managet components, as well as the privileged access tetireal
information across all domains provided by federation functionalities, the HLO makesfaetied decisions

on workload placement. If local Infrastructure Elemdste5.4.1) can accommodate the workload, the HLO
provides a suitable Deployment Decision Blueprint toltbe-Level Orchestrator (LLO), which leverages

local deployment facilities within the domain to execute the deployment. Conversely, if a remote Infrastructure
Element is deemed more appropriate, the request is forwarded to the remdéy¢ligihchestrator, to take on

with thedeployment using the respective LLO.

A key takeaway regarding aerOS orchestration is its inherently distributed nature, where each orchestrator
operates within its domain's jurisdiction while also benefiting fromtrealme knowl edge of al |
and capabilities thanks to aerOSldeation and the Data Fabric support. This enables orchestrators to make

Version 1.0 i 31-MAY -2024 aerOS°- Page33 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

informed decisions and access remote orchestrators to deploy workloads based on specific demands anc
resource availability. Finally, the innovative architectural decision to implement orchestration in twé layers
where the higher layer integrates pluggatgeision support systems such as Al and trust comp@nentsures

efficient and secure workload placement, driven by sophisticated depisiking processes.

The functionalities described above are realised through a cohesive set of interconnected functional components
residing within the aerOS ecosystem. These components are not confined to specific identifiable elements, but
are distributed across all aerO®nthins, residing on some of the contained Infrastructure Elements.
Collectively, these components provide the aerOS Federated Orchestration capabilities, as a framework,
spanning from edge to cloud, which provides the basis for management and orchedtedtimsources and
deployed functionalities across the continuum. Although federation and orchestration are closely interrelated,
for the purpose of this document, each concept is referred separately to provide a more detailed and granular
description 6 their functionality. This approach allows to delve into specific aspects, while maintaining an
understanding of their cohesive nature within the aerOS ecosystem.

ConcludingaerOS Federation and Orchestrationconcepts, anddfore delving into the detailed description

of the aerOS building blocks, which provide the foundational implementation infrastructure, it is essential to
underscore the significance of the aerOS Data Fabric and the knowlegidebased model represergatind

their importance supporting o process over a federated contirithese concepts are pivotal for depicting the
state of aerOS resources and their relationships across the continuum.

Each aerOS domain integrates an aerOS Data Fabric component, which empowers any interested consume
within the domaid whether it be the higlevel orchestrator, the trust manager, or an Al decision support
componend to request and receive data seamlessiynfthe continuum. This approach eliminates the need for
these components to directly access other domains or data producers across the continuum. Instead, a local Dat
Fabric agent handles all the underlying complexities, ensuring efficient and seeuretidewal.

The technologies and protocols developed and integrated for the realization of the Data Fabric enable the
creation of the aerOS distributed state repository. This repository facilitates various methods of data interaction:
consumers can poll for data, raeenatifications about subscribed changes, or be updated based on established
registrations. These interactions can occur across different administrative domains, extending from the edge to
the cloud.

A patrticularly interesting aspect of the aerOS Data Fabric is its ability to provide updates through multiple
mechanisms while maintaining a unified and coherent view of the continuum. The choice of a kngndptige

model plays a crucial role here, allmgithe representation and querying of infrastructure within a context of
dynamically related resources. This model enables resources to be characterized and connected by a set o
properties that are indicative of their most important features. This of@zation is critical in determining the
eligibility of resources for task execution, making the knowlegigeoh model an invaluable tool for efficient
resource management and orchestration within the aerOS continuum.

In summary, the aerOS Data Fabric and the knowlgdgeh based model representation are key enablers of

the aerOS ecosystem, providing a robust framework for data management and resource orchestration. These
components ensure that each domain can intefdcthe continuum in a seamless, efficient, and cordaesdre

manner, significantly enhancing the overall functionality and performance of the aerO®#®leta

aerOS stack and building blocks

Thelnfrastructure Element (IE) is the fundamental building block of the aerOS system, providing the essential
computational unit required to host and support the deployment of workloads. It can be any physical or virtual
entity capable of supporting containerized workloads, weti®8 offering dedicated Lowevel Orchestrators
(LLOs) to manage this diversity. IEs are deployed within or connected to an aerOS domain, playing a crucial
role in hosting, and executing containerized applications or seriséle minimal execution unit, IEs form

the base of the aerOS stack by exposing the core capabilities necessary for workload execution. These are
enhanced with a set of lightweight aer@3f-intelligent enablers, as detailed Bection5.5.5 Each IE is
equipped to support containerized worklsaand it is agnostic of the purpose of these workloEus.ensures

that IEs can fulfil various roles within a domain, executing workleedardless of their specific purpose. These
workloads can range from vertieatiented IoT applications to components of the aerOS Data Fabric, parts of
the orchestrator, or any other tadls contribute their capabilities to the network, with the compute fabric and

Version 1.0 i 31-MAY -2024 aerOS° - Page34 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

service fabric taking over to deploy and manage the most suitable and appropriate services. This structured
approach allows IEs to provide their resources in a way that enables seamless integration and efficient workload
management across the aerOS ecesgyst he flexibility and robustness of IEs ensure that they can adapt to
various demands, supporting the dynamic and heterogeneous nature offHug&dloud continuum.

An aerOS Domain constitutes a complete aer@8ntime environment, formed by at least one or more
Infrastructure Elements (IEs). There are two prerequisites that must be met for a set of connected compute and
network resources to qualify as an aerOS doniHie. first prerequisite is that these compute resources are
integrated as IEs, as described earlier. This integration ensures that they can support workload execution and
provide a minimum set of aerOS integration capabilities, such as manageable netwtdaélity. These IEs

act as the fundamental units within the domain, enabling the deployment and execution of containerized
applications and serviceshe second prerequisite is the deployment of a core set of basic aerOS services on
top of these IEs. This means thataerOS domain can be defined as a group of IEs that share the same set

and instance of basic aerOS serviceensuring a cohesive and functional execution environriiéet.basic

aerOS servicesinningwithin each domain are distilled from the previous discussions and include:

1 Federation service provided by the federataomponent enables the bidirectional exchange of infor-
mation with the other domains of the continuum. Exchange of information regarding the status of do-
main and IEs facilitiesresource sharing, workload distribution, and interoperabilitis responsible
for managingsubscriptions, and registrations to other aerOS domains which are instrumented to dis-
cover resources across the continuum. It is built as a set of coworking microservices offered by aerOS
fabrics.Underlying protocol used for these exchanges is N@&%ldiscussed isection5.4.3.1

1 Orchestration servicewhich is crucial for managing the deployment of I0T services based on user
defined intentions. This service transtatser requests into actual deployment instructions and execute
them on Infrastructure Elements (IEs)id brchestration procesperates at two levels: the high level,
which receives constraints and queries the continaehhandles decisiamaking complexitiesvith
the support of Alenriched decision support systems, and thelémsl which has the actual access to
underlying IEs and translategcision to implementation directives. Based on the federation services,
orchestration service within each domain acknowledges the state of IEs across the continuum and can
produce decisions including remote domains resources.

1 Data Fabric services enable seamless data integration and accessibility within the domain and across
the continuum, supporting advanced data management and query capabilgigeanage the identi-
fication, collection, and integration of data in an interoperable mabag¢a Fabric servicedacilitate
seamless data accefs, all aerOSconsumers. This ensures that data is readily available and accessible
across the entire aerOS ecosystem, supporting efficient and informed detdgiongy Raw data con-
cerning all aspects of aerOS, including domain status and loT applications, are ingested and transformed
into a common, interpretable format. This standardized information forms the substrate for the federa-
tion service, which is responsible felnaring and propagating this datacasrthe entire continuum.

1 Cybersecurity serviceswhich enforce authentication, authorization, and access control policies based
on roles and identities. These services ensure secure access to all domain resources and validate reques!
in close coordination with the Entrypoint domain's policies @seb fegisties By integrating robust
security protocols, they maintain the integrity and confidentiality of data and services across the aerOS
continuum.

Additionally, a range of aerOS services integrated within each domain provide an intelligence layer to the aerOS
MetaOS. These intelligent services enhance the system's ability to make informed decisions, optimize resource

allocation, and improve overalperational efficiency

91 Al decision supportservices, which leverage data retrieved byDhtaFabricto provide critical input
to the orchestrator. These services asmfind interpret the data to recommend optimal workload place-
ments, whether locally within the current domain or across other domains, ensuring efficient and effec-
tive resource utilization.

Version 1.0 i 31-MAY -2024 aerOS° - Page35 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

1 Trust management serviceswhich ensure the integrity and reliability of interactions within the aerOS
ecosystem. These services validate and monitor the trustworthin&sswithin each domain amio-
vide insights to the decision engine regarding the reliability of candidate hosting resources.

1 Embedded analytic tools which provide reatime data analysis and insights directly within the aerOS
ecosystem. These services enable continuous monitoring, assessment, and optimization of system per-
formance and loT applications, empowering stakeholders with actionable arte#ligp enhance deci-
sionr-making and operational efficiency.

Finally, eech aerOS domain, in addition to these core services, exposes a comprehensive and efficient
Application Programming Interface (API) to facilitate communication with stakeholders, agents, and other
domains.

Figure 5 provides a comprehensive diagram reflecting the aerOS architecture. This diagram illustrates the
formation of the continuum through the seamless federation of aerOS domains. It highlights the operations
within each domain and the unified layer providedh®yaerOS Met®S, offering a cohesive environment for

loT developers.

aer0S loT-Edge-Cloud Continuum

——— -
i —
. @ I [m Unified loT-edge-Cloud ecosystem
foT services aer08 Domains 1
deptoyment | Registration & Management | [I] Unified application management

1 [[E] Unified exposure of network and compute capabilities

1
1 l E Unified exposure of loT Services

)
I
: ‘I] Unified execution environment . _J
\
|
l

'\[lﬂ Unified integration of Al apps

aerQs Services Fabric

aer0S Federator

" 0 "

= c
g B 5
% & ®
] o =
= 3 s
2 o o
2 < <

= =
B] o

aar0s
EE G
Invantary

Entrypoint
balancer

olqed ereq
2liqed eleq

o — o —

auged eleq

Natwork & Carmputa Fabric . L

aerQS Entrypoint domain aer0S domain #1

AENt rypoi,nmeserveb @amatrammention, in this narratives knriched with additional components
related to management and AAA capabilities, designating this unique node as a key aerOS point of presence.
This domain hosts theerOS Management Portal which serves as the primary user interface to the system,
providing access to Met@S management functionalities. It integrates several crucial features: the aerOS access
dashboard, a registry of users and policiesingentory ofregistered domains, and a mechanism to support
balanced distribution of user serviceptbyment requestacross the continuunThe dashboard is the sple
graphical,entrypoint to the aerOS ecosystem for all stakeholders, acting as a single window for managing the
continuum, similar toa terminal or shell in a traditional OS. It maintains connectivity to the Identity and
Authorization Manager and provides a us@ndly administrative interface for the User Registry, enabling the
creation, editing, and deletion of users, as well as mnagement. Furthermore, the dashboard offers space
offering functionalities related to the management and visual representation of the current state of aerOS
domains and the continuumi.h e wuni queness of this fAspeci diydt aer O
can be exchanged or migrated to another aerOS domain at any time, either due to failure or by administrative
choice, ensuring flexibility and resilience in the system's management infrastructure.

Version 1.0 i 31-MAY -2024 aerOS° - Page36 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

By designaerOS is not a centralised solutiomnd opts foa fully federated and decentralized architecture. To
achieve this, it leverages taerOS Management Framework This framework, comprising the Management

Portal and a suite of mechanisms, facilitates the creation and upkeep of federation connections among the
numerous aerOS domains constituting the continuum. Each time a new domain joins the continuum, the
Managenent Framework orchestrates the necessary networking procedures to ensure its sisamlesg and
connection with existing domains.

The subsequent sections delve into the intricacies of aerOS building blocks and compleseritsngtheir

pivotal roles within the system. These componentsarefullydesigned to orchestrate a federated continuum

of resources spanning from the edge to the cloud. The overarching aimpravige a flexible, trusted, and

unified development and execution environment tailored for 10T services developers across diverse industry
verticals.

5.3. Conformance of an aerOS continuum

As it has been explainederOS MeteOSrevolves around the concept of domains. These are virtual groupings
that gather one or more computing nodes (Infrastructure Elements, see Sdcfjon

A fAidomaind is a relevant figure in aerOS technol «
continuum. | t acd of eldmen(sdatcan rumeahtaimressediworkloads) that are judiciously
grouped together based on certain criteria, and that allonMietéa-OS system administrator to organise the
deployment and other technological decisions accordingly I n addi ti on, each doma
instance of the full set of aerOS basic services.

5.3.1. Laying out the domains in a desired continuum

Depending on various aspects, the decision on what (should) constitute a domain in a specific case will be
different. Even though there are some common guidelines that have been envisaged by the aerOS developers
the final decision on howto groupcompgtin nodes to form a domain is comp
system administrator.

DOMAIN 1 DOMAIN 2 DOMAIN 3

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pragmatically, the decision on how to design the domains in a use case serves to delimit and put boundaries tc
the scope of aerOS installation, and to understand where certain components should be placed.

As a reference, the decision might be guided by the following orientations:

1 Geographically. it might be convenient to create a domain that includes all the computing resources in
a specific geographical area. For instance, if a cloud provider owns servers (among other equipment) in
different regions, one domain could be created per each rdgwlitating the management and the
incorporation/removal of those elements into/from a continuum. Another example would be within a
campus.

Version 1.0 i 31-MAY -2024 aerOS°- Page37 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

91 Per administrative scope if a continuum includes computing elements that are owned by different
companies, it might be interesting to create such boundaries via the creation of spefititper
domains. There, the domain of company A would still be able to share workloaits sad data with
company B, but still several managerial and operational aspects (such as which aerOS installations are
needed) would remain independent.

1 Based on container management frameworkanother valid criterion for designing the domains in a
continuum is the container management framework underlying the computing nodes (IEs). For instance,
if a continuum must include certain nodes that are part of a K8s cluster, others that are \dichiak®
(with capacity to execute containerised workloads), others that require KubeEdge cloud and edge
counterparts, or any other possible cases, this could guide the decision as well. Here, it is relevant to
point out that aerOS is capable of handlinfedént container frameworks in the same domain (thanks
to the versatility of the orchestration scheimsee sectio.4.2, but, often, those may impose certain
restrictions that may require specific treatment. In such cases, the management benefits from the
separation in different domains.

1 Depending on the network a typical of the aforementioned restrictions is the network. A relevant pre
condition is that every domain is accessible (i.e., has its own IP or addressable namespadketails
in section5.5.7). aerOS assumes that companies stick to theiexistent network configuration and
topologies. Therefore, a design decision may come from the limitations/options available in that regard.

9 Other: although the previous have been envisaged as the most common decision criteria, it does not
prevent system administrators to deepen their considerations:

o0 Operational decisiarfor instance, in manufacturing or logistic environments, a domain could
comprise all elements that stay in the same production line or process area (e.g., parking yard).

o Per type of computing nodi& may be relevant to separate domains based on the hardware or
the type of nodes. In some cases, specific conditions by COTS or commercial equipment might
be of application, driving the domain topology design.

o0 Per tier in the continuunelements pertaining to the cloud (e.g., in the case of using AWS,
Azure or other cloud VPS), edge elements, or 10T tier could be also valid examples, as long as
every domain will comply with the minimum requirements (see se6tin

Often, the design of domains in a continuum will be a combination of the previous, especially in large scale
scenarios. Therefore, the step of defining and selecting domains is crucial for the restOB\uetafiguration
and deployment.

Several examples on how (and why) certain domain topologies have been designed (in aerOS pilots) can be
found in sectiory.2

5.3.2. Entrypoint domain selection

A crucial step in the conformance of an aerOS continuum is the selection of the entrypoint domain. Once the
layout of the different domains has been established, the system owner of the adopter entity must decide which
of those should act as the domaindirg) special characteristics.

aerOS has been designed to be as decentralized as possible, and indeed the workload and data orchestratio
execution and management is done without prejudice of location or position of the domain in the continuum.
However, due to the very nature of distriied systems, one of the domains must act as the entrypoint.

In aerOS, theentrypoint domain is the one containing the necessary singleton elements for the proper
management of the continuum Reasonably, there are some aspects that do not match the fully distributed
paradigm, such as the aerOS portal, which is a web service that contains the Ul through which the user handles
different aspects of the continuum, its services and the data. #tbough security matters are highly
decentralized (every domain handles the roles, permissions and access profiles to diffeeee r OS6 dor
features and data), there is still the need of a federating entity gathering together common policies for a
continuum.

In short, theentrypoint holds the relevance of the direct interaction with the continuum IT professionals
acting as the landing area and exposing via a Ul the main management capabilities of the continuum.

Version 1.0 i 31-MAY -2024 aerOS° - Page38 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Noteworthy, all underlying domains will perform all operations of the continuum acting as equal peers
(including the entrypoint).

.....

Entrypoint | domain

r———————

It is important to highlight here that only small secofmponents will live in an entrypoint domain compared

to all the rest. Everything related to data acqui
exposure for potential microservice allocation, monitoring, and smart capabilitiesiseegaial to all nodes.
Therefore, characteristics such as data access, trust or interdomain communication remail unaltered regardless
the entrypoint domain selection.

Without digging in detail of the components (see 5.5 and 5.6 for that purpose), here is the list of the elements
of the MetaOS of aerOS that will need to mandatorily live in the entrypoint domain:

1 aerOS Management Portal very relevant elementast act s as the figateodo toc
management, including the commissioning of workloads orchestration.

1 aerOS ldentity Manager. relying on mature opesource solutions, it becomes necessary to share
common information about profiles from all the domains in the continuum.

9 Active Directory Databaseto feed the two previous elements and to act as rooting element for users,
profiles and global information about the users of aerOS.

Remarkably, one of the paramount requirements of aerOS is flexibility, thetfedorés no mandate on which

domain should act as the entrypointResting on various aspects, the decision on which domain in a continuum
should act agntrypointmay be different. Even though there are some common guidelines that have been
envisaged by the aerOS developersfithed decisionon where to place the entrypoint domains (i.e., where to
place the components of the list above) is completely openmtalthe adopte 6 s sy st em .admi ni
Since any domain in the continuum can act as entry
can vary. Also, there will exist variability in the impact of the decision depending on the number of actionable
aerOS nodes or legacy nodesom another perspective, data transactions efficiency may come into play when
intertwined with network considerations. Also, when the design of a continuum is oriented-iatetzdve
applications, their structure, format, semantics, etc. are impatements to consider for the decision. Also,

errors in transactions could be related to the necessardmieain communication related to the entrypoint.

The following table offers some hints to serve as guidance for selecting an entrypoint in a continuum.

Angle taken from adopter Guidelines and recommendation Impact in KPIs

User Performance it is desired Here, the recommendation is to settle the entryg QoEy

to maximize QoS and QoE f¢ domain that hat habetter inbound and outbour QosUI §
the user managing th access from the internetssuming that the user w
continuum. be connecting from a |Moreagileupdate
host). Therefore, the QoE will be increas(of security users
However, it is worth mentioning that for differe| and policiesy

Version 1.0 i 31-MAY -2024 aerOS°- Page39 of 136

D2.77 aerOS architecture definition (2)

=aerOS

It must be considered that a ug
will access via the public interng
to the management portal.

operations (e.g., data delays) will depend on o
factors as well.

Overall system performance
two aspects outstand: (1) tl
more capacity in the entrypoin
the better manageability, (J
aerOS is a distributed syste
relying on federation of domain|

The guidelines here will be to place the entrypc
domain where most abundant computing resou
rely. Usually, this lead® select the entrypoint in th
domain that is in (or closer to) the clguask it will
entail: (i) better capacity to install larger softwa
(ii) more availability, (iii) better network connectio
allowing for the federation to experiment smal
delays.

Response time il
orchestratior?

NFV and SDN
potentialy

Cloud-native
compatib

Data angle aerOS allows t(
inspect existent data via tf
portal, using EAT, Grafana ar
other tools. Also, there will b
cases with heavy batch dat;
loads, that clearly benefit fror
entrypoint closeness.

If: (i) the expected use cases are data intensive, &
and at move, such as managing batch and str
pub/sub schemas or direct query access and, (ii
origin of data is usually known, the recommendat
is to place the entrypoint at the same domain wik
data will be coming from

Consistency
Data losse&

Simultaneous
data pipeliney

Data transfer ratf
y

Exploitation angle: in a case
where a company wishes
employ aerOS to ensul
compatibility with their already
existent tools, it is important t
place the entrypoint correctly.

The recommendation is t@pot the entrypoin
domain where enterprise applications are loca
This roots on the potential sharing of permissig
cybersecurity policies, roldsased access, etc. Alg
placing the manageability web dashboard clos
the already functional elements will reduce the
of losses, as same backup/maintenance méesha
will be easier to replicate.

Unsuccessful
correct)
authenticationg

Efficiency of API
Gatewaysy

Trust levely

Devel oper sd thel
installation of aerOS and furthy
services requires access

certain repositories, and mz
imply modifications to lowlevel

Here, the recommendation is to decide the entryp
where: (i) the easier management access to IES
SSH, K8s management t

permissions are provided to developeesg., acces
to system kernel or network interfaces, instailat

Diversity of IEs
supportedy

loT scenarios
coveredy

capacities in the IEs forming tt| options, (iii) better network connectivity to accq Seltfeatures in
continuum. package repositories. nodesy
Multi -stakeholder presence In generaljn those cases it is recommended to pl Number of

and preference a continuum
can (and most likely willzontain
computing nodes and da
coming from different owne
(stakeholders) that wish to shé
their resources for a commq
purpose. Such scenarios enf
some specific reflections.

the entrypoint domain in one domain that is ow
by the entity with the most prominent rg
(coordinator of a consortium, main representativ
a cluster, etc.). Once this is decided, the prev
considerationsvould apply. However, it is accept¢
in aerOS (in those cases) to propose the existen
multiple entrypoinportals each of them acting ove
t he Aconti nuumo of a
performing the federation over mutual resources
data.

stakeholders
deploying aerOS§
y

Data exploitation
y

Federation
potentialy

Overall analysis A relevant consideration that applies to all reflection is that, in general, a wise se
for the entrypoint is the one that has more computation, storage and network capacity. Usually, thos
imply that cloud domains (high availability, raility, bandwidth) are often preferred. Also, if the adoy,
entity knows in advance where the services will be deployed most of the time, or if the data log

acquainted for, the selection of the entrypoint domain will be morglstiaiward.

Version 1.0 i 31-MAY -2024 aerOS°- Page40 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

However, due to the intelligent design of aerOS decentralization capabilities, there are elemg
SHOULD NOT be a factor for the decision. This is because most of aerOS basic and auxiliary ser
conceived to be present in all domains. Soméadd factors could be:

0] Type of nodes included in the domain: as they will appear to the orchestration schema
the rest (defined by their own characteristics, without preferences).

(ii) Consistency of formats in the data, or the convergence of data sets into a semantically €
ontology. Tools such as semantic annotator and semantic translator may live in any
(entrypoint or not).

(iir) Data Fabric features. Every domain will have its own Data Fabric, that will include
federation, data security, data protection, etc.

Trust in message exchang@OTA Tangle will be present in the continuum materialised hometnode
per Infrastructure Element, therefore regardless the domain type (entrypoint or not), the desired 1
will be immutable and traceable.

In the next figure, a simpler example can be found. Departing from the demonstrator showcased itetine mid
review (April 10", 2024), an uncomplicated rationale can be explained.

There, three domains came into play. One was focused on loT sensing and actuation while the other two
provided useful computing equipment. One of the latter offered nodes tiered on edgeestye fspots of the
continuum, sticking to unreliable network@4SIM card underlying a loywpower wireless connection), while

the other rested at a cloud datacenter. Based on reflections #1 and #2 in the table above, and considering tha
exploitation and data diversity were not a determinant factor, the selectioa eftitypoint fell to the cloud

domain. Further information about the particularities of the demonstrator can be found in Section 7.1.

Services included:
+ 5G connection software for
= st ceman) movement
: - i * Car controller
* Grafana visualization of data

R o

aerOS components:
: * “Domains”
o) = Orchestration
‘!‘g o = = - Data Fabric
* Security
o .. - Embedded Analytics Tool
* Self-capacities

el el <]l <]
' ¢
e

5.3.3. Next steps after continuum conformance

At this stage, system owners will be ready to tackle the deployment of aerOS. The philosophy of the installation
and usage strongly relies on those domains (see conceptual installation procedeteeirable D5.2

Al ntegration, eval uat i).@ependihgoomwhathrerda ndd®belsngsit@dng domatn bro n
to another, and also the role that it holds within it, will contain certain basic and auxiliary services or other.

Remarkably, once domains have been selected, and the components of aerOS architecture have been proper!
placed, those must be combined together to form the actual continuum. The mechanism through which such
combination (i.e.federation) takes place in aerOS is thoroughly described in sebtbf

Version 1.0 i 31-MAY -2024 aerOS°- Page41 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

5.4. aerOS stack and runtime

To develop aerOS, following a Me@S approach that encompasses all continuum asgisctsssed earlier,
the system is structured around key fundamental conc®pttion5.3 has offered a comprehensive overview
of the aerOS system, consolidating such main concepts and building blocks.

The aerOS runtime involves any parts of the M@&of aerOS that make the global functioning of the resource
and service fabric to function. In a way, the aerOS runtime covers those essential aspects of@igdviatad
which the rest of the componefftasic and auxiliary services) orbit. The conception of this runtime is a novelty
introduced by the aerOS project can be conceived as the first step to consideEdgd&Toud IT ecosystem
AfaerxcOMpl i anto or Apowered by aer OSo.

The same way the Lindsased computers work over a set of processes
interacting with a set of instructions of the processorkgnee) to allow

the management of the filesystem, the network, interfaces, etc. the
aerOS runtime allows to handle the underlying complexity derived
from widespread, heterogeneous resources into a practical, agreed,
standardised, canonical set of methods and tools that permit the
interaction (southbound) and the creation of services on top of it

(northbound).

In practical terms, it can be said that the installation of an aerOS runtime
in the computing elements of an l&dgeCloud deployment becomes

the first step forcontinuously using the continuum, thus becoming the
essence of the Mef@S. Therefore, a distributed system that builds on
top the presented runt ibmaes eidd.what

(no aerQS)

aerOS Basic Services

User Applications

aer0S Runtime

Operating System

Hardware

The goals of the aerOS runtime are the following:

1 To abstract the underlying heterogeneous resources so that they are seen (and managed) uniformly
(taking advantage of the concept of IE).

1 To manage diverse operating systems (e.g., Ubuntu, custom-bvassd OS), container runtimes (e.qg.,
Docker,containerdlor any deployment management layer above (e.g., Kubernetes), so that the effective
execution of workloads is achieved as expected.

1 To be able to orchestrate such workload execution based on requirements (intenbiloeprisy
expressed by users (deployers) but also considering the global evolution of the continuum and
advancing eventualities thanks to ML models.

1 To introduce that smartness all around the continuum, ensuring an actual decentralisation in the
orchestration, avoiding single points of failure, and truly empowering the edge areas in a distributed
ecosystem.

1 To make the resources (although quite different and geographically dispersed) discoverable from any
point of the continuum; thus, allowing a quick and efficierdistribution of the workflows in a system.

1 To make sure that certain actions related to the continuum (e.g., reorganization) are traceable and
immutable.

The following subsections dig deeper in the particular mechanisms that conform the aerOS runtime.

5.4.1. aerOS Infrastructure Element

As mentioned, the essential functioning of the Mt of aerOS is based on the establishment of computing
nodes (infrastructure Elements) and how they group together (in domains). In aerOS, an IE is the most granular
entity able to be controlled and maeddyy the MetaDS, conceived as the most atomic element for computing,

network and data orchestration in the continuum.

Version 1.0 i 31-MAY -2024 aerOS°- Page42 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

The whole organisation of the services in aerOS assumes that there are entities (forming part of the continuum)
that can be relied to offload the execution of workloads upon. Those entities (IEs) are heterogeneous, as is the
continuum, but have several asps in common. The features that must characterise an IE of aerOS are:
1 Capacity of running containerised workloads.
Existence of an underlying OS where upper software can be installed.
Availability of computing, storage, and networking capabilities.
Availability of network interfaces that can be controlled.
Capacity of hosting an API exposing their monitoring and services.
1 Capacity of OS accessibility and manageability at administrator level.

=A =4 =4 =4

In an loT-EdgeCloud deployment, every computitgpable piece of equipment (virtualised or not) meeting

the previous characteristics would qualify as a potential IE of aerOS. This way, this concept can embrace a wide
variety of potential computation tangeFigure8 depicts only a few examples of potential IEs in aerOS. Some

of those examples are: i) nodes in a K8s clustaisterandworkersalike), ii) an edgecomputingsingleboard
computer (SBCwith apreinstalledOS .g.,Raspberry Pi), iii) nodes in a KubeEdge deploymelaugd and
edgealike), and iv) virtual machines. Other examples might be envisioned.

3

Master

o
gl (gl [g

The previous examples already help to realise that the concept of IE has been established to nominate resource
that can live across the whalentinuum, starting from resourcenstrained devices up to traditional (and new)

edge computing equipment and local data centres or large clouds. This way, the first step towards a uniform
management of the underlying complexity of the continuum is latid o

However, all IEs will have their peculiarities. In order to consider those in the@®®tnctioning, aerOS is
developing a novel, semantic description for expressing the different capacities and characteristics of a single
IE in an aerOS continuum (susemantic data model is elaboratedsettion5.4.3.3. This includes total
resources, ownership, list of peripherals available, computing capacity, container management framework, and
OS, among many others. Within these definitions, enough descriptive fields have been established to indicate
aspects abouthere in the continuum the specific IE is located. As said, IEs may exist in the whole arch of the

topol ogy of the continuum. Al Il previous informat.i
it is. This way, IEs are more easily identifiabiepending on the spot in the continuum that they are located in,
opening up advanced orchestration capacidadgeges.| BFob

cannot accept heavy workloads such asffetiged, large databases.

A relevant, specific case related to IEs in the architecture of aerOS #od@ ithevices As indicated in Section

4.1, |l oT devices are a cruci al part of Aconti nuumo
elements (providing context, monitoring, exploitable data or actuation capacities) and also potential receptor
elements that could be orchestrated glighial the MetaOS. In such case, the characterisation of 10T devices
within the continuum topology/architecture is ver)
capabilities to meet the requirements of the list above (has an OSnaaontainerised workloads, can expose

an API and can be accessed in terms of storage and netivankist become actual part of the continuum

as an IE In the case that any of the previous were not met, the IoT device would need to be attached to a proper
IE. This is the case of usual 10T devices such as certain sensors. Here, the expected set up would be for them t
directly attach (connect) to their nearest IE (for instance, an edge element with I/O capacity to connect sensors
via some communication pumtol).

Version 1.0 i 31-MAY -2024 aerOS°- Page43of 136

D2.77 aerOS architecture definition (2) =3 aer0s

In addition, although the IE is the most granular entity in aerOS, there is no need of directly mapping one single
Acomputing entityo to one aerOS I E (1:1 relation)
seen (fromthe contnuumepecti ve) as a single I E. These specif
administrator); thus, enhancing the trait of flexibility of the aerOS architecture.

As outlined insection5.3, on top of IEs, another level of organisation emerges. In aerOS, the grouping of
various IEs form thelomains These are characterised as a set of one or more IEs sharing a common instance
of the basic services of aerOS among them.

The two previous descriptions are rather useful in terms of deployment organisation, as it has been designed (by
architecture) that IEs and domains must stick to certain functioning roles (directly mapping to components
installation):

1 IEs: must incorporate HW/SW monitoring capacity, continuously providing to the vishetaOS the
information about its status. Also, they must take an active role in terms of smadsaiities (see
5.5.5, including the registration of judiciously selected events that must be traceable.

1 Domains: must incorporatexposurecapacities, being the essential assembly unit. It also must contain
the intelligence to govern services within its boundaries (IEs that are part of it), and must deal with
users, cybersecurity, data handling and serverless usability.

5.4.2. aerOSdecentralised orchestratiom

At the very core of aerOS proposition is the capability of accomplishing smart, automatic, decentralised decision
making in terms of service orchestration across the continuum. In the moment when all heterogeneous
computing resources in such continuumatvstracted and accessible (as IES) and the status of those resources
is known across the ecosystem (see Seétidrd, the MetaOS is ready to unleash its orchestration power. The
other two suksections (Sectiob.4.], Section5.4.3 expose how to deal with the former (IE, Distributed State
Repository-DSR). Here, the approach behind aerOS orchestration is portrayed.

As per the original conception of aerOS, an orchestration process has been envisommeesetarranging,
managing, and coordinating services, provisioned as part of applications, with a comprehensive management of
both IT and logical network resources. Allocation and orchestration of logical resources executing a service
chain requires solving cstraintbased double optimisation problems, with data about application requirements
and infrastructure as inptthe discussed moduikcludes the federated orchestration capacity, provided that a
service cannot be executed in a local domain,afsmi ng depl oyment sé requests
an overall view of it, and offloading to other domains.

After the analysis of the statd-the-art and the evolution of the technical design of aerOS architecture (depicted

in this document), which has been successfully tested in the first implementation approach (the MVP, see section
7.1.7), it has been decided that the decentralised deeasaking must be carried out layclear twolevel
structured orchestrator. In addition, the federation part of the deal is taken over by another, separate element
(aerOS Federatdrsee Sectioh.5.8.

According tothis structure, the decentralised decisinaking, materialised in services orchestration decisions,

is divided into &HLO and aLLO (as mentioned in Sectidn2). The goal of these modulésto permeate the
intelligence and flexibility of aerOS in the allocation of computing spots for the containerised workloads that
are handled by the continuum. There, by making use of advanced Al algorithms that optimise parameters such
as latency, it aabe smartly decided which resources within the continuum to employ. Also, to ensure accuracy
on decisioamaking, the principle of locality must lmvercome reaching the horizon of continuum visibility.

Here comes into the scene the federated infrastructure disti@buted network of brokershat allows
observation of the current state of the whole continuum. The component in charge of connecting the previous
(the different domains) is theerOS Federator and the conjunction of all the elements (HLO,Q,LlaerOS
Federator) is thaerOS Federated Orchestrator.

In this section, the focus is put on how the4ewel orchestration will be implemented in aer@8is point is
where a major part of aerOS noveltylies. Figure9 expressethe basic functional principle of it.

The aerOS decentralised orchestration decisiaking process begins with the expression of an end user
intention to deploy a vertical service (a raerOS, Basic or Auxiliary, service) in the previously established

Version 1.0 i 31-MAY -2024 aerOS°- Page44 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

loT-EdgeCloud computing continuum: a set of IEs running aerOS Runtime and Basic services grouped in
domains. Because of the heterogeneity nature of the continuum, it is not possible to provide users complete
freedom to express their potential deploymerguirements. Thus, this deployment intention is expressed
through the selection and specification of a finite set of predefined requirements, which have been properly
defined after a thorough process which involved staff with previous experience in jbet $tdzhnical task

leaders and use case scenarios leaders). After the definition of the deployment intention in the Management
Portal by filling a form (New service deployment), this component converts the request ifmteraion

Blueprint (in TOSCA' format), which needs to be forwarded to the aerOS Federated Orchestrator module.
There, the combination of HLO and LLO (supported by overall continuum perspective brought by the aerOS
Federator) achieve the successful execution of the vertical senandin(or set of IEs) of the continuum.

Vertical service Final
deployment request deployment

Deployment

&= =)=)

aerQS Federated Orchestrator

It is worthwhile to describe the orchestration module in more detail. As mentioneciretralised decisien
making orchestration module or the aerOS orchestration basic service is composed of two different modules:

1 High-Level Orchestrator (HLO): this component follows a general approach for all the continuum,
being independent from the IE types which compose a domain. Every domain has exactly one instance
of HLO. This part of the orchestrator is in charge of taking the final deployment dedsismnigciding
where each component of the required service will be deployed (specific IEs from specific domains).
However, the HLO does not actually deploy the services, but sends its decision in the form of a
°ImplementatiorBlueprintto the specific LLOs, depending on the selected IEs.

1 Low-Level Orchestrator (LLO): this component follows a specific/custom approach depending on
the underlying containemanagement frameworkf the IEs of a domain. In that sense, the
ImplementatiorBlueprintscoming from an HLO will be interpreted differently by each LLO in order
to provide the expected (deployment) functionality. In aerOS, the LLOs are based on the K8s Operator
Pattern, which provide a framework to automatically control the lifecycle manatjyeieesources.

This does not mean that LLOs only support the management of K8s workloads, but that actually
leverage this widely used and tested resource management framework to finally reflect the desired state
of services (to be deployed in a certai),lwith a common way to express the Implementation
Blueprints (custom K8s Custom Resources) that is independent onothiainer management
frameworkused in the selected IE, 8wt agnostic for the HLO. Therefore, a custom K8s Operator has
been developed to cover the most common and-stdte-art containermanagemenframeworks:
Kubernetes, Docker and standalone containerd.

The first step of the process Figure 10 (vertical service deployment request with specific requirements) is
conducted in the aerOS Management Portal (described in depth in the Se&i@ynwvhich provides a user

friendly interface to facilitate the deployment request with determined requirements. The portal is only deployed
in a single domain, named Batrypointdomain ThisEntrypointdomain does not act as a superior layer entity

in the continuum. On the contrary, any domain in the continuum can act as an entrypoint, as per user's choice
(see mitigation/migration concept in Sectmf).

! https://docs.oasiepen.org/tosca/tosaafv/vl.0/toscanfv-v1.0.html

Version 1.0 i 31-MAY -2024 aerOS° - Page45 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

aeros Mana;i]rgnst Portal ';7 ~-®_ _@_ _ @Single management entrypeint
domain \ Infrastructure Element
______ Entrypoint balancer

7 \ ﬂ‘—% \ O Primary IE of a domain
{0 !
& ST pmim o

Moster ¥ I , - - - —_—
B o ! e ! o Rt
1 |:F Cloud node |
e 0@ 2 8 @)
AN l @ | !

Sl ! L 10le o o
| : : % Qub @ | a B Q!
' el | 0 | l § & §
I Mode Mode Made '
0 0 O \ o AN et L
I J \ » /
\ = = = N e e e e e e -~ aerOS
L s’ domain
aer0S

entrypoint domain

®After the definition of the deployment intention in the Management Portal, this component converts the
request into atntention Blueprint which is further forwarded to the HLO. As explained above, each aerOS
domain has a single instance of the HLO, so it is needed to decide to which domain will be forwarded the
orchestration requestt8&. el ect i ng a singl e do menirypoinb owaglt d aaddna
centralizationpoint to the architecture (thus, potential single point of failure), which collides with the
decentralized nature of aerOS decisia ki n g . Therefore, given hbeent he
approached in the state of thet[8], aerOS has foreseen the development gihecific component here, called
Entrypointbalanceri which is based on th&tateof-the-art least connection load balancing algorithinteat

aims to relax the centralised needs of a unique, 1:1, direct relationFdti@l, towards a 1:N, fairly distributed
approach. In fact, with this addition, the existence ditnypointbalancer emphasises the decentralised nature

of aerOS orchestration. This way, regardless of Ewrypointdomain” choice, the inception of orchestration

(the HLO that will initiate the process) is balanced across domains. This conceptual approackestespire
Figurel0, in which the central domain has been picked for the sake of visual clarity.

@ The aerOS Management Portal interacts with the appropriate HLO (as selecteBtuyyheintbalancer).

The HLO receives thintention Blueprintand executes the necessary logic to conduct the allocation decision,
which is run for each service component that compose the service. This logic includéiiexipgeengine (to

dismiss the IEs that do not meet the specific requirements) and theafigadiiously selected frugal ML
algorithmé that optimise the allocation based on the current and forthcoming state of the continuum. For the
latter to happen, the HLO benefits from the federation of domains exerted by aerOS Federator. In that regard,
the HLO is aware of the domain to which belotiys selected IE to deploy the service component, so if the
selected IE belongs to another domain, the deployment request is sent to the HLO of the selected domain.
Finally, an ImplementatioBlueprintis generated and fed to the proper LLO(S).

Reflecting on the two previous points, it is worth to highlight the different between HLOs aBdttlhipoint
balancer.Directly requesting the HLO of thEéntrypointdomain to be the unique entry gate for deciding the
allocation would create unnecessary unbalance in the continuum. Simply put, if the HLO of a hypothetic domain
(A) is always charged with the first decision (allocation within the domain A, or offloadiother domain), it

might be overloaded, as it will be forced to perform certain calculations every time that a workload must be run
in the continuum. However, creatingl@ad balancerbefore directly requestig to the HLO of domain A,
guarantees that other HLOs in the continuum are r
processing of the decisiono. I n other words, the

2 The algorithms to be used, their design, training, inference, etc. will be a matter of focus during the next months of the
project, as an intersection of tasks T3.3 and T4.3.

Version 1.0 i 31-MAY -2024 aerOS°- Page46 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

1 In every moment, there is only oftrypoint balancerexisting in the continuum (located exactly
where the management portal is, and attached to it), whereas there are always as many HLOs as domain:s
exist.

1 The HLO interprets the workload that must be executed|rntention Blueprint the state of the
continuum, etc. and takes an allocation decision. This requires (likely, heavy) processing to be
performed by the IE where the HLO lives. On the contraryt:titeypointbalancerd o e s n 6t anal vy
information of the workload to be executed. It just applies a (rather simple) algorithm to forward the
first request to one HLO in the continuum (not based on the operation information of the particular case,
but onbalancing rules). Thus, not heavy processing is required.

Thus, in essence, the existence oEatrypointbalancer does not overlap the role of the HLO. In contrast, they
are mutually complementary to deliver a more efficient, decentralised continuum.

@ Afterwards, LLO(s) (several may exist in a domain, one for eacainer management framewdhat

run the IEs) receives tHenplementation Blueprintit follows the same format instead of the LLO type) and
interprets it in a way that actual workload deployment can take place on its underlying, controlled IEs.
Therefore, custom developments have been made to achieve the LLOs expected functioridttiearew
describednsightfully in the deliverablé&D3.2Intermediate distributed compute infrastructure implementation
and in the futur@D3.3 Final distributed compute infrastructure specificationiamdp | e me.nt at i on o

To summarize, this process has been depicted as a sequence diagram that has been includef. 8 section

@ As a live system, aerOS allows to review those decisions ifiineal In addition, apart from the user,

aerOS provides flexibility to the continuum itself (via its IES) to eseatiocation requests These reallocation
mechanisms are triggered both manually by the end users to react to some notifications or performance
information provided by the aerOS ecosystem, or automatically by the aerOS basic servicapdbdlfies,
orchestrator itself) tavoid potential service execution failures. Finally, a HLO receives a reallocation request,
then makes a new allocation decision, and finally sends instructions to the corresponding/selected LLO(S) in
order to perform the needed acis in the proper IEs: remove service workloads from the old IEs and run them

in the new selected ones. Same as the service orchestration process, this process has been depicted as a seque
diagram that has been included in sec@dh

Deployment approache®nce the orchestration process has been described from an architectural point of view,
it is interesting to move to a more practical approach to envision possible deployment. Three general and
simplified deployment scenarios have been identified:

1. Fully automatic deployment: users do not select a specific domain as an entrypoint to deploy a service
because they want to let the aerOS Mefadecidethe best deployment location. This is the optimal
(and most novel) functioning of aerOS, that offloads all the decision work to the smart, automated Meta
OS intelligence. I n this case, Entrypeintbsa |nagn ceetroon, M
will forward the request to one available HLO (based in the configurable balancing rules). In this
scenario the neefibr the Entrypointbalancer iemphasizedbecause without this component the same
domain will always be used as the entrypoint for the orchestration request, risking unnecessary
overloads. By following the aerOS approach, a nentralizatiorpoint is avoided.

2. Semi-automatic deployment:domain administrators or users with a great knowledge of the resources
that underline each domain may want to take part in the decision process to better control the final
deployment location of the required services. At the end, human intervention prayénany decision
taken by statef-the-art Al models, and in addition, these human decisiongzanimprove those Al
models Therefore, in this deployment scenario, the user (throughrtper form of the portalcan
specify only a subset of requirems, or give overall, vague instructions about the domain$diEs
prioritization or selection purpose§he portal forwars the deployment request to the HLO of the
chosen domain, or to one domai n Ertrypointb sal ssoad e rod
also fit. Then, the orchestration process is performed as per the first scenario.

3. Manual deployment: users select a specific domain, or even a specific IE or set of IEs from a domain
to deploy the requested service. In this scenariolntemtion Blueprintis directly forwarded to the
specific HLO, so th&ntrypointbalancer can be bypassed.

Version 1.0 i 31-MAY -2024 aerOS°- Page47 of 136

https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

5.4.3. aerOS distributed state repository

5.4.3.1. NGSI-LD mechanisms for aerOS

One of the keys behind the efficient, smart orchestration of aerOS is the capacity of accessing the state of the
continuum in a decentralised way. This means that, regardless the spot in the ecosystem, any HLO can observe
the available resources across tiomtinuum to take the best allocation decisions. To achieve this, far from
relying on a central repository, aerOS has envisioned a novel, ambitious paradigm for sharing the state of the
continuum. Therefore, a wellefined and mature specification for netlthg and exchanging contextual
information must be selected, so N&$) perfectly fits in the aerOS scog¢GSILD?is an information model

and API for publishingguerying,and subscribing to context information, standardized by ETSI ISG&DiiM

based on JSOMD.

In NGSELD, the world is seen as a set of entities. Precisely, an NG S&intity has:
1 an entity identifier that uniquely identifies the entity,

1 an entity typethat can be seen as a description of what attributes one can typically expect to be present,
i.e., the data model, and

9 attributes which are where the real data of an entity are stored. Attributes include system timestamps
(creation, modification and deletion), values and-atibibutes, which are basically pieces of metadata
that describe the attribute such as the unit.

Thus, almost anything can be modelled as an entity, for example, a room, a building, a temperature sensor, or a
person. This is all up to the data model used. In the case of a@r€Stom ontology has been developed
(thoroughly described isection5.4.3.3, in whichlEs andServiceComponentsare the key entities to handle

in the context of orchestration.

This contextual information is managed by Context Brokers (CB), whichsdtwremost recent value of the
attributes of NGSLD entities. These values can be obtained through a direct HTTP request to a REST API or
via a publish/subscribe mechanism provided by the CB. Despite the existence of several implementations of
NGSFLD Context Brokers, the most logical choice for aerOS is FIWARE GLibA for two main reasons: (i)

it is developed in C, which is translated into a higher execution performance because this language is compiled
rather than interpreted; and (ii) FIWARE Foundation is an active partner of the aerOS project, so the broker can
straghtforwardly be enhanced and fitened to meet the needs of the project.

The context of eaclB has a local scope as it is attached to the broker. Nevertheless;LBG8bvides
mechanisms for distributing this local context information among different Context Brokers based on the
creation of Context Source Registrations (CSR, from now on shorjedte t fir egi strati onso)
mechanism to inform an NG&D CB about where to find more (ndacal) entities. Upon queries, not only is

an entity looked up in the local store of a broker, but the registrations are also consulted anddmhaily
registrations (e.g. a query to retrieve all entities of a certain type and the CB has a registration indicating that
entities of that type can be found in another broker), a distributed query is sent to the broker behind the
registration, and itinformation (its entities) is appended to the final response, so the process is completely

transparent for the end user.

5.4.3.2. aerOS Federation enablers

In the above subsection, it has been stated that aerOS has envisioned a novel, ambitious paradigm for federate
sharing of the state of the continuum to get rid
repositoryo lldrsthezentext of thenderO8 arehitecture, a distributed state repository is a
decentralised storage system responsible for maintaining the state information among different elements or
components present in the continuum, fragmentarily correspondiogaicdomains

3 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_cim009v010801p.pdf
4 https://github.com/FIWARE/context.OrielnD

Version 1.0 i 31-MAY -2024 aerOS°- Page48 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

In practical terms, the distributed state of aerOS is handled by one instance df@iioaach aerOS domain,
building a Distributed State Network of Brokers (DSNB), with the contextual information (asNG&itities)
federated among them through thetao mat i ¢ est abl i shment of the nece
aerOS Federator module included in the aerOS management framework (seebsediofio achieve it, the

API of the CB must be reachable by the CBs of the other domains, so it must be publicly exposed through the
API Gateway of each domain or via custom networking solutions defined in the aerOS network fabric.

NGSLLD is quite versatile and offers several ways to configure the registrations for the distributed state, but in
aerOS it has been decided that each broker in the DSNB only is responsible of managing the state of its own
domain perinentfragmentation in local domairie achieveglobal fedegtion), therefore avoiding replication

of data. Thus, in aerOS all the NGID entities live in a single CB, but users or services in aerOS can query

any of the brokers of the DSNB and obtain the same data, despite being actually stored in a single domain
broker, provided that the registrations are set up correctly. For this layout to work, each CB needs to have (at
least) one registration for each and every other broker in the OiS#Bigurell). However, NGSILD also
provides mechanisms to replicate entities by creat
to replicate key entities such domains so that enhance theQ&eteth resiliency and backup mechanisms.

Registration

gl‘dgen e
Q.

npmEn

o mm Em Em Em Em Em o o E—,
e o s o =

5.4.3.3. aerOS Continuum Ontology

The inherent complexity ofhe loT-EdgeCloud continuum managed by the aerOS Mef needs to be
modelled into a data ontology as easily as possible, being understandable by humans and efficient for machine
communications. In addition, there is a clear lack of existing ontologiesdaramputing continuum, and the
minimal initiatives that have been found did not fit into the continuum conceived in aerOS. Therefore, an
ontology for the loTEdgeCloud continuum has been created from scratch for aerOSgd4pi some existing
ontologies (e.g., FOA® and standardization initiatives such as OASIS TOSTAis ontology as shown in

5 http://xmins.com/foaf/spec/
Shttps://groups.oasigpen.org/communitiesfcommunityhome2?CommunityKey=f9412cf297d 46428598
018dc7d3f409

Version 1.0 i 31-MAY -2024 aerOS°- Page49 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Figure 12. aerOS continuum ontologig intended to encapsulate the essential concepts, relationships, and
properties relevant to data managemgmgcessing,and orchestration within this distributed computing
architectureso that ihas been designed having into consideration two essential pillars in the aerOS architecture:
() Domain federation and continuum management; and (ii) Decentralized orchesBafiore moving to a

more detailed description of this ontology, it must be stated that, as it was explaiiied drSoftware for
delivering intelligence at the edge intermediate re@a$ethe Linked Open Terms (LOT) methodology has
been followed to develop it; and (ifis is a live ontology that will be enhanced as the project progresses, so
some parts of the continuum may not be covered yet or may even be expanded

When it comes to continuum management, entities that belong to the aerOS(Aulentication
Authorizationand Access)block aimto represent the human side of the continuum, which is the relationship
between them and the services and resources that conform the continuum through the definition of users, roles,
and organizationd.o create these classes, BF@AF ontology has been used, so aerOS umerassigned with

a unique identifigrand also present additional information such as their given and last name following the
FOAF Persorconcept. This aerOS user is member of an organization, which has a set of predefined roles that
map to the permissions to perform certain actions in the aerOSQ&t&herefore, each user is member of an
organization and has assigned a role within thggization which is theowner of the aerO$8ontinuum in

use

The physical computing resourcesfiverted intdnfrastructure Elementafter the installation of aerOS, see
section5.3) are the minimal computing unit of aerOS, so thmyst be represented to show the current state of
the continuum by taking advantage of the defined monitoring processe=OS Infrastructure Element
emergeghenas the central piece of the ontolodipr instance, Seliwareness module (sbéb.5 updates the
attributes of |IE entities to enable its performance monitoring.

Nevertheless, isolated IEs entities are not enough to depict the aerOS continuum, so conceptual layers must be
added on top ofhe IE entity. The domain entitgan be seen as the source of truth for the aerOS domain
federation, becausegdtroups a set of IEs and Lekevel Orchestrators (LLO), presents a single public URL, a
Booleanattribute to indicate if the domain is the entrypoint of the continuum and a custom status as the IEs
(preliminar, functional or removed). Moreover, each IE is linked to a sliglethat is mapped to a certain
containemanagementamework Docker, Kubernetegontained and possibly otheras this is expandable.

At this point, the ontology covers the aerOS network and compute fabric, but the other essential pilar is still
pending: the decentralized service orchestration. According to the aerOS stack and Service Fabdtdisee
5.4and5.5.3, aerOS follows a micrservices approach translated into containerized workloads as the minimal
execution module. Thus, the entity named ServiceComponent aims at describing these containerized workloads,
by including the necessary information to finailyr them in the IEs (container image, environment variables,
net work connectionsé). | n intdelech dre tmeecgra entities oStaerQ@S c e Co
orchestration as the whole orchestration process is performed independently for each ServiceCorhonent.
implies that the specification of requirements to make the allocation decision must be included in the ontology:
IE requirements to let the HLO perform a {fiteering of candidate IEs and SLAs to feed the allocation Al
algorithm.

Like the relationship between Domain and IE entities, the Service entity has been thought as a conceptual layer
in top of ServiceComponents to apply a logical grouping among them, which facilitates their management by
the end users. Moreover, a lifecycle mamaget model, managed by the HLO and underlying LLOs, has been
designed for therchestrated 10T services the continuum, which is applied to tiséatusattribute of the
ServiceComponent entity instead of the Service because of its logical natwevaihifor instance, when
services are removed from the continuum, their components (containers) are removed from the IEs, but their
associated ServiceComponent entities remain stored in the distributed state repositoryimisineal status.

This approach allows to control the full lifecycle of service deployments with a transparent monitoring solution,
or even redeploy them if necessary or requested by end users due to the persistenoéoofritidon.

Finally, as this continuum ontology is expected to be one of the main outcomes of aerOS, it will be properly
and publicly published according to the standards of the LOT methodology, thus availablekmomellpublic
ontology repositories such as FIWAREart Data Models, which is fully aligned with the N&%$) standard.

Version 1.0 i 31-MAY -2024 aerOS° - Page50 of 136

https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

aeros: :/igitlab. project.eufwpaitd. 1/ i deztitle: aerQS continuum ontology Legend

deat: http:fwww w3.orgnsidoatf de:created: *2024-02-14"Mxsd date Obiset Property——» 20rOS Continaurn
det: http:/purl.org/defterms/ de:creator: Ignacio Dominguez Martinez-Casanueva Class

foat: hitp:/ixmins.comffoati0.1/ de:contributor: Andreu Belsa Pellicer SubClassOf——>

org: htip:ffwww w3.org/ns/org# de:contributor: Rafael Vario Garcia Data Property: datatype
prov: http:/fwww.w3.org/nslprovi owlversioninte: 100 [- - 1 memsesses rf:type === === -+ >

schema: hitp://schema, org/

org:Role ;
L =" L

‘ ‘ aeros: i } | oS! elnfrastructureElement }-;
| H

H
¥

org:Crganization I | SRR aerosNetworkPort

dctiidentifier: xsd:string T dot:title: xsd:string

foat:givenName: xsd:string
Toaf:lastName: xsd:string

aeros:User T | ‘ aeros:portNumber: xsd:integer
aerosidapldentifier: xsd:string —- eros:operatingSystern
‘ l aeros:exposesNetworkPort
aerosinternallpAddress: xsd:string [—aeros:deployedOnServiceComponent
aerosdomainStalus— aeros:Domain aerosimacAddress: xsdstring ‘
aeros:availableRam: xsd:integer
dotidentifier: xsd:string aerosramCapacity: xsd:integer aeros:ServiceComponent asros:ServiceComponentStatus
) prie xod:siiing aeros:currentRamusage: xsd:nieger
. e T st s
' aaros:isEntrypoint; xsd:boolean . o aeros:sla; xsdsiring [
F——— aeros:avaragsPowerConsumption: xsd:fioat aeros:containerlmage: xsd:siring gSarviceCompanent
aarns Praiminarbomain i aeros:currantPowerConsumption: xsd:float aerosicliArgs: xsdistring
' aerosreallimeCapable: xsd:hoolean aaros anvVars: xsd strin ----{ aoros:StartingSarviceComponent
P— asms:bT‘owsTo aeros:location: Location 9 . Raneni

aerasinfrastruclureElementTier ----1 aeros:OverlpadServiceComponent

asrasisPart ICs rosinfrastiucture ElementReduiraments o
asros:InfrastructuraElementTior l“s OfServica asrosinira J’ edirements ----1 aercs:FailedServiceComponent

| asros:CloudTier | ---|

agros:RemovedDomain |- --- aeros:LowLevelOrchestrator

dct:name: xsd-string
schema url: xsd:anyURI

aeros:Service aeros:r

aeros-orchestrationType
fer. xsd:string asros requiredRam: xsdiinteger
detdescription: xsd:string asros requiredCpulsage: xsd-float - --{ apros RemeoingServiceComponent

4**, aeros:FdgaTiar }
aeros:OrchestrationType |
i

aeros:realTimeCapable: xsd:boolean

aeros FarEdgeTier }‘

\ asros-withinArea: Area -
- o (SRR

.

aeros:ServiceType

aeros:containerdOrchestration -4 i ifi -sitril
: dotidentifer. xsdslring | —dctiicenso—» detLicenseDocument
' aeros:webPage: xsd:anyURI
aeros:OpenstackOrchestration f---

Il

5.5. aerOSbasic services

5.5.1. Network and compute fabric

aerOS initial concern as a Me@ft is to establish an infrastructure continuum over a set of diverse
communication and computational resources. These resources are not only located in different administrative
domains and geographical locations, but theg abnsist of different architectures, whether physical or virtual.

The aerOSNetwork and Compute fabric, a main comonent of its architectural design, establishes the
underlying framework that abstracts this variety of heterogeneous computing resodregp@ses them as a
homogenized lodEdgeCloud continuum environment. To this end, aerOS has developed a suite of dedicated
services, among its core offerings, which create a unified layer for managing connectivity, communication, and
computational resoues, ensuring efficient integration and secure network interactions.

This design integrates and exposes heterogeneous
orchestration framework, providing a common interface for allocation, runtime access and monitoring. It has
the dual responsibility of both providing@mmon access interface, which abstracts heterogeneities, and
provisioning for their network connectivity. This layer provides the basis for a seamless operation of
applications and services, as explained next in the service fabric section.

Network and Compute fabric harnesses the aerOS domain as its fundamental building block. Each domain, with
the support of aerOS network and compute fabric services, acts as an independent administrative unit with the
capacity to oversee its own computarage, and network resources. The unified control plane, provided by
aerOS Network and Compute fabric, plays a pivotal role in streamlining the management and orchestration of
these resources across the continuum. It offers advanced functionalities slydarag resource allocation,
intelligent load balancing, and automated scaling, ensuring optimal resource utilization and performance.
Through seamless integration with the federated domains, facilitated by standardized protocols and interfaces,

Version 1.0 i 31-MAY -2024 aerOS°- Page51 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

the unified control plane enables cohesive governance and coordination of resources. This integration exposes
a consolidated pool of resources, poised to serve as the foundational underpinning for hosting loT services and
applications, offering enhancedasahility, reliability, and security for the entire ecosystem.

The network fabric serves as the communication backbone, facilitating fast and deppadadtteansmission

between integrated components across the aerOS ecosystem. Meanwhile, the compute fabric encompasses
diverse array of computing resources, referred to as Infrastructure Elements (IEs) within aerOS. These resources
are responsible for deliveig the requisite processing power to execute the requests of I0T developers, utilizing
containerized workloads for efficient deployment. By leveraging this compute fabric, aerOS ensures that a pool
of resources is readily available to fulfill user quergegmlessly providing the most optimal candidates based

on the specific requirements of each use case. This abstraction shields users from the complexities associatec
with discovering and managing heterogeneous architectures, offering a streamlined-fehabeexperience

within the aerOS environment.

While the initial architecture release set the design principles for the compute and network fabric, the
implementation of the MVP provided valuable input that enabled a more elaborate and detailed definition which
is reported in this section. As initialptanned the key feature$ aerOS network and compute fabric are:

1 Scalability: the ability to expand seamlessly, without sacrificing performance, as additional
infrastructure is introduced to the aerOS ecosystem.

1 Reliability: ensure robust and continuous operation, even when there are component failures, by
supporting redundancy and failover mechanisms.

T Flexibility : The fabric should support various types of workloads and applications, allowing for
dynamic allocation and reallocation of resources as needed.

1 High Performance tacitly provide for the fulfillment of each use case the most efficient resources
while ensuring the most efficienbmmunicatioramong dispersed computing nodes.

9 Transparency. abstract access variety aoffier homogenizednterface for resource management and
orchestration

The Network and Compute fabric within aerOS mutually benefit from their interaction with the Service fabric.
While the Network and Compute fabric serves as the execution substrate for services, the Service fabric
facilitates the provisioning and managemehtompute resources through APIs. This symbiotic relationship
enables dynamic scaling and orchestration in response to fluctuating workload demands. By abstracting access
to computing, networking, and storage capabilities, aerOS runtime and servidds jprowified interface for

users. Additionally, APIs expose and federate these resources coherently across all aerOS domains, ensuring
seamless integration from edge to cloud. This cohesive approach optimizes resource utilization and enhances
overall systm efficiency within the aerOS ecosystem.

As aerOS evolves instrumenting container orchestration, it leveoagesntainerized environmemttérfaces

as its foundational framework. Essential functionalities such as persistent storage for data availability and
redundancy, networking between Infrastructure Elements (IEs) with advanced features like overlay networks
and network segmentation, aminagement afietworkresources are all standardized through interfaces like
CNI or CSI. To expand its capabilities, aerOS incorporates extensions to these interfaces using operator
technologies.

Within each aerOS domain and on top of each IE, certain services are responsible for managing the domain's
compute, storage, and network resources. Concurrently, other services facilitate the federation of these domains'
resources. This federation enaliles sharing of information regarding integrated capabilities and availabilities,
offering an ordemand response to existing resource availabilities. Moreover, it establishes a standardized
access channel for providing resources to host services withimeazhn, regardless of its location across the
continuum.

aerOS network fabric encompasses the full range of capabilities aerOS provides for establishing connectivity
among IEs within each aerOS domain and across remote domains, located anywhere from edge to cloud. Within
an aerOS domain, this connectivity ismparrily based on the Container Network Interface (CNI) and the
programmability potential it offers. Virtual networks are deployed as overlays on top of existing connectivity
and offer the possibility to programmatically define the&haviour The integrattn with CNI allows for

Version 1.0 i 31-MAY -2024 aerOS°- Page52 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

dynamic network configuration, enabling customizable networking solutions to meet specific use cases, and
ensuring flexible and scalable network management. This high level of programmability supports advanced
networking features such as custom routingffitr policies, and network isolation, thereby enhancing the
overall efficiency and performance of containerized applicatioften-wherever possible netwok fabric of

aerOS makes use of advanasiities availeble inthe usd frameworks, e.guithin the Kubernetes clusters.

While all components, their interactioasd actual technologies are detailed in WP3 deliverafilEs 1 Initial
distributed compute infrastructure specification and implementatéow fiD3.2 Intermediate distributed
compute infrastructure implementat@rhe architectural design principles are listed in this section.

When it comes to connectivity across remote domains, the aerOS network fabric relies on additional network
functions to establish secure paths over public networks. These are implemented as cloud native functions
(CNFs) which are responsible for tasks sashrouting, switching, firewall, load balancing @ndnelling all

built on top of containerized environment. Beyond secure paths, there is also provision for dedicated and
completely isolated paths which can ensure both privacy and low latency. Thes esmpart of the network

fabric involving cloud native implementation of VPNs.

Security within this service and network fabric is paramount and TLS is employed to secure domain access
ensuring data integrity and privacy and RBlsed Access Control (RBAC) is utilized to enforce{jnained

access control policies, allowing only hatized entities to access or manipulate resources. Furthermore,
Network Policies are implemented to control traffic flow among both IEs and services enhancing security within
each domain.

As aerOS evolves in the cloud native domain, regarding the networking area this is reflected in the shift from
traditional Virtual Network Functions (VNFs) to clomative implementations. While traditional VNFs which

were typically deployed as monolithidrtual machines, often faced challenges in terms of scalability,
flexibility, and resource efficiency, aerOS builds networking capabilities on ¢latide network functions,
designed to run in containerized environments and taking advantage of theemicassarchitecture. Cloud

native network services are deployed and used in service chaining or mesh topologies. As an example, we can
reference that accessing an aerOS domain involves a channel built with a chain of programmable network
functions like ilgress proxy, TLS certification enforcing, load balancer, API gateway. All these are implemented
as microservices, and théiehaviourcan always be adapted based on exposed programmability. In cases when
services require direct access to another serviadd in a remote domain, a network service mesh practice
injects all required network functions. Generally, that paradigm shift towards cloud native networking practices
not only optimizes resource utilization but also integrates seamlessly with tharpmogble infrastructure,
providing a robust and adaptable network fabric.

ConcludingaerOS network and compute fabric design transforms the network path from the edge to the cloud
from just a connectivity medium to a unified computing platform with integrated connectivity capabilities, able
to support the implementation and deploymentraft®-end services which can drive innovation and support
diverse, heterogeneous verticals by providing a lower entry barrier for distributed applications, since edge and
far-edge devices will be part of this unified platform. The result isnttomplicate the connectivity in such
environments, that often require for the IoT developer having a previous deep knowledge on the network and
connection details of every part of the architecture.

5.5.2. Data Fabric

The creation of arloT-EdgeCloud continuunbringsa highly distributed and dynamic data landscape. With
the goal of providing a holistic view afl the data available in the leEdgeCloud continuumwhilst enabling

data governancmechanismshathelpensure a responsible use of data, aeaf@¥f@swith the two recent data
managemerdapproachethat focus on decentralizing the management of dataely datamesh anddatafabric

[9].

To cope with the complex data landscape of the continuum, aerOS shifts the management of data close to their
sourcesi.e., to the data providing domains this sense, aerOS embracesdat as a productthinking and

the domain-oriented data ownership principle as proposed by the data mesh paradigm. Owners of data
providing domains are responsible for turning their raw sgd$anto high-quality data products that data
consuming domains can easily discover, understand, trust, and ateesghelessbuilding data products
requires data engineering skills, as well as following standard data models and intevfsicesenable

Version 1.0 i 31-MAY -2024 aerOS°- Page53 of 136

https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

interoperability with data consuming domains. To hddfia owners in the creation data products, aerOS
proposes aelf-senicedata infrastructure that follows the architecture defined by thata Fabric paradigm.

TheDataDabricparadigm introduces metadatalriven architecture that automates the integration of data from
heterogenous sources amaables uniform access to ttata through atandardnterface. Aligningthe Data
Dabric architecture with thelata mesh principles of data as a product and deoranted data ownership,
results into the following noveltie§ the DataDabric, as the selfervice data infrastructurgansforms the raw
datasetof thedataproviding domain into a data product; and ii) the resulting data product Gatéssed and
shared wittdataconsuming domains through the standard interface dd#t@Fabric.

Knowledge grapts, aspreviouslydescribed irf9], represent a promising technology for the realisation of the

Data Dabric architecture. Knowledge graphs enab@ntextualized understanding of data by explicitly
representing in a graph structure the facts (i.e., the data) connected with the knowledge we have about them
(i.e., the concepts). These explicit representations of knowledgenespts that relate to other concepts

formal way that can be understood by machines are known as ontologies, and these play a crucial role in the
creation of the semantic layer

Building on the principles of the knowledge graplerOSproposes a definition ahe data product as the
transformation of a raw dataset into a semantically annotated data integrated in the knowle¢dge deggitted

in Figure 15. This mapping betweeiné¢ conceptual levgrepresented by ontologleandthe physical level
(represented by raw datasets such as data sireakmown as semantiifting . In this semantic lifting process,

the concepts extracted from the physical datasets are captured in the knowledge graph and linked with concepts
from other physical datasets. As a result, each data product represents a subgraph of the whole knowledge grapl
created by thaerOSDataFabric.

\
@
S
> Concepts
N , pts
&K OW . (Ontologies)
Q Teissassssssisssssissnnnsenannninnnnn -
Oo
/ \/ \ Mappings
T

@ [

Q}\,‘Z’ / \ \ Datasets

@0 ' j | l “ i (Files,RDBMS,
'vQ

To implementthe knowledge graph, aerOS has adopted the ETSI NGSitandard[10]. NGSILD (see
5.4.3.7 defines an information model derived from the property graph model, which additionally can reference
ontologies. Thus, the NG&ID standard enables building property graphs where data are semantically
annotated. In addition, the Representational statesfen (REST) API defined by NG&ID facilitates the
management and interactions with the graph. The compact and natural information model-€D\N&IShg

with a friendly REST API, makes NG&D a promisinggraphstandard for implementing knowledge graphs,
compared to other traditional graph standards su¢hesgResource Description Framework (RD®hich is
deemed moreerbose andntailsa steep learning curvén terms of the NGSLD standard, the NGSLD
Context Broker ipinpointed ashe componentiat stores thenowledgegraph.The NGSILD Context Broker,

by means of the NGSID API, allows data consumers to interact, query, and subscribe to notifications in

the stored knowledge graph.

The aerOS Data Fabric, as the sdfvice data infrastructure as per the data mesh paradigm, provides a generic
framework called Data Product Pipeline for data owners to build and onboard their own data products into the
knowledge graph. The aerOS Datdfe by means of the Data Product Manager, exposes an interface towards

Version 1.0 i 31-MAY -2024 aerOS° - Page54 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

data owners to onboard new data products and orchestrate the pipeline that turns raw datasets into data product:
These components are reflected in the téglel architecture of the aerOS Data Fabric showFigare16.

DATA GOVERNANCE SERVICES

1

1

:
: _. Data SECunty :
| Data Product ? ‘
Manager i
b

1

Access Control

Owner

Data Product E — '| Data Catalog |
1 :

NGSI-LD Context Broker

................ Data PrOdUCt ’ 1...
Pipeline Knowledge Graph

DATA FABRIC

Data
Providing
Domain

Data
Consuming
Domain

Access Control

But, as illustrated in the higlevel architecture, in addition to creating and sharing data products, the aerOS
Data Fabric also includes data governance mechanisms. aerOS must govern a distributed mesh of data product
scattered throughout the continuuimys, mechanisms for cataloguing and controlling the consumption of data
products must be put in place.

In this regard, the aerOS Data Fabric also relies on the knowledge graph to integrate the metadata that support:
the data governance services. For example, when it comes to cataloguing data, the knowledge graph would
contain metadata that describe the owsfea given data product, the domain that the data product belongs to,
and even the concepts related to the data product.

Similarly, for securing access to data, sensitive classification of data or access control policies based on the
domain that provides a data product, could also be captured as metadata in the knowledge graph.

5.5.3. Service fabric

While the aerONetwork and Compute fabric provides a seamless and unified layer that removes concerns
regarding the underlying hardware differences and the geographical or administrative distribution of resources,
thereby taking care of tehnet ,udn dtehrel yai enrgO i eXeercvuitcieo nf &
establ i shi nsgrvicar ucna mnmoen efin v i engronmenh offerd a rdblust Bamework for
managing and orchestrating 0T applications as microservices in a standardized and unified manner.

The aerOS Service fabric is built as a set of dedicated microservices capable of managing loT service
deployment, orchestration, and lifecycle management (LCM). The primary concern of this fabric is to relieve
IoT developers of runtime concerns and deaisicegarding their applications' orchestration and to automate
lifecycle management and integration with existing consuming and producing counterparts. It comprises a set
of aerOSasicservices deployed within each domain, with some operating directbpaf each IE and others

having a single running instance within the domain. Collectively, these services orchestrate microservices, as
containerizeebased applications, on top of the available IEs. Additionally, to achieve the most efficient results,
the aerOS Service fabric integrates advanced Al techniques to optimize resource usage, enhance service
performance, and proactively mitigate inferred failures.

The aerOS Service fabric consists of a set of clwatile services with clearly defined boundaries and
responsibilities, enabling specialized functionalities and independent deployment. The designed service fabric
includes robust lifecycle management toahd APIs, facilitating dynamic scaling based on workload demands

to ensure optimal workload placement and resource utilization. While the orchestration of 10T applications is

Version 1.0 i 31-MAY -2024 aerOS° - Page55 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

the primary concern of the Service fabric, it also encompasses security, monitoring, observability, scaling, and
resiliency as integrated functionalities.

Built on top of containermanagementrameworkprovisions,the entire aerOS framework is constructed as
containerized microservices. The aerOS Service fabric extends capabilities and orchestrates |0T services across
various environments that support containerized workload execution, ultimately managing distiagdute
applications and services seamlessly across diverse aerOS domains.

With the goal to enforce an orchestrationwhzxhhr oces:
should promote workloadsd most efficient plac¢cement
aerOS service fabric has adopted a federated orchestration process design which is realised based on a set ¢
basic services deployed within each domain. This is provided by the combined actions of orchestration services
and the federator component. Theservices provide to the aerOS serviceaitathe capability to address
constrairtbased optimisation, placement related problems, considering both application requirements and
resources availability, and achieve thus the best placement of 10T vertical applications all the way from the edge
whereloT devices are integrated to the cloud where more powerful computing resources are available. Service
fabric on one hand receives usersd deployments re
compiled in the Entrypoint dashboard, theention Blueprint, and on the other hand has an overall knowledge

of the status and capabilities of all I&sd domains across the continuum based on the services provided by the
federator as implemented within aer@&taFabric.

The Intention Blueprint is received in the exposed HLO REST API exposed by each aerOS Hmathere

on, aerOS service fabric initiates the process of service placement including resources orchestration. As a first
step the received Intention Blueprint, a custom TOSCA file, is parsed and all service components, requirements
and constraints are registeredlie aerOS continuum as part of the aerOS knowledge graph. The second step
includes the selection afset otandidate IEs, these that match servézpiirements, by querying the continuum

via data fabric provided capabilities. Subsequently the set of candidates are forwarded to the Allocator which
integrates predictive and optimisation algorithms to make the most efficient selection for the awatighlE

should host the request. At this point it is important to say that all communication among these components is
standardized both in terms of communication channels ésipgcAPIspecifications and in terms of payloads
expected in each stage. Justihformative reasons we refer th&rotocol Buffer{protobu)) payloads are used

to exchange information mapping aerOS continuum entities (IEs, aerOS domains, service components,
ownerships, etc). The flexibility provided by this design enables each domain administrator to integrate their
own decision engine by replacing the Allocator with a custom one as longeapécts the communication
specifications (all fully documented). TheplementationBlueprint which is the output of the Allocator is
forwarded to the deployment engine component. This HLO componeaspsnsible to understand if this
deployment refers to a local IE or a remote one, located to another aerOS domain. Based on this decision the
final step is to call another HLO exposed At HLO Allocation Endpointof the domain which hosts the
selected IE. This is the exit point towards the actual enforcement layer and all information regarding both
deployed service component and selected IE are availablenglementation Blueprint is sent to the LLO
whichrelies o cloudnativetechniqueof cusom operatrs forabstractingheaccess to integrated resources.

Thus, aerOS Service fabric, as a core functionality, integrates a ddaypbedd orchestration engine. A concept
which enforces separation of concerns regarding a) the decision as HLO acts apoaverkld Decision

Making Engine as it interfaces with AllMservices, and b) the enforcement as LLOs have the actual knowledge
of how to proceed to workloads placement, on the underlying IEs. This schema provides the required flexibility
and extendibility to integrate more resources over which aerOS can ortghestraces. It only requires the
development of an additional LLO (K8s operator).

Beyond making transparent to the user the whole process of services placement aerOS service fabric provides
aframework fully capable of overseeing the runtime status of deployed services and responding proactively or
on event triggers as required to enforce decisions that ensure seoalityg and resiliency of hosted services.

Most of the services orchestration functionality are detailed in next sections. Though it is crucial to mention that
once services are depl oy ©8 Servicehfabyc pravides the eetvicels ® feither i h €
sense abnormalities and request service migrati ol
services isolation. A full suite ready to raise functions on response to events is hosted andsseaypaiglities

support programable responses to registered events.

Version 1.0 i 31-MAY -2024 aerOS° - Page56 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

As privacy and security is of paramount importance, corresponding services are closely integrated within
Service fabric, validating usage and access to resources and data. While all the cybersecurity services which
minimize concerns regarding a secure saf@ environment are presented in sechi&@¥ it would be worthy

to mention that having designed for an @agnd security integration aerOS Senvikabric strongly connects

with DevPrivSecOps pipelines. The development and integration of a component automates aerOS service
updates after being validated in GitLab pipelines and security preserving tool chains.

As a final note, aerOS has standardized all components and functionalities of its Service Fabric. The exposed
APIs and payloads are fully documented based on these standards using OpenAPI. Internal communication
among Service Fabric components is alsodsiatized. Both payloads and communication channels, whether
REST APIs or broker topics, adhere to OpenAPAsyncAPIstandardsThis thorough standardization and the
accompanying documentation provide stakeholders who adopt aerOS over their infrastaitttutiee

flexibility to extend or even replace componentsth the only requirement being to maintain interface
contracts.

In conclusion, the Service Fabric, operating on top of the Compute and Network Fabric, plays a critical role in
enhancing and efficiently utilizing the underlying resources. It manages the deployment, scaling, and
orchestration of services across the ganiim, ensuring that application components are optimally placed to
meet performance requirements, Service Level Agreements (SLAs), and energy efficiency criteria. This synergy
between the Compute and Network Fabric and the Service Fabric ensures a auttesffieient infrastructure

that supports the dynamic needs of loT applications.

5.5.4. aerOS cyber security components

The aerOS cybersecurity architecture is a Maltered and integrated security framework designed to ensure a
robust and trustworthy environmetitrepresents a sophisticated cybersecurity framework designed to protect

its infrastructure and datBy using a separation of concerns approach, aerOS offers a modular cybersecurity
architecture that combines elements to validate access to distributed resources, register appropriate security
levels, and detect threats at runtiriibis integrated approach enssitbat each component not only supports

the overall security objectives but also enhances the system's ability to manage and mitigate potential threats
effectively.

A key component of the aerOS cyber security system is the aerOS Identity Management (IdM), whose ability
is to register and evaluate policies for resource and data access. It utilizes Kelgbakhich provides
comprehensive functions to strengthen its cybersecurity by managing the authentication and authorization of
aerOS clients. Focusing on authentication, this addd5designemploys advanced mechanisms to defend
aerOS from unauthorized access. The advaSagement &tal, serving as the primary interface for entities
interacting with the framework, incorporates a module linked to Keycloak for authentication and authorization.
This module uses OpenlD Conrga protocol based on the OAuth 2.0 framework, to offer secure-tisad
authentication and Single Sighn (SSO) capabilitiesThis enables entities to access the aerOS portal using
credentials obtained from their respective organizations. Elements deployed within the aerOS continuum
requiring access to protected endpoints must first obtain an ID token from aerOS IdM, which isthen us
make API requests. aerOS leverages fMBased Access Control (RBAC) to grant users access based on their
assigned roles. The integration of aerOS IdM with OpenLDAP has been implemented to enhance the adoption
of aerOS IAM by stakeholders, faciitng the automatic federation of user information from the LDAP
directory. This eliminates the need for manual transfer of user data to aerOS IdM, streamlining user management
and group associations. By leveraging both the Identity Management systenutli@nteation and
authorization and OpenLDAP for user management, a robust and flexible access management infrastructure has
been developed. The integration of LDAP with the aerOS IdM element further improves aerCEastae
Access Control (RBAC) policiegroviding additional layers of access control based on user attributes and
enabling more precise and dynamic security policies. aerOS implements a system of precise control and
management over resources, which is seen in the establishment of diffeenEach role is associated with
specific access rights within the aerOS services environment and linked to a corresponding group in

7 https://www.keycloak.org/
8 https://openid.net/developers/haennectworks/

Version 1.0 i 31-MAY -2024 aerOS°- Page57 of 136

https://www.keycloak.org/
https://openid.net/developers/how-connect-works/

D2.77 aerOS architecture definition (2) =3 aer0s

OpenLDAP. These groups are efficiently synchronized with aerOS IdM through LDAP federation, ensuring
consistent and secure access management across the platform.

A Secure API Gateway is located within each domain by the modular design of the aerOS cybersecurity
framework, and it serves as a checkpoint for validating and enforcing policies registered in the IdM components.
The implementation of this API Gateway is based&oeikenD, which acts as a central hub, enforcing security
measures and access controls on all APIs. The integration of the aerOS APl Gateway component into the aerOS
architecture plays an important role in enhancing the overall security framework of the sygialy, kerOS

is described as a Me@aS comprised of multiple APIs, which inherently lack binltsecurity mechanisms to
counter threats such as unauthorized access. Recognizing this vulnerability, the incorporation of the aerOS
secure AP| Gatewais strategic, addressing the critical need for robust security within the aerO&aeT@is

APIs guardenhances security by utilizing the user roles and groups established in the Identity Management
(IdM) system. This integration between the aerOS API Gateway component and IdM streamlines access control
by granting users permission to specific APIs anationalities based on their assigned roles. Beyond access
control, aerOS API Gateway fosters a unified entry point for all aerOS components, alleavintptinteract
seamlessly with various APIShis eliminates the need to manage multiple access points, simplifying
communication and data flow within the system. Furthermore, the APl Gateway offers granular control over
incoming and outgoing API traffic with features such as message caching and pedifieation in the aerOS

API Gateway itself. This empowers administrators to tailor data based on specific needs, perform additional
internal checks, and enrich functionalities through scripting suppoesdence, the aerOS APl Gateway
component complements the existing security features within the @scgechitecture, particularly the 1dM
system. It strengthens the overall security posture by adding a critical lajefieatespecifically focused on

API security, which is vital for protecting the integrity of thataFabric

aerOS cyber security framework ensures security at all levels, including the integration of resources at the lowest
level. This is designed to integrate security capabilities into each individual Infrastructure Element (1E). Self
security in aerOS is robtg supported by an integrated tool, Suriéatan advanced opesource tool for

network analysis and threat detection at the node level. This component, comprising a Log Monitoring module
and an ETL (Extraction, Transformation, Load) processing module, plays a crucial role-timec#ireat
detecton and response within the aerOS infrastructure. Suricata continuously monitors network traffic
generated by the network cards of IEs intéak. This enables the sedécurity module to identify malicious

activity and potential vulnerabilities or attackJpon detecting any malicious activity or vulnerabilities, the
information is immediately relayed to the sdihgnose component. This ensures timely interventions,
bolstering the security of the entire aerOS ecosystem. By offeringimeahetwork tradfic analysis and threat
detection, it strengthens the overall security posture of IEs and domains within the aerOS ecosystem. The
inclusion of this selsecurity module complements the existing security layers within the aerOS architecture. It
bolsters saarity by providing reatime threat detection, improving vulnerability management on IEs, and
enhancing intrusion prevention through early warnings.

Beyond resources control and policies enforcemeam)S takes proactive measures to improve the security
foundation and foster trusted communications and interactions among connected IEs. Therefore, an ongoing
process of estimating and validating the trustworthiness of integrated pieces is carriedeodtusth
Management component continuously assesses the trustworthiness of individual Infrastructure Elements (IES)
and entire aerOS domains. This information is crucial for informed deqisaiing within the aerOS
ecosystem. The Trust Management component works by collecting various attributes from each Infrastructure
element (IE). These attributes include security events, health scores, service activity, communication patterns,
update status, reputaticamnd even system information like CPU and RAM usage. Each attribute is assigned a
weight based on its significance to security. Security events, for example, are considered more critical than the
number of services running on an IE. &yalysinghese weigted attributes, the Trust Management component
calculates a trust score for each IE. This score reflects the overall reliability and security of the IE within the
aerOS environment. In terms of alignment with the overall aerOS security architectureygiieldmagement
component enhances the security strategy by providing dynamitinneahssessments of trust. This is crucial

in a complex environment like aerOS, where numerous IEs operate and interact. By enabling a clear,
continuously updatediew ofex h | Eds trust l evel , aer OS can ensul

9 https://suricata.io/

Version 1.0 i 31-MAY -2024 aerOS°- Page58 of 136

https://suricata.io/

D2.77 aerOS architecture definition (2) =3 aer0s

service allocation and system management by the-Higlel Orchestrator (HLO), are made based on robust
and upto-date trust assessments. This alignment with the broader security strategy ensures that aerOS can
maintain high levels of security and operatibefficiency across its continuum.

Overall, the aerOS security architecture exemplifies a comprehensive and effective approach to cybersecurity,
characterized by its multayered and integrated security components. From identity and access management
with aerOS IdMto reattime threat detection with Suricata, and from the cohesive integration a¢tO&SAPI

gateway to the dynamic assessments by the Trust Management component, each element of the architecture i
purposefully designed to address specific security needs while contributiimegadeerall security posture of the
system.

5.5.5. aerOS sel#* and monitoring

Explanation of the service:

This basic service is materialised in a suite of automatea* dekitures (microservices) that an IE is
continuously applying to itself. In a widely varied environment where a large number of-lige,ceach of

those should have a set of capabilitiesntmdify theirbehavior/ status in such a continuum. This set of-8elf
capabilities is divided iwo, those that are strictly necessary (core) and those whose installation is optional
depending on the circumstances (foame). Those capabilities, in combination with the global orchestration
and data management, allows the IEs to still be considerpdveered entities, playing a crucial role in a large
environment, thus reinforcing the decentralisation principle of aerOS.

Functionally, this service supports the monitoring of inner parameters (some that are exposed to the whole
continuum and some that are not) through the-aelreness and seffaltimeness modules, the logic of
understanding whenever an action must be ditbowpwards (for instance, rejecting service/workload
assignments or triggering specific orchestration requests) or if a specifically labelled application is complying
with the agreed Service Level Agreement (SLA at node level) using thersk#stratorself-diagnose and
self-optimisation and adaptation modules.

This service also includes the management of the 10T devices that can be attached to the IEs, offloading the
need of central management of configuration, control, or healing, by using tfmsdfuration and self

healing modules. It also involves centacybersecurity traits, to relax the demands of centralised
security/privacy control, through the sslcurity module. Besides, it implements active attempting to recovery
after abnormal activities, dependability, and kiagm, upto-date synchronisatiorwith its custom
configuration and horizontally scaling of resources, mainly by applying thecaifhg (and other) modules.

All the functionalities of this basic service share the automation degree and the dynamicity and capacity of
parameterisation bghe user of the continuum. Thisgartly possibleusingthe selfAPI module.

Version 1.0 i 31-MAY -2024 aerOS°- Page59 of 136

D2.71 aerOS architecture definition (2) =3 aer0s

Self-* capabilities APl Gateway

Self-scaling < » Self-orchestrator | €——

Self-configuration

Self-diagnose
h Self-realtimeness
Self-optimisation

and adaptation
Self-security

Self-awareness T

Seli-healing

Infrastructure Element

¥
A 4
N~

Necessity of the service in aerOS:

In a continuum, many situations might happen that would require advanced logic in the most granular places to
take place. Actions like down networlydglen disconnection from the d¢omum, a peak of demand in the
running services, increased energy consumption, change of energy feeding type, modification of configuration
(e.g., bit framerate) will likely occur at some spots of the continuum along the time. Relying on a central entity
to continuously gather all those data from all the IEs in a continuumdwaghn an unbearable network
overload and would clearly jeopardise the autonomy and the decentralisation capacity of the whole ecosystem.
Therefore, there is the need of creating mechanisms within every IE that will constantly monitor and act upon
those eents, proactively inspecting and identifying theacorence, and introducing a certain degree of
intelligence at edge/device level.

Materialisation in the architecture:

These basic services run as a suite of microservices, each of them tackling a specific functionality, that is
installed in the IEs (depending on their flavour or role in the continuum). These microservices are lightweight,
as they are expected to run indregeneous IEs, that might live at resotroastrained equipment (e.g., close

to the edge or faedge of the continuum). More details can be found in the delivefialile Intermediate
distributed compute infrastructure implementadicand in the futurefiD3.3 Final distributed compute
infrastructure speci.fication and i mplementationo

5.5.6. aerOS decentralised Al

In aerOS, Al is considered from an internal and external perspective. External Al fulfils the requirements
coming from user applications, e.g., those developed within pilot applications. Examples of external Al can be
frugal federated learning on local dair deployment of a prediction model (e.g., air quality prediction model).

In particular, external Al is a specific task that may have a corresponding workflow and can be commissioned
to be executed on the aerOS infrastructure. This functionality is gedgxy auxiliary Al services described in
Section5.6.1

Internal Al supports aerOS internal continuum management by providing intelligent decéakorg that spans

across different base services and respective components. Examples of components using internal Al are: HLO
for service allocation and seffcompaments for sekscaling and seladaptation/optimization. As part of these
services, Alrelated functionalities are deployed in different locations in the continuurreldted

Version 1.0 i 31-MAY -2024 aerOS° - Page60 of 136

https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

functional i tiire icmns pec iffbiuci lIgservices being part o
already trained model is used for predictions), or they can be used as separately deployed services (e.g., wher
required, use communication APlo r equest prediction from a model
service). In the former case, these are the design considerations for specific base services being developed ir
aerOS which can also include specific needs related to frugalitytaiexbility depending on the nature of the
service and foreseen potential placement in the continuum. In the latter case and in the case of external Al,
aerOS aux Al services can be used to provide execution environment-fetageld functionalities (e.g
deploying trained model for inferencing, training a model in a distributed way) and support for additional
features such as explainability/interpretability or frugality of the solution. Aux Al services are not obligatory in
the aerOS deployment but cha included depending on the characteristics of the use case.

55.7. aerOS commonAPI

The primary objective of a common aerOS API is to establish a communication environment that fosters seam
less interaction among services spanning the entire compute continuum, encompassing the edge to the cloud
These services include both the systenterival set of basic and auxiliary services, and loT services deployed

by vertical stakeholders. While this section specifically focuses on the APIs employed internally within the
system to enable and ensure communication within and across system dornamsan approach unifies

how vertical 10T services communicate and exchange data. The rationale behind the design of these APIs is to
abstract the complexity of interacting with individual services, which often implement diverse APIs and produce
incompatilbe data sets. Services exposure is based on aerOS domain level aggregation and abstraction. This
means that each aerOS domain exposes a common set of endpoints, communicating using the same dat
structures and requesgsponse patterns, regardless of theeulying implementation within each domain and

its IEs, and all aerOS domains encompass the same technique to provide a single point of control and access t
the exposed API.

The above discussion highlights the two main concerns that were addressed when designing aerOS common
API. First, how all underlying services should be abstracted and aggregated to a minimum but efficient API
which can take advantage of all underlying &s¥s. Second, how to provide a single point of access which
could additionally enforce security policies, handle rate limiting, and of course efficiently route requests to the
appropriate domain services. The answer to the first question was guidecgriiearchitectural decisions

and the answer to the second emerged through a thorough state of the art analysis regarding APIs centralizec
access control architectures.

To illustrate the previous, first, the reasoning behind the APIs to be exposed is discussed and then the common
exposure implementation decision is presented.

As previously mentioned, within each aer@®main, three primary building blocks act as functional
components, enabling the implementation of the Compute and Network Fabric, the Service Fabric, and the Data
Fabric at the domain level. These components collectively support the seamless intefithéatomain into

the broader aerOS continuum. This integration encompasses robust authentication and authorisation, federation
of aerOS domains and IEs status across the continuum, and orchestration requests submission which enable:
coordination and management of the various components and services within the continuum. Thus, the
following three service groups are primarily identified for APl domain exposure.

A Authentication and Authorization Service which is responsible for handling user authentication and
authorisation to access domain services. It ensures that only authenticated and authorized users can
interact with the system's functionalities. The comma Abstracts the underlying implementation
details of different authentication mechanisms, allowing developers to interact with the service using a
uniform and consistent APl contract. Users and applications can securely obtain access tokens or
authenticabn tokens to authenticate themselves and gain access to the relevant services.

A Data Fabric and Mesh Services, based on NGESlimplementing federation across aerOS continuum.
The data fabric and mesh services are implemented using thelN\DGSandard. The common API
abstracts the complexities of the underlying implementationsjdangva unified way for clients to
query, update, and manage data using the N®BSHata model. Services and applications can
seamlessly interact with the data fabric and mesh services, irrespective of their speciicINGSI
implementations, ensuring coswnt data exchange. aerOS takes advantage of integrated data mesh

Version 1.0 i 31-MAY -2024 aerOS°- Page61 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

and fabric technologies and provides a "Data Access Layer" which acts as an intermediary between the
services that produce data and the applications or clients that consume these data. This is of paramount
importance both for aerOS domains exchanging status information and enabling thus a coherent view
of all continuum state, and for vertical l0T services requesting data produced and exposed in other
domains.

A Orchestration Services to facilitate the dynamic allocation and scaling of resources, ensuring optimal
performance and resource utilization. The common API acts as an intermediary for clients to interact
with the orchestration services, abstracting thecaties of underlying orchestrators. This can be
implemented with message queues and event streaming to facilitate asynchronous communication and
data exchange between domains. Messages or events can be published and consumed across domain
enabling decopled communication and credsmain deployment requests.

To realise the above concept, the common API can be exposed through a centralised APl Gateway, deployed
within each domain. The API Gateway will act as a shayiy point for other domains, clients, and
applications to access the underlying services.

Beyond forwarding requests to the appropriate exposed components, APl Gateway seamlessly integrates
authentication and authorization requests, verifying user credentials and granting access tokens for secure
service access. It routes requests to the appteplata fabric and mesh services, orchestrating data retrieval
and updates as per the NGE&D standard. Additionally, the APl Gateway can interact with message broker to
coordinate orchestration tasks and distribute workloads efficiently. By adoptsngammon API approach

with a centralized APl Gateway, the ecosystem achieves a cohesive and standardized communication
environment. The abstraction of underlying implementations simplifies development efforts, enhances system
scalability, and enables sakess integration of new services into the ecosystem. This results in a unified and
userfriendly experience for all stakeholders, fostering an agile and dynamic IT system architecture.

Conclusively, by leveraging an API gateway, aerOS domains provide a robust, centralized, and standardized
interface for interacting with the exposed services. The gateway's technigues, such as centralized access control
API composition, request/responsarnsformation, and load balancing, contribute to enhanced security,
performanceand scalability. Additionally, features like caching, rate limiting, and logging further improve
system efficiency and user experience. Overall, the API gateway plays aolétah providing a unified,

efficient, and secure access layer to the services, promoting a seamless and cohesive ecosystem.

Management Portal

==l Gafeway | S
| aerOS Domain XY

HLO HLO FE API

HLO
Storage Engine

HLO
Allocation Engine

HLO
Deployment
Engine
T

f 1
s REST APls b | OpenAPI !

Alert System

DPM API
Data Product Data Fabric
Manager

\
s Event Driven b |r AsyncAPI 1
Communication e J

- = ————

__________________________________ ’,
DDS/ MQTT
OPC UA/ROS/ ..

Version 1.0 i 31-MAY -2024 aerOS°- Page62 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

In the context of aerOS, RESasedAPIs (such as HLEFE, LLO, and seH* capabilities) are defined using

the OpenAPI standargpecification However, as technology continues to evolve, there is a growing need for
standardized specificationsagynchronous interfac&@sa capability that OpenAPI does not inherently provide.

To address this limitation, the AsyncAPI initiative has emerged, aiming to establish an industrial standard for
specifying asynchronous interfaces.

Similar to OpenAPI, these of AsyncAPI would benefit botore and auxiliary services aerOS by providing

a frameworkto describe interface®r protocolssuch aKafka and MQTT. For instancéhe High-Level Or-
chestrator ILO) employsRedpandao facilitateeventdriven communicationAdditionally, auxiliary services
andpilot projects withirthis frameworkcan utilize AsyncAPI to standardize the sharindpdf datastructures
acrossthe data fabricthus integrating varioumdustrial interfacesincluding ROS2, DDS, OPC UAand
MQTT. OpenAPlwould remainbeingthe preferred choice for RESJased interfaces due to its widespread
adoption.By using both OpenAPI and AsyncAPI, aerOS ensures that all API information is documented con-
sistently. Addiionally, both standards allow for code generation, simplifying the creation of servers or clients.

Additionally, the integration of lowcode tools as auxiliary services within the aerOS project enhances flexibility

to trigger actions over the ARIBehaviour trees, functioning gsaphical lowcode interfaces, enable users to

define triggers and adjust parameters interactively. These behaviour trees do not directly orchestrate services
within the aerOS domains; that role is specifically reserved for the-ltéghl Orchestrator (HLDand Low

Level Orchestrator (LLO). Instead, behaviour trees trigger functionalities within already running applications,
activating specific service functionalities without initiating or terminating the services themselves. This user
friendly approach atiws for easy modification of operational logic

5.5.8. aerOS management framework

The MetaOS developed in aerOS must be managed by end users through the use of a common and recognisable
interface, as in a traditional operating system, in which users can use a terminal or a command shell for this
purpose. For instance, these tools all@ers to install, uninstall and run programs or manage the set of users
with the proper rights and permissions to interact with the operating system. In addition, OS have evolved to
provide these users with a simpler and cleaner way of interacting witkythem: a visual interface (e.g., a
desktop) on top of the internal processes, so that they can manage the operating system -fisamiyser
Afrontendsod, while the actual processes are stildl
hidden to the users.

In aerOS, the intention is to follow the same approach that is fully adopted in traditional operating systems, so
it have been decided to create one component to act as a single window for end users to manag®8ie Meta
the aerOS Management Portal This means that the portal is deployed in a unique domain, named as
AENtrypoint d o ma.iHowever, the portal provides migration capabilities to be moved to another domain or
IE due to a user requirement or an unexpected failure. Thus, this allows to avoidshaf the unique
management entrypoint, as is the case with high availability systems. As a global reflection, this approach is
completely aligned with the principles of aerOSlekibility and decentralisation (isi ngl e entryp
not mean a centralized computing approach). This has been expressed more succinctly i5.&&ction

This useffriendly dashboard, developed as a mod&ingle pageweb application (SPA), acts as a frontend for
performing operations regarding the M&$, which are finally performed by the aerOS Basic Services in the
background. For example, an administrator can confirm the addition of a new domain or of a néhelE to
continuum using the portal, but the inclusion of this domain is managed by the aerOS Federator component.
The interaction between the User Interface (Ul) of the Management Portal anbakiosservices is undertaken

by the backend of the aerOS Management Portal. Furthermore, this dashboard displays useful information
gathered by these services to inform users of the status of the continuum (topology graph of the added domains,
deployed sevices, state of domains and their IEs, etc) in real time. Finally, it is important to highlight that this
portal does not add new capabilities to the Me& but leverages the capabilities offered by aerOS to respond

to user requests from a functional mtodf view. It, however, serves as the single window access for interacting
with the continuum.

This set of capabilities or actions which can be performed by users have been properly defined based on
previously specified requirements by technical developers and potential end users of aerOS (e.g., use cases
leaders). In that regard b@nchmarking tool has been identified as necessary to help this kind of end users to

Version 1.0 i 31-MAY -2024 aerOS°- Page63 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

improve their knowledge about the current performance of the aerOSdefahis tool is fed with data from
the continuum to provide two main functionalities that complements the Management portal:

1) Benchmarking and comparison of IE/domains performance against known standards and methodolo-
gies such as TPGkoT and RFC 2544.

2) Internal Technical KPIs dashboard, which provides a snapshot of these KPIs defined for aerOS tech-
nical components in deliverable D5.2 and which are directly measurable from the aerOS stack.

When it comes to Met®S endu s e mamdgement, aerOS envisions the definition of a set of roles and
permissions to be applied to them. Using a more practical example, the content that is displayed in the dashboarc
changes based on the role of the logged user, e.g., an administratorycaepboy certain services in a set of
domains on which he has rights and permissions, as an example. In addition, a common list of user roles has
been implemented for all the domains that compose the continuum, as etbsaerihe aerOS8ybersecurity
componentsof the architecture (Sectidn5.4.

Previously introduced in Secti&n4.2the Entrypoint balanceris an important part of the aerOS management
framework (stuck to the Management portal) to avoid the addition of an additional centralization point, so that
it emphasises the decentralised nature of aerOS. After conducting a thorough review of theagktimgtwork

load balancerst has been determined that the most suitable LB algorithm in the case of the entrypoint balancer
isthe LeastConnection typéor one of its modifications)his algorithm includes a straightforwardly updatable
weighting function that is fed with metrics from the data fabric, such as the number of orchestration requests
managed by each domainés HLO or | E c ap atondanllei es .
consulted imD4.2 Software for delivering intelligence at the edge intermediate rélandduture D4.3.

However, the aerOS Management Framework reaches beyond the capabilities offered only by the Management
Portal. It also includes other management tools that ovéngseereation and maintenance of the federation
mechanisms between the multiple aerOS domains that build the continuum. Here comes into the scene the
aerOS Federator, specifically the block related to the registration and discovery of these domains (Domain
RegistryandDiscovery). The actions within the scope of this block are not performed directly by end users such
as the ones of the Portal, but are smart, automatically conducted to react to some user actions, such as the
creation of new domains or the modificationtbé IEs that belong to an existing domaaerOS is not a
centralized solution so by taking advantage of the mechanisms described in SBeti@faerOS distributed

state repository), this block is on charge of establishing the appropriate mechanisms to achieve a fully federated
and decentralized architecture among the aerOS domains. The set of distributedONG&itext Brokers,
conforming the Ditributed State Network of Brokers (DSNB), plays a major role in this architectural block.

_— e . .y
TR
aerQS

Domains

| Registry

aer0s)

aerOS
Domains

__Discovery

) PP TP
Resiliency
and Backup

_ Mechanisms)

aerOS
Federator

aerQOS Dashboard -—

\
/

~
v

|
J_

aer0S
Users
Registr

aer0S Data
Inventory
Registr

aer0S
Benchmarking Tool
_ l g I
~
aer0OS Exposure API aer0S AAA

aerOS
Domains
\ Management Space
Balancer

sQJae

S|ed13JaA | O]
aer0S Entrypoint

}

- o e o e o E—
“— e e e e e o

{

(32eds uswAho|dag

_
-

-~

v
\

Version 1.0 i 31-MAY -2024 aerOS° - Page64 of 136

https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

5.6. aerOS auxiliary services

In aerOS, the auxiliary services compose the last category of the services consideregcintdature. They

exist to provide complementary functionality across the continuum, without having an explicit core functionality
(such as cybersecurity, data management, etc.). These services can be considered as commodities that aerC
will research andleliver to provide flexibility and innovation across the whole ecosystem. These auxiliary
services are: (i) Auxiliary Al (Al workflows in the continuum and use cases deployments) and (i) Embedded
Analytics.

5.6.1. aerOS auxiliary Al

The proliferation of IoT devices and the rising popularity ofEEdgeCloud infrastructure deployments enables

a new approach to prepare, use, and maintain Al solutions within different use cases coming from various
domains. Specifically, model trainingre be done indecentralizefiashion without moving the data to a central

|l ocation (e.g., c¢cloud) and exploiting their docal
Federated Learning (FL), is attractive as it alldwseduce the computational load of a single infrastructure
element and scale the system dynamically. Moreover, it helps to mitigate some privacy issues that may arise
from data owners. Furthermore, often there is a need to deplmladéd services togpform inference closer

to the edge. In this caghie model can be wrapped as a service exposing APl and deployed in the continuum.
This may require application of additional mechanisms to support frugality, i.e., techniques th#theallew

of Al models in resourceestricted conditions (limited processing power or memory, low network bandwidth).
Her e, mo d e | reduction with quantization and pruni
Finally, to provide accountable and trustwortiydriven solutions explainability/interpretability of Adodels

should be possible by providing a dedicated service of type function as a servidbahotplainability should

be considered only when required (e.g. for critical functions) because it adds additional computational costs and
may influence the performance of the overall solution.

The auxiliary Al to be deployed in aerOS can be divided in two main hledikieh are described in the
following subsections.

5.6.1.1. Control of Al workflows in the continuum

aerOS aux Al services cover different functionalities required to execute Al tasks using aerOS infrastructure.
Al tasks cover two main scenarios: federated learning and distributed inference. Al tasks can be decomposed
into subtasks that may have dedicatequirements and their execution can span over several IEs (functionality
divided between services deployed over different IES). In the simplest case Al task may have onhtasie sub

i.e., workflow consisting of one step, e.g. deployment of a seofiegng predictions done by ML model. Note

that Al task is apecializatiorof a general task that can be executed using aerOS infrastructure.

Within aerOS dedicated services are prepared to: monitor and orchestrate specific task execution (Al Task [n]
Controller) and execute an Al stisk (Al Local Executor)They are deployed as auxiliary services on the
aerOS infrastructure using aerOS service deployment and orchestration mechanisms. Al Task [n] Controller is
responsible for task And and is coll abordathistasgs wi t t
on different IEs. In federated learniraithe end of the process, Al Task [n] Controller will have a new shared
model trained in a federated way within Al Local Executor services.

Version 1.0 i 31-MAY -2024 aerOS° - Page65 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

aer0S Infrastructure Element aer0S Infrastructure Element aer0S Infrastructure Element
Al Task 1 Controller Al Task K Controller Al Task Q Controller
b, -~
Perform task K Perform task K
sub-tasks X sub-tasks Y
v v
aer0S Infrastructure Element 1 aer0S Infrastructure Element N
Al Local Executor Al Local Executor

Frugal solutions allow deployment and executionesourcerestricted environments. Frugal applications can
be deemed as the ones most suitable to be deployed close to the edge, instead of a centralized deploymen
Consequently, frugal-ohy tandbeenhteatededsAbn fadd

Generally, frugality requirements are very use case specific and different techniques can be used to meet
objectives of considered scenari os. Frugality suj
service deployment (thatlow to run services on a resoumastricted devices) and mechanisms for model
reduction such as quantization and pruning (that allow to reduce the model disk size and improve inference
speed). Pruning in neural networks is a technique used to reduséhof a model by removing parts of the
network that contribute little to its output. The main goal of pruning is to improve the efficiency of neural
networks without significantly sacrificing accuracy. This technigue can be essential for deployirlg amode
devices with limited computational resources, such as smartphones or embedded systems. Pruning reduces thi
number of parameters in the model, which decreases its storage requirements. Next, with fewer calculations,
the pruned network can offer fasteference times, making it more suitable for e applications. Smaller

models require fewer computational resources, which can lead to lower power consumption. Quantization is a
technique used to reduce the precision of the numbers representivigjghts and activations within a model.
Quantization works by mapping a large range of values to a smaller one, often through rounding operations.
This process is vital for deploying deep learning models on resoarnstrained devices such as mobile plspne
embedded systems, and IoT devices, as it can significantly reduce the model's memory footprint and speed up
inference while maintaining acceptable levels of accuracy. The main challenge in quantization is maintaining
the model's accuracy with reducedmarical precision, which requires careful selection of the quantization
scheme and possibly adjustments to the model or training procedure.

5.6.1.2. Explainable Al

Al is a powerful technology that can perform complex tasks, such as image recognition, natural language
processing, and decision making, that normally require human intelligence. However, many Al systems are not
transparent or interpretable, meaning that theérivdl logic and reasoning are hidden or difficult to understand

by humans. This poses a challenge for trust, accountability, and ethics in Al applications, especially when they
affect human lives, rights, or wekeing.

Explainable Al (XAl) is a concept in which the results of an Al solution can be understood by hiimans.

be used to describe an Al model, its expected impact, potential biases, and to help characterise model accuracy
fairness, transparency, and outcomes irpdivered decision. XAl is crucial for an organisation in building

trust and confidence when puttiAd models into production.

There are different types and levels of explainability in Al, depending on the audience, the context, and the
purpose of the explanation. Fexample, a technical explanation may be suitable for developers or regulators
who need to verify the correctness or compliance of an Al system, while a layman explanation may be
appropriate for endsers or customers who need to understand the rationdlaptications of an Al
recommendation or prediction.

Version 1.0 i 31-MAY -2024 aerOS° - Page66 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

According to NIST, there are four principles for explainable Al systems:

1 Explanation: Al systems should deliver accompanying evidence or reasons for all outputs.
1 Meaningful: Al systems should provide explanations that are understandable to individual users.

T Explanation accuracy: Al systems should provi
process for generating the output.

1 Knowledge limits: Al systems should acknowledge the limits of their knowledge and indicate when
they reach sufficient confidence in their output.

To achieve these principles, various methods and techniques have been proposed and developed in the field o
XAl. These include:

9 Transparent algorithms: These are algorithms that are inherently interpretable or comprehensible by
design, such as decision trees, #idesed systems, or linear models.

1 Posthoc explanations: These are explanations that are generated after the model has been trained or
deployed, such as feature importance scores, local approximations, or counterfactual examples.

1 Interactive explanations: These are explanations that are elicited through user feedback or queries, such
as natural language dialogues, visualizations, or interactive interfaces.

In aerOS, Al is used internally to support intelligent decision making when managing the continuum, and
externally to enable executing of arbitrary Al tasks using aerOS infrastructure. In both cases, the need may arise
to explain and/or interpret predictis made by ML models. The objective for explainability support in aerOS

is to prepare mechainnios mssuctho foupntcitoinoanl allyi tiiypliung t he
service will be preparedAl Explainability Service- for handling predefied cases like the interpretability of

HLO allocator decisions. However, it will also provide methods that can be used for a more comprehensive
number of use cases. VariougSmethods for explainability in Al have beanalyzedand the most promising

ones are based on calculating Shapley values to provide users wilo-easierstand explanations that are
mathematically provable. Note that frugality mechanisms and explainability/interpretability have influence on
Al model accuacy (and other metrics) sleir inclusion in Al task workflow shall be optional.

Although explainability is not directly related to the architecture, it is likely that successful validations will lead
to a set of operational and technological recommendations.

5.6.2. Embedded analytics

As described ifiD2.6aer OS ar c hi t e c,The assOSEmbeddad Analytice Todl EAT) can be
compartmentalised into three roles; these are the analytics framework, function authoring and visualisation.
This section will reiterate these primary roles to provide a final architectural view of EATaddlitional
detailing of the aerOS Function Template structure. As a result, a holistic EAT architecture is presented.

gr af apfp=a4/—m>
7'y éi
$

al er t m Ty ror omet =S gat eway

pushgate

Version 1.0 i 31-MAY -2024 aerOS°- Page67 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

EAT (illustrated inFigure 21) provides a framework for the design, implementation, and deployment of
specialised functions. These may be straightforward pbliged functions for validation use cases or
intelligencebased models for smart decision making. The framework supportgleudashboards for
operationsdateway and visualisationGrafana). Theushgatewagllows infunction metrics to be exposed to
Prometheus monitoring which is then visualised thro@yhfana to the user. Thaertmanagercomponent
monitors Prometheus metrics related to the health of the gateway, alerting the user if required. All these
components are hosted on the aerOS Gitlab and are installed as nodes in a Kubernetes clustelethrough
charts To access these features of EAT, functions must be created using the aerOS template.

aer OS
templ gt e

v v v v
functi Docker|lf i ndex requiren
_ini_t handl ¢fqmet miepolrlrequiren

The aerOS template is presente&igure22 and details the two layers of the function template. The first layer
contains information specific to how the function interacts with EAT. This includes the image build file
(Dockerfilg, what libraries Docker needs to compile the function image (requirements) and the wrapper used
to interface with the function (index). The second layer contains information specific to the function operation.
The__init__component contains operations to carry out when the function is deployed, this includes building
theGrafana dashboard wherefimnction metrics will be visualised. The handler component contains operations

to carry out when the function is triggered, such as a policy or intelliggased decision making. The
metric_reportercomponent contains operations for exposinfuimction metrics tdPrometheus. These metrics

can then be visualized through the dashboard instantiated when the function was deployed. The requirements
component contains required libraries for handler executions. The aerOS template must be used to create EAT
functions, thigorocess is handled through flaascli application.

cr ea y 2 €T Of
Lt“'Templ
) bui lfd
%Hfams‘.
\ I o gi tl
' pust regi ek
depl (o gat e

The steps involved from the creation to the deployment of EAT functions is preseRigdrie3. Thefaas

cli application allows users to create EAT functions using the aerOS template. The application also enables the
build, push, and deployment of functions to EAT. Build packages the EAT function as a Docker image and
stores the image locally. Push allows therus specify a container registry to store the image. Deploy takes an
image, either locally or from a container registry and onboards the image as a node in the Kubernetes cluster.
This allows users to dynamically deploy and update functions as versaanirige controlled at deployment.

Version 1.0 i 31-MAY -2024 aerOS° - Page68 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Interfaces between EAT and other aerOS components can be viewed on two levels. The first level is the interface
provided by EAT for the function i.e. REST, this interface is triggered through a HTTP request which provides

a body that is passed into the étion handler. The second level is interfaces established inside the function,
such as queries to the Data Fabric (SedisétD or pushing metric terometheus. Both interfaces are available

to users however the execution of a function will always require a HTTP request to trigger and a response to
signify the execution has concluded.

The installation of EAT comes with three prepackaged functions, these functions provide generalised stratified
sampling, anomaly detection and data drift detection based on Data Fabric models. These functions may require
minor edits on an ad hoc basis, daging on the complexity of data models being used.

5.7. User services and global pilot services

From user services and pilotsd point of view, mu |
communicate with cloud services and other 10T devices over a global netwoekjaired. Pilot services need

to perform reliably under the constraints of limited memory and processing power of 10T devices which will be

|l ocated at the pilotds premises:

1 P2- Industry -Data driven cognitive production lines: Automated workstations, Automated Guided
Vehicles (AGVs) for transportation within industrial facilities, sensors for ambient temperature and
humidity, optical sensors, and computation servers.

1 P2 Facilities/Energy: storage drives, power supplies, radiators, interfaces and controllers.

1 P3 Agriculture: High performance computing platforms, ECUs to provide connectivity, and vehicle
connectors.

1 P4 Transportation and logistics: IPTV cameras for video streams

1 P5 Smart buildings: temperature, humidity, and air quality sensors.

Taking into consideration the aforementioned devices and pilot needs, in the following lines global pilot and
user requisites have led to consider the following required services defined for aerOS:

1 Portability service

Portability services are the features and functionalities that allow aerOS to adapt to different hardware and
software platforms, and to interoperate with other systems and devices in a global network. The rationale
behind this service is the variety ofrbaare and loT devices that exist among the five pilots. This service
may include the following functionalities:

U Abstraction:aerOS provides an abstraction layer that hides the specific details of the underlying
hardware and software, and that provides a standard interface for applications and services.

U Adaptability: aerOS is able to adapt to the changing conditions of the environment, such as the
variability of energy demand, resource availability, quality of service, security and privacy.

U Integration: aerOS facilitates the integration of different systems and devices, both within and

outside the specific sector of each pilot, through common protocols and formats of communication
and data.

U Reusability: aerOS enables the reuse of existing components and services, as well as the
development of new modular and customizable components and services.

9 Scalability service

aerOS provides the ability to increase or decreassiits capacities performance and functionality
according to the needs and demands of the users and applications run by the pilots. In this regard, it would
include the following functionalities from the p

U Elastic aerOSis able to scale elastically, that is, automatically adjust the resources allocated to
each node or device according to the conditions of the pilot’s environment, such as energy demand,

Version 1.0 i 31-MAY -2024 aerOS° - Page69 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

resources demand or workload. This allows to improve energy efficiency, quality of service and
resilience of the system.

U Adaptable:aerOS is able to scale adaptably, that is, modify its configuration to incorporate new
technologies, standards and requirements. This allows to innovate and evolve with the market and
the expectations of the users.

U Horizontal scale:aerOS is able to scale horizontally, that is, add or remove IEs or devices to the
domains and networks without affecting the operation of the system. This allows to leverage
distributed computing capacity and cloud storage.

U Vertical scale:aerOS is able to scale vertically, that is, increase or decrease the resources allocated
to each node or device, such as memory, processor or bandwidth. This allows to optimize the use
of resources and adapt to the variations of the workload.

1 Modularity
aerOS design departs from a series of temigices, togetharith other functionalitiegauxiliary sewvices) that
can be included as aduhs if so required by the application in the pilots. It may include the following
functionalities:

U Customisation:aerOS enables the customisation of slgetem by allowing the users to select and
combine different modules of services and functions according to their preferences and needs.

U Variety. aerOS enables the variety of thestem by allowing the providers to offer different modules
of products and services that can be configured in multiple ways, to serve heterogeneous customer
demand.

U ReconfigurationaerOS enables the reconfiguration of ¢slgetem by allowing the users and providers
to change or update the modules of products and services over time according to changing conditions
or requirements.

U StandardizationaerOS enables the standardisation ofdytem by allowing the providers to use
common interfaces, protocols, and formats for the modules of products and services that can facilitate
integration, interoperability and compatibility.

1 Connectivity services
This service allows to support different connectivity protocols, sudGagthernet, WiFi, BLE, IEEE
802.15.4, among others. This would include the following functionalities:
U Integration:aerOS enables the integration of data and information from different sources and smart
devices located at pilots” premises.
Accessibility:aerOS enables the accessibility of data and information to different pilot users.
Communication:aerOS enables the communication of data and information between different
devices, systems, and pilotsé actors.
U Interoperability aerOS enables the interoperability of data and information across different
platforms, standards, and formats.

9 Security services

This service will allow aerOS to include adds that bring security to the device by way of RBAC access,
SSL support, and components and drivers for encryption. It would include the following functionalities:

U Update aerCs enablesthe update of devices and systems in the preskerstice system. This can
fix vulnerabilities and bugs and improve performance and functionality.

U Authentication: aerOS enablesthe authentication authorizationand access control via the
cybersecurit componentsglescribed in &ctiorb7. This can prevent unauthorized access and ensure
data integrity to the pilotsdéd assets.

Version 1.0 i 31-MAY -2024 aerOS°- Page70 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

U Encryption:aerOSenableghe encryption of data and information in transit and at rest. This can
protect data confidentiality and privacy c¢omi

U Firewall: aerOSnableghe firewall of devices and systems in the prodismvice system by using
rules, policies or filters. This can block malicious traffic and prevent cyberattacks, such as denial
ofservice (DoS) or ransomware that can affect

6. aerOS Reference Architecture

This section presents the revised aerOS architecture, evolved based on the experience and validation input from
the MVP deployment. The deployment of aerOS components and their integration and interaction within the
MVP, while not altering the initiaReference Architecture (RAhas influenced the final different viewpoints

under which it is inspected and presented. Although the changes since theubitigdésiorare incremental,

this document provides the comprehensive, upda#edensuring it is sel€ontained and serves as the single

point of reference for the aerOS architecttitaving introduced the key concepts and components of the aerOS
architecture insection5 and adhering to the design guidelines outlineddantion2, now the aerOS RAs
presentedhrough a set of viewpoints as identified within the described methodology. Firglgrovided an

overview of the entire architecture, from a highkiel viewpoint, including aescriptiveguide for an 10T service
deployment instantiation, and delve into different instantiations of aerOS Entities in sub8ekctimilowing

that,the functional viewpoint (in subsectiér?) is introducedwhich describes the role of the main components

of the aerOS systems. Moving on, subsectddfocuses on the process view of the RA, outlining how
components communicate to accomplish fundamental functionaMim®over, sme activity and sequence
diagrams that detaihe runtime behavior of aerGfe provideddemonstrating interactions between different
components among aerOS components and how aerOS interfaces with external actors and components
Subsequently, subsectiémd explores the data viewpoint, and how aerOS IEs, aerOS domains and loT devices
are included as new data sources and data consumers and dynamically become part of the distributed knowledgt
graph. The role of Context Brokers as interconnected Context Regf[BX8NB) enabling the federation across

aerOS domains which is fundamental in aerOS ecosystem is described. Next, subgedgtues into the
deployment viewpoint of the RA, which covers runtime operations. It presents the software component topology
on the physical layer and the interconnections between these components during aerOS domains and the vertica
loT services deployent. Finally, in subsectio8.6, it is discussedhe business viewpoint of the architecture,

which serves as a guide for developing application components and supporting the-tdeaisimnprocess of
stakeholders involved.

6.1. High-level view

aerOS proposes an overarching approach that unifies accasd tesage ohetwork and computing resources

from edge to cloud, offering a transparent infrastruckayer. On top of thishosting underlayaerOS design

offers the substrate which can seamlessly enable the deployment of 10T applications without any adaptation
regardless of the selected hosting node. Based on these inherent functionalities, aerOS establishes a commo
execution environmenwhich removes any need for adaptations to various runtimes or architectures and thus
exposes underlying resourcesaasontinuum. Even more, and going one step further, aerOS acting as expected
from a MetaOS, provides the management and orchestrating overlay which overviews, secures and automates
services orchestration and resources management over the establishieduconAs an outcomeéoT
developers and resource ownees trust aerOS Mef@S to host theiefforts and resourceand can further

federae, shae, and (re)us physical or virtual resources, data, and application components. All of this is
achievedwith the embedding of advanced Al techniques for best reatlile maintaining full ownership,
governance, and security.

Thus,aerOS addresses the isstlech emerges from the fact thmimerous isolated processing units and private
computing islands with restricted resources, lack the services needed to implement and deploy comprehensive
0T solutions. This is particularly relevant in both industrial and personalized contexts. Manytiognmits

and private networks currently function merely as data concentrators, forwarding large volumes of data to
centralized commercial cloud infrastructures operated by a limited nwhbervice providers. This isolation
prevents the effective utilization of existing computing power at the edge, which is crucial for many IoT

Version 1.0 i 31-MAY -2024 aerOS°- Page71 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

solutions requiring more computational resourdéss deprives vertical I0T stakeholders from having full
control of their services and governance of their data. Additionally, although a variety of already developed
services exist for most of industry verticals they cannot be reused and each time@gatfisation wants to

solve similar problems they have tedevelop a solution from scratch, or to fully adapt their existing operating
runtime environment, as t hedeeloperstoprovidéid conmgruuaderfyinga n c «
layer where existing solutions can run and address similar cases with similar requirements.

The proposed approach outlines a secure federation of individual computing resources, enhanced by privacy
and security enforcement mechanisms and technologies, to create a network and computing continuum. This
federation forms an environment comprisingoanbined pool of resources capable of transparently hosting
parts or the entirety of intended IoT tasks as close as possible to data sources, generally as close as possible t
their declared requirements, while maintaining complete control over data #diitaddl governance. Industry
verticals or individual users can contribute "off the shelf* resources, even with restricted capabilities, as long as
they support virtualized containerization environments. These resources can be integrated, through a well
documented and straightforward procedure, as aerOS IEs or domains, becoming part of a larger common
execution ecosystem where services can leverage existing resources or services across the aerOS continuun
The fulfilment of the following core objectivestargeted by the proposed solution:

1 To allow isolated resources to be exposed and orchestrated as a continuum within which IoT service
developers, from different verticals, may, transparently, deploy their applications, accompanied with a
set of requirements, without having to manage alutigerlying complexity regarding compute, net-
work, and operating resources.

1 To provide a unified, cloudative execution environment built on microservices architecture which
will extensively utilise containeoriented virtualisation runtimes, taking advantage thus of etaiie
benefits, including simplified orchestration, enbad portability, reliable reproducibility, and seamless
scaling of applications.

1 Totake advantage of the most suitable resources, and introduce monitoring, predictive and orchestration
mechanisms to enforce adherence to user SLAs.

9 To provide information and IoT service sharing, that benefits all users, while introducing secure control
and privacy governance mechanisms

er0S vertical
e loT service (Taarpeverioa)
= > | _loT service 2er0S vertical
laT service
“aerOS Entrypoint Domain”

e=rm 000
aer0$ - i -
] aao ()]

er0S continuum a»
g i == s “ Senvice fabric
- | - >
-2 A - \ " N Compute &
- \.\ \C Network fabric
\ [
-—| A 2a B p—
| ~ - v - -
| 4 'y v o ‘
‘ @ = > e

| aeros services Fabric]

{ o -
: aer0S Services Fabric
(Basic & aux) 1

(Basic & aux)

: €0 Services Fabric
H (Basic & aux) Bl
HE 8E |
' 22 :
H aer0S Network & Compute 8|
i Fabric

8
H

) \ |
| 5 i L AT
H aer0S Network & Compute H H ‘2er0S Network & Compute 8 H
i Fabric H H Fabric '

L)] N y !

e @ Q@ T - W o=

Version 1.0 i 31-MAY -2024 aerOS°- Page72 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

The suggested architecture introduces a guided procedure for the deployment of an aerOS domain on top of
available computing and network resources. These resources (known as IEs) may vary in terms of capabilities,
architecture, uni rs den uirhkmare, nendl| oamr esioulmees or ,
machines. The deployment of aerOS basic, and selected auxiliary, services on top of these resources provides
seamless integration with the rest of the aerOS ecosystem and a common exestitiorment Figure 22
introduces a highevel view of the aerOS ecosystem where, by rendering of isolated resources into aerOS
domains and making thus use of aerOS services, a continuum of IEs is exposed as a common federated
infrastructure ready to transparently host loTsecve s accor ding to userso6 depl
orchestration of aerOS Me@S . Usersod6 | oT services deployments
Entrypointo which provides a guided, and loymard ed o
process.

There are cases when the requested SLA of the 10T service dictates that it should be broken into more than one
component. For instance, in an Al workflow, parts of the workflow requiring direct access to data might need
to be placed imnedge aerOS domain, while other parts requiring more intensive processing could be deployed
in a public or private cloud domain that supports specific Al processing capabilities. aerOS, by meeting the
objectives set above, considers all candidates acrestitinuum and transparently deploys the components

on the chosen domains without the user needing to adapt any part of the application or worry about data
ownership and privacy. The submitted application, leveraging smart orchestration, can be dephiyed w
userselected domain or be set for the most efficient placement based on requirements for computing resources
or data consumption. The aerOS orchestrator manages this by utilizing all available federated information across
the continuum, doing samia way completely transparent to the users. As a result, a pool of resources hosts the
entire application under an efficient placement strategy, allowing verticals to receive the requested services
without needing to understand the intrinsic arrangements.

Thus, from a higHevel view it is obvious that aerOS stakeholders are supported to easily render their resources
as aerOS enabled IEs and register them as a domain within aerOS. Subsequently, the process of 10T service
deployment across the continuum, tpafrwhich is their registered domain, is transparent to them. aerOS Al
enabled federated orchestration takes care of hiding all the details related to the most efficient placement and
the common aerOS underlying runtime will enable their placement tma@ahy of a plethora of underlying

hosts. aerOS federated orchestration functionality, and its success, is based on the provided capability to have ¢
real time perception of resources provisioning and availability across the whole continuum from edgk to clou
Similarly, user 10T services can consume data produced in other domains in the continuum without the explicit
knowledge of where they come from, and how to parse and interpret these data. Both these features are base
on data interoperability. Data imtgerability is part of the Data Fabric features that handle data as a product
and enable metrics exchange and capabilities exposure among infrastructure elements and domains. In the sam
way, data interoperabil ity licasioneprodubed dath. Imthetfiguie mboven d u
it is obvious that data fabric is constituted from aerOS components deployed within each aerOS domain. Data
interoperability, a provision of aerOS data fabric, is important within aerOS architecture. Existiriglaia
ontologieswill enforce this interoperability for industry verticals and an aerOS knowledge graph which supports

a management information model, developed and still extended with aerOS project, will offer this homogenized
status exchange among all infrastructure elaisiacross the continuum.

Thus, from a higHevel perspective, aerOS stakeholders can easily render their resources asradl©SIES

and register them as a domain within aerOS. Subsequently, the process of I0T service deployment across the
continuum, including their registeredomain, becomes transparent to them. Theerdbled federated
orchestration within aerOS manages all the details related to the most efficient placement, utilizing a common
aerOS underlying runtime to enable the deployment of services to any node wittlivetise pool of underlying

hosts. The success of aerOS federated orchestration relies on its ability to maintaiimee rpatception of
resource provisioning and availability across the entire continuum, from edge to cloud. Similarly, user loT
services can consume data produced in other domains within the continuum without needing explicit knowledge
of their origin or how to parse and interpret them. This is made possible through data interoperability, a key
feature of the Data Fabric that handles detaa product and facilitates metrics exchange and capabilities
exposure among infrastructure elements and domains. Data interoperability is crucial within aerOS architecture.
It is supported by existing smart models that enforce interoperability fortigdusrticals and an aerOS
knowledge graph that maintains a management information model. This model, developed and continuously

Version 1.0 i 31-MAY -2024 aerOS°- Page73of 136

D2.77 aerOS architecture definition (2) =3 aer0s

extended within the aerOS project, ensures homogenized status exchange among all infrastructure elements
across the continuum. As illustrated in the figure above, the Data Fabric comprises aerOS components deployed
within each aerOS domain reinforcing significance within the aerOS ecosystem.

The whole process, of sharing and using resources in aerOS federated environment, is framed with the
appropriate security mechanisms, which provide both data protection and services access control on the hosting
domains. Data governance mechanisms enhbledntrol over which data are allowed to be shared with others.
Domains6é security mechanisms decide whether to pr
for servicesdeployment. Even more, trust scorafiributed to each aerOS domains and IE, are taken into
consideration, within the orchestration process when choosing the most appropriate and secure domains to
deploy part of the tasks.

6.2. Functional view

To implement the higlhevel vision and achieve its objectives, aerOS relies on facilities provided by seamlessly
interacting modules. These modules work together with various stakeholders and integrate with a diverse array
of existing devices, platformsystems, and data sources. The main functional blocks of the aerOS ecosystem,
which are crucial for registering resources and deploying services within the aerOS continuum, are detailed in
this functional view of the reference architectée describe thesfunctional components and highlight their
importance in the realisation of the vision set in the tégel view of aerOS.

aerOS IE maps to the higievel conceptof rendeing existing processing units, either physical or virtaal,
aerOSenabled IEsIE abstracts all architectural variety of underlying substrate and provides an execution layer
ready to host IoT services under a strictly secured and monitored way. Basic functionality of the IE is to report
its status continuously and periodically regjag all available and disposable resources and hosted services
status. This information becomes part of the continuum knowlgdaph and is federated, and other parts of

the continuum may request access to available resources, to host services based on its capabilities. At the end i
the minimum unit within aerOS providing processing power and computational capabilitieschséhthese
capabilities are match for the requirements of a service deployment request and under the condition it has the
availability it can serve requests originating from anywhere across the continuum.

aerOS domainmaps to the highevel concept of exposing available resources into the continuum. It acts as a
wrapper aroundvailable compimg and network resourcegendered to |IEs, which integrates all the function-

alities required to transparently enrol them at the disposal of the@t# provides all the necessary abstrac-

tion overlays to securely integrate a set of IEs as part of the continuum. Consistireggasfroore IEs, aerOS

domain eventually serves as a fundamental unit within the ecosystem, actiagastry interface for indus-

try verticals to connect with the aerOS continuum. It offers a unified execution environment equipped with
aerOShasicservices, including federation, orchestration, and management capabilities. Resource owners reg-
ister their available computing and networking resources as aerOS domains and can subsequently run loT ap-
plications on top of them taking advantage of provideth@stration and lifecycle management facilitidsy-
erthelesstheir applications are not restrictedie uniquely executedithin this domainbecausealepending

on their requirements, they can be partially or fully hosted on other domains across the continuum. Conversely,
when resources within a registered domairuaerutilized, they are made available to the M2&ito be used
according to overall continuum demands. Each aerOS domain is integrated with the aerOS Entrypoint domain
to incorporate security services, share resource capabilities via federators, sedmémenation about avail-

able resources across the continuum. This integration ensures a seamless and efficient operation within the
aerOS ecosystem.

aerOS Entrypoint domain maps to the highevel view concept of providing a guided support for all ugers
interact with the continuum. It gives users the f
all underlying distracting technical details. Usarsregisteedwith a certain rolm the aerOS continuum in the
Entrypoint Domain Subsequently services deployment requests and resources monitoring are graphically sup-
ported via the management dashboard. Basdidabmolesusers are enabled with different level of permissions
regarding access and actions requests. While resembling other aerOS domains in structure, the Entrypoint do-
main distinguishes itself with additional capabilities specifically tailored for ecosystergeraent. Serving

Version 1.0 i 31-MAY -2024 aerOS°- Page74 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

as a central access point, with integrated graphical interface support, for operators and developers alike, it offers
a suite of tools and interfaces for tasks such as registration in the continuum, service deployment, and resource
management. By doing sithe Entrypoint domain ensures the seamless operation of the aerOS ecosystem. Mi-
gration of management services, if needed, is seamless ensuring that such transitions does not disrupt the eco
system's functionality. Moreover, the Entrypoint domain takesyehafr registering domains for decentralized

state information propagation, ensuring that crucial data flows efficiently from the edge to the cloud. Integral to
its operation is the integration of AAgontrol point. This integration provides a centralized source of truth for
security and privacy control within the aerOS ecosystem, ensuring that stringent security measures are upheld
across all interactions and operations.

As the narrative scaléswards the higlevel vision of aerOSt becomes cledrow resources become IEs, how
domains are built on top of IEs, and how the Entrypoint domain supports access over these domains as a con-
tinuum. However, istill remains to align with the higlevel vision where resources behave and expose them-
selves within the continuum, providing a unified execution environment for loT developers. This is where the
aerOS Federated Orchestration(see5.4.2 andaerOS Management Framework(see5.5.8 concepts and
constructions come into play. They represent the structured interaction of all aerOS services to build the aerOS
fabrics (as presented 8ection 6). These frameworks enable the integration of diverse and scattered resources
into a homogenized hosting infrastructure, over which services are transparently deployed and orchestrated by
the aerOS Met®S. The aerOS Federated Orchestration pesvehch aerOS domain with the comprehensive

view of all resources and capabilities dispersed from the edge to the cloud and based on this holistic perspective
runs the orchestration process allocating the most efficient resources, across all the cofuireach service
deployment request. Integrating Al algorithms in the decisions engine, this orchestration over the federated
resources across the continuum ensures optimal resource utilization and service performance across the feder
ated environment. Meavhile, the aerOS Management Framework focuses on the registration and discovery of
core entities (such as aerOS Users and Domains) to form a federated environment. This framework is partially
located in the Entrypoint domain and within each aerOS donfadesator component.

In Figure 23 the sequence of actions and involved concepts are illustrated. This diagram mentions the
stakeholderdés interaction with the system and hig
ecosystem, i.e., aerOS domains and aerOS managemtaif @ostracting at the same time all the layers and
mechanisms that make sharing, federation, orchestration, and deployment possible within it. Users access aerOS
provisions using the aerOS management portal. System Administrators register newly oreaiad th which

they can have management access and can register to the aerOS federation process. 10T Service Developers c:
take advantage of a template driven process to deploy their applications, submitting desired characteristics
which will be translatd to orchestratichased placements for their services.

Version 1.0 i 31-MAY -2024 aerOS°- Page75 of 136

D2.77 aerOS architecture definition (2) = aer0s

IoT services deployment | aer0S Domains Registration & Management

y aerOS
. Entrypoint Domain

aerOS dashboard

aerOS Registry/Inventory -

f

—

Entrypoint balancer

aerOS Federated Orchestration
aerOS Management Framework

aer0s Services Fabric
aer0S E aer0S E (Basic & aux)

aer0S E
Domain |

Domain } Domain |

Data Fabric

aer0S Network & Compute

Fabric

Industry
Vertical 1y 8 Verticals loT

Things/Services

Industry
Vertical

Industs Al)
Verlic?\l L 'l Verticals loT

Verticals loT
Things/Services

—_—————— e —
F S ——

—_—

O
-® ['Y Things/Services
ok

One pa&tOB Domiains Registration & Managentent denotes the activities
operators and howdomainsare gi st ered i n the aer OGTséndgcdsaepymen n, a
is relevant to 1oT Service Developers and the flow following a service deployment request.

A more focused view on the functional blocks which implement these aerOS features in a domain level is
depicted inFigure24. As already discussed, each aerOS domain integrates three main building blocks acting as
the functional components that make possible the implementation of the Compute and Network fabric, the
Service Fabric, and the Data Fabric in a domain level and Viin@lty support the domain integration to the

aerOS continuum. Each aerOS domain provides an API exposure layer, technically implemented by an API
gateway component, which is the single point of accesh tmderlying services. API exposure layer before
Aroutingodo external requests to responsible compon
implemented within each domain from the A&&mponent.

Version 1.0 i 31-MAY -2024 aerOS°- Page76 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

@ NBI aer0S API
N E/W | to other aerOS domains

(High Level Orchestrator) aer0S AAA

I
Q'@dm ! TUpdates

|| v e
ﬁ i 26108

L y knowledge

graph
Context
——— Broker Vi

[Al-powered Decision-Making Engine 1

Workload
Placement

aerOS Services Fabric
(Basic & aux)

aerOS domain

e ————————————

Figure 24 makes a clear positioning and interaction of aerOS domain functional blocks. At the bottom layer
compute and network component provides the underlay for aerOS services to run. These services are aerOS
management and orchestration services regarding ko@Safederated environment execution and verticals
enforced loT services. Data Fabric component spans across both of them and extracts, transforms and expose
data that subsequently feed aerOS management and orchestration services.

Data Fabric integrates data related to computing capabilities and deployed services in the domain. Initially it is
responsible, building on Context Broker component capabilities, to establish context exchange with other
domains and thus enable aerOS fefil@nalt encompasses a domain registry and a domain discovery service
which in fact implement aerOS federation services. These, register and keep receiving notifications from other
aerOS domains regarding changes and updates done there and, the otbendjayotify registered domains

as to what is changing locally regarding resource
communication is going through security and privacy component and exposed by domain APl gateway.
Additionally, D¢ a Fabri cbés context broker component interrt
status and of other domains availability too, to components that need to support orchestration decisions. This
means that exposed information flows directly towdtitsh-L e v e | Orchestratordés Al
components. Thus, domain HLO can make the most efficient decisions, considering all aerOS continuum status,
and either provide forward decisions to lovevel orchestrator or otherwise forward requestttenaerOS
domains HLO. LLO i s, further, able to access und
commission the actual placements. Thus, a closed loop that extends domain local restrictions is formulated. This
closed loop entails a knowledf@gased Al support which leads 10T services orchestration decisions across a
pool of resources federated as a common execution environment.

6.3. Process view

The process view provides an overview of how the most relevant aerOS processes interact, communicate, and
collaborate to achieve the desired functionality. Specifically, this view offers insights into the runtime behavior
of aerOS, demonstrating how itsopesses seamlessly work together to accomplish their intended objectives.

Version 1.0 i 31-MAY -2024 aerOS°- Page77 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Additionally, this view showcases the tasks and processes within the system, highlighting the interfaces with
external elements and the interactions between different components. Moreover, it emphasizes the exchange of
messages among these processesitédiciy effective communication and coordination.

The Process View of aerOS architecture has been drilled down into 8 processes, that respond to the most
prominent and frequent activities/exchanges occurring over the ™®&ta
9 Installation and aggregation of computing resources to the continuum.
Optimal deployment of a service by leveraging the aerOS continuum orchestration processes.
Detailed interaction among the aerOS orchestration components.
Service reorchestration triggered by the selfchestrator module.
Secure access to data within the continuum through the ManagementrBgaalless oits location.
IoT Service (sensor monitoring and actuation) materialization.
Trustworthy exchange of immutable aineputablemessages across the continuum.
1 DecentalizedAl task coordination and execution

All these processes provide a final and complete overview aimed at facilitating the understanding of the aerOS
Reference Architecture.

=4 =4 =4 =4 -4 A

Installation and aggregation ofcomputing resources to the continuum

Figure25 depicts the sequence diagram illustrating the installation and aggregation of computing resources to
the continuum. This process begins with the SysAdmin, who possesses the necessary permissions to manag
the computing resources available, initiating dleeOS installation on each computing resource.

Version 1.0 i 31-MAY -2024 aerOS°- Page78of 136

D2.71 aerOS architecture definition (2) =3 aer0s

Entrypoint Non-Entrypoint
Domain Domain
[——] [—— o]
=0 =
—m =
. . Management Portal
SysAdmin Computing Rescurces Computing Resources
|
| |
| Conceptual design of |
| the aerOS domains |
| |
|
|
Entrypoint domain |
installation |
|
| |
| Install entrypoint domain package |
»
Computing Resource
Install IE package -
»

Computing Resource added
as an |E to the continuum

P
p:

Install pending aerOS Basic Serviges

Entrypaoint domain added
to the cpntinuum

{ Domain }

Check domain status

FUNCTIONAL status

Subsequent domains
installation

| Instill domain phckage
I
|
1

P Register new Domain

Domain registered

S e -

I
Computing Resource i
|

Install IE package

Computing Resource added
as an IE in the continuum

a sl
| O |

|
Install pendjng aerQS Blasic Services
I

Domain| added
to the continuum

—1

|

|

|

|

|

| : . >
| Domain
|

|

1

|

|

|

|

|

L

Check domain status

|
|
|
____FopcToNALsias | I

Version 1.0 i 31-MAY -2024 aerOS°- Page79 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

Optimal deployment of a service by leveraging the aerOS continuum orchestration process.

The next main process that has been detailed, represented as a sequenceFdiagedt8, illustrates the

process of optimally deploying a service by leveraging the aerOS continuum orchestration processes. The
process begins when a user, acting as |0T service deployer, declaregeh8on Blueprinto deploy a service

through the aerOS Management Portal. Then, the Management Portal interacts with the aerOS Orchestration to
effectively coordinate the deployment process. The aerOS Orchestration determines the optimal location to
initiate the service eployment within the continuum (HLO). Once an appropriate IE of the continuum is
selected, the service is deployed (LLO). Upon successful deployment, the I0T service deployer receives a
notification confirming the service's deployment.

Management Portal

| Entrypoint Balancer

| HLO | LLO aer0OS continuum

loT Service Deployer
| I
|

| Declares Intention Blueprint _;\

Creates TOSCA and sends
service orchestration request

|
|
|
|
|
»!
»

Selects HLO

|
H Service deployed]

|
| |
| |
f | | |
I | | |
I | | |
I ; | |
I | | | |
[| I i | |
		(LB algorithm)	
		Sencs TOSCA)	[
			[
I	I 1 ilter candidate	Es 1 ol	
>
I | | I | | |
I | | | | Candidate IEs | |
\ | I e e (It 1
I | | I | | |
		Selects optimal IE			
I	(Al algorithm)				
		;			
‘ ‘	‘ Implementation Blueprint _‘l				
		F >			
				Deploys Service Component	
]			__in the selected IE o		
I		I	-]		
I		I			
I		I			
I		I			
I		I)		
I		I L SEvERCrT e EE]			
I		I			
} } : } Update Service Component status __!					
Ll					
			I		
}	Service deployed I :				

Detailed interaction among the aerOS orchestration components.

This process, which can be seen as an extension of the former process, aims to provide a more detailed view of
the aerOS service orchestration process by focusing on the specific components involved in the aerOS
orchestrationparticularly the HLO. Therefore, interactions between the internal components of the HLO
(Storage Engine, Data Aggregation, é), along with
are presented.

Version 1.0 i 31-MAY -2024 aerOS° - Page80 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

HLO

Management Porta Storage Engine | [Data Aggregation and Alert System

| Allocation Engine |

Orchestration decision
(selected IE and its LLO)

I
I
|
Creates CRD |
|
|
I
1

Deploy CRD

Prepares the needed material to
deploy the Service Component

T T T T
I I I I | | | |
1 TOSCA 1 1 1 1 I | 1
1 1 1 I | 1
y . 1 1 1 I | 1
Service orchestration H H | i | [
process start confirmatipn i : i ! | i
| | | I | |
Translates TOSCA | 1 | I | 1
into NGSI-LD entities 1 | | | | |
I I | | | |
I I | | | |
: I Creates service ermewannlp related NGS-LD entries } | I
1 1 1] |
! 1 Entities dreat=d | |
ittt | ittt | ettt F===-=cf--mmmm- s mmmsssssssoso-es ittt
I I [| | |
Triggers service orchestration | 1 | | | 1
7] 1 1 I | |
I Get all service orchesfration related NGSI-LD entities | |
t t f t
I [e I I U
P Lo L e e e oo S
| I | | 1
For each Service Component of the Servic T T T T T
1 | I I 1
| | | | |
| | Filter candidate IEs | | |
[|] | “
[[Candiate IS ! !
L EEEEEEL L EERE R [LT LT (R E et LR femsemmmmoeeeeeans [e L LR L
I [I | |
Candidate IEs with metrics I I | | |
and orchesiration requirements _ | I | | |
1 I | |
Prepares input data | | I !
for the Al algorithm I | | 1
1 I I 1
| | | |
| | | |
Runs Al aigonthm | | I |
1o select the IE | | | |
| | | |
| | | |
i
i Get associated LLO of the selected |E i ~
| I |
| | LLO info |
[M----mmmomomo oo [T e B it it
1 I
1 I
- |
|
|
|
|
|
|
I
I
|
|
|
|
|

Deploy Service Companent

The underlying containerization
technology deploys the
ervice Component

I
I
I
I
I
I
I
|
}
}
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
}
Gef

t deployed Services

Service reorchestration triggered by the selforchestrator module.

The last two diagrams were related to the aerOS orchestration process. Nevertheless, it is important to remind
that not only is the orchestration in charge of the deployment of services, but also of service reallocation. In this
regard, his diagram illustrates the process ebrehestrating a service within an aerOS node. The process starts
when the system administrator adds a rule in the n8di“srchestratomodulethroughits API. Every second,

the node'self-awareness module updates the IE stdata, sending a copy to tlelf-orchestrator module.

When the selbrchestrator receivale information updatét converts it into factso thenrun an internal rules
engine,which compaesthe received facts with the previously entered rules by the administrator. If any rule
matches any fact, the salfchestrator module sends a reorchasimaequesto the HLO.

Version 1.0 i 31-MAY -2024 aerOS°- PageB81 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

sy sA%dm in |E (self-orchestrator) |E (self-awareness) HLO

| I |
| | |
| Add rule | |
|
I

|E info update

«

Send info update

<

|
Run the rules engine and check the rules :
|

|
Send alert to reorchestrate the task
I I
| I
| I

Y

Secure access to data within the continuum through the Management Portaégardlessits location.

Regarding the fifth main process mentioned for the Process View, it describes a sequence diagram that
exemplifies how to access data available within the contirtumagh the Management Portal (e.g. the Ul that
displays the IEs of a domain with their current stattegjardless of its location. This process begins with the

login process in the Management Portal, which redirects the user to the Keycloak login page to let him introduce
his credentials. These credentials are verified by the 1AM, and if emectdhe user is authenticated, the portal

stores the access token, and finally he is redirected to the welcome page of the portal. Then, the user accesse
to a Ul that needs to obtain data from the data fabric to build the page, so a request lsragahid with the
previously obtained access token, which is checked by Keycloak to verify the user's permissions and, if
authorised, KrakenD grants access to the requested information. Finally, the requested data is sent to the portal
which displays theequested page to the user.

Version 1.0 i 31-MAY -2024 aerOS°- PageB82 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

X

Domain Administrator
L

aer0S Management Portal Keycloak KrakenD Data Fabric

Accesses to the portal > |

Redirects to login page

|
|
|
|
(OAuth2.0 Authorization Code Flow) !

i
| Login page
1

IAM verifies user credentials

Access token is stored for the session

Succesful login
Welcome page

Accesses to an Ul
that displays data

h 4

I
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Request to the APl Gateway including the access token

-+

B
I L
|))
| o Verify received token
<
Token is valid
______________ _’
: Forwards request to
the Data Fabric
| >
|
| Operation
| is performed
|
|
I Dat
| - ----- aa_ .
| |
| Data |
[B T I
| | |
P Data __ ______._ J I |
| | |
Displays Ul with data | I |
<+ | | |
| | |
| | |
1 I 1

loT Service (sensor monitoring and actuation) materialization.

In the next process, an I0T service that includes monitoring and actuation wishes to be deployed via aerOS. This
is a flow that was already demonstrated in the-taith review in Brussels April 2024 (see Sectiof). Here,

assumed situation (prequisites) are that: (i) aerOS has been installed successfully in (at least) two domains
and those are functional, (ii) an 10T sensor exists, and is directly connected to a functionasé€t{se®.4.1

T 10T sensors), (iii) the portal sinctional,and a user can execute the orchestration procedure (see above). In
the process, a developer delivers an 10T Service code, which has been built considering the selection and usage
of a Smart Data Model fitting the I0T data source. Once this componeapirhrpackaged and made available

to the user in the portal (DevPrivSecOps methodology), the -uigethe portal manipulates the form to
commission the deployment. Here, the manual mode is selected, due to the necessity of direct carinection |
Service <> Data element (sensor). Once the service is deployed (as it contains the proper software), the data
updates are made via context update in the Context Broker (Cbipthat lives in the IE acting as head of

Version 1.0 i 31-MAY -2024 aerOS°- Page83 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

domain in the same domain of the selected IE (the one connected to the sensor). This process keeps alive a
long as the 10T Service stands. As the intention of the whole scenario is to perform certain actuation whenever
necessary, an Actuation Service &dlopedpackagedand made available to the user in the portal. Then, the
user-via the portal decides to deploy the service. This time, as it is not compulsory for the service to live in a
specific IE, the sermautomatic (or automatic) orchestrationaeas selected. At this point, the Actuation service

ends up running in an IE that can either belong to the same domain as the former, or not. For the sake of
functionality illustration, the diagram iRigure 30. loT Service (monitoring and actuation) deployment and
functioningassumes that it runs in a different domain. This service is subscribed to the corresponding entities
in its local Context Broker, which sits on Head of Domain 2 (this is a relevant point). For this to properly
function, the Data Fabric mechanisms shoukkehareviously guaranteed that the federation (in subscription to
specific entities) has already been achieved. Whenever the actuation target/threshold is reached, the logic of the
service will perform certain operations, and will initiate the actuationupidating a selected field in the
corresponding entity (details will depend on the specific service and data model design). Once this occurs, the
remote Head of Domain 1 (which is subscribed to changes thanks to the aerOS Fedenatiifigdsand

proceeds to forward the notification to the exposed endpoint in the IE connected to the sensor. Here, the logic
embedded in the 10T Service will interpret the actuation and will directly act upon the sensor, completing the
lifecycle of the scenario.

Same Domain Other domain

(‘.)) aer0S IE (Connected Orion-LD in 2erOS IE 1 E i Crion-LD in 2er0S IE
+ to the loT Sensor) (Head of domain 1) 2er0S User (Head of domain 2) aer0S IE
loT Sensor via Portal 16T Service Developer

Selects Smart Data Model
for the loT Service and
develops it

Packages oT Service and
makes it available for
deployment via the portal

Deploys loT service (MANUAL mode)

|
|
|
|
|
|
|
|
|
|
¢
“
|

Direct data connecfion

-
N

Updates local Context Broker
with data updates based on
NGSI-LD protocol

The actuation service
has been developed, packaged
and available to the portal user
|
Deploys loT Selﬂ/\ce (SEMI AUTOMATIC or AUfOMATIC mode)

— e

] I
[l ettt r=""""" " - »

! ! Notifies updates

on loT data (publsub)

The services initiates actuation
by updating fields on specific
smart data model following

I
I
I
I Actuation threshold is triggered
I
I
I
I

| NGSI-LD format and protocol |

< >
I I

Upon existihg cross-subscription (2erOS federation) |

Context Brdkers sitting on Heads of Domains comminicate

each other without replicating the information

T T

After notification forwarding (pub/sub schema) :
__receives the update to exposed endpoint |
1

1

1

1

1

| Direct actuatiof

'y

—

Trustworthy exchange of immutable and irrepudiable messages across the continuum.

In the next process, @lot userwishes to upload a hew block into the Tangle with a message that needs to be
immutable. It starts by making a petition to the IEs Hornet Node with the payload it wishes to upload, the block
is built and sent to the node's neighbours, eventually makinguytsnto the Coordinator. The Coordinator now
validates and verifies the received block, if invalid it is discarded, otherwise it is stored and a reference to the
block is attached to the most recent milestone. This rafeswill confirm to all nodes the inclusion of all
blocks attached to it into the Tangle itself. After this the Pilot can verify the inclusion of the uploaded block by
retrieving the metadata of it, which will confirm it being referenced by a milestone

Version 1.0 i 31-MAY -2024 aerOS° - Page84 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

% aerOS |E (Hornet nodet) aer0S |E (Hornet nodeN) Coordinator

immutable and irrepudiable.

|
I
Message that needs 1o be |
|
|

Spreads message to
neighbours.

y______|

Message has been uploaded
as a new block

IMlessage reaches
coordinator.

]

IMessage is verified and stored. IT

Milestone is created

Milestone is spread to the
coardinator's neighbours

Retrieves the metadata of
the uploaded block

|

I

,!

Block has been referenced :

by a milestone, it is |
included in the ledger

T m—

DecentralizedAl task coordination and execution.

Figure32 presents a sequence of steps required to run a decentralized Al task, specifically federated learning.
First, aux Al services need to be deployed on the aerOS infrastructure. This is donelmtightaon Blueprint

that is declared and after processing, it is used by aerOS Orchestrator to select IEs on which services should be
deployed. To run a decentralized Al task, one Al Task Controller service (with three components) and at least
one Al Local Executor service eé to be run. Al Local Executor services are responsible for running loeal sub
tasks of an Al task thatodés overall execution is c:

A specific task execution is triggered by providing configuration to the Al Task Controller (using service API).
The required configuration is passed to Al Local Executors and task is initiated. Al Local Executors run rounds
of training locally and send pameters update to Al Task Controller for aggregation. Al Task Controller checks

if training is finished and if yes then a final model is stored and can be retrieved.

Version 1.0 i 31-MAY -2024 aerOS° - Page85 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

aerQS

Service User Service Deployer Management 2er05 ESIUSIIETAl SIS (ELL

Orchestrator Task Controller Local Executor

declare intention blueprint,

request service deployment
. >

deploy service

deploy service

send a training request

:lmme configuration

send configuration

:linitialize training

perform local training
send parameters update

:lagg regate

send updated model _
»

:lcheck if training finished

break J I [finished]
:l save final model

get model

return model

" e B

6.4. Data view

An aerOS domain may include multiple IEs, resulting in new data sources and data consumers dynamically
becoming part of the continuum. To cope with this changing data landscape, while ensuring data governance
policies are properly met, the aerOS Data Fabfithe aerOS domain provides data owners with a set of tools

as introduced in Sectidn5.2

The incorporation of new data sources and, therefore, the registration of new data products available within an
aerOS domain is the responsibility the owners of the data. To this end, data owners must interact with the Data
Product Manager of aerOS DatabFa to onboard new data products, triggering the workflow depicted in
iError! No se encuentra el origen de la referencialhe following steps take place during the workflow:

1 Step 1:The data product owner onboards the new data product via the REST interface exposed by the
Data Product Manager. In this process, the data owner provides the metadata and artifacts that comprise
a data product.

1 Step 23: Based on the metadata and artifacts provided in the previous step, the Data Product Manager
orchestration the Computing Resources of the IE (e.g., Kubernetes) to deploy a data product pipeline.

1 Steps 47: Once the pipeline has been deployed, the data product is built and stored HLINGSI
Context Broker, becoming part of the knowledge graph. The URL from which the data product can be
accessed, in addition to the governance metadata provided by the data aersent to the Data
Catalogue component. The Data Catalogue process these metadata and integrates them into the
knowledge graph.

Version 1.0 i 31-MAY -2024 aerOS° - PageB86 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

1 Steps 811:If the data product included a predefined access control policy, the policy information is
sent to the Data Security component, which accordingly configures the Access Control component (e.qg.,
Keycloak).

1 Step 12:The data product owner is notified that the data product is now available in the aerOS Data
Fabric.

1 After Step 12: At this point, data consumers can interact with the NGSLD Context Broker to
discover in the knowledge graph the data product that has been created and access the containing
data.

Onboarding and Creation of Data Products

: Data Product Computing
Data Product
Owner Manager Resources
| 1

Data Data Context Access
Catalog | | Security Broker Control
: ‘ 1 1 | 1 1
1 Onboard					
~ data product >			\		
		I			
} D‘eplgy data product	} : } }				
pipeline ! \ I					
	I				
3 Data product					
pipeline deployed ! ! ! !					
(.....................................	I				
! 4 Send data product metadata j ! ! !					
	- I				
I I Store data catalog ! I					
1 informatjon - !					
	I Egl				
1 1 ¢ Data catalog u 1					
	. Updated				
< 7 Data product catalogued I ! [
L Y sttt mommmmmmmmm e I					
: 8 Send data product access policy	N				
T T gl					
1 1 1 Configuré 1					
! ! ! access policy !					
l l l .10 Policy	configured				
11 Access policy configured R					
		I			
! Data product		I			
12 \nboarded 1			1		
		I			
	I				

However, as noted before, the HelgeCloud continuum presents a highly dynamic data landscape, where
new aerOS domains with one or several IEs might join or leave the continuum at any time. To enable the
exchange of data flows among different IEs anded#ht aerOS domains, aerOS implements a federated
architecture comprising multiple Data Fabric instances, as depictedan! No se encuentra el origen de la
referencia.

In this architecture, the Context Brokers existing in an aerOS domain store data about the state of the IEs and
what kind of data is available in them. They are also aware of the rest of Context Brokers in their domain and
elsewhere as well (federationfd either implement Context Broker or Context Providers, depending on their
computational resources and the spot in the continuum. Every time a data owner builds a new data product
from a data providing domain, the local Context Broker registers thepdadact and informs the Context
Brokers from other aerOS domains to update their Context Registries with this new data product.

As a result, when a data consuming domain from aerOS domain A requests a data product served by aerOS
domain B, the local Context Broker knows the neighbour Context Broker from which the data product can be

Version 1.0 i 31-MAY -2024 aerOS°- Page87 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

retrieved. Based on this, the local Context Broker A interacts with the neighbour Context Broker and obtains
the data product on behalf of the consumer.

NGSI-LD API:

Data federation
aer0S Domain A aer0S Domain B
INFRASTRUCTURE ELEMENT A-1 INFRASTRUCTURE ELEMENT B-1
4 Y
U ‘ X \Broker | TN TN NGSHLD Context Broker TN
7 bata \ NGSHLD Context Broker NGS-LD AP/ Data O\ /bt A .) NGSHLD AP/ Data \
 Providing |- APP Protoco: [Knowledge Grapt f— Consume | Consuming | | Providing I'mpf;;:f;;a [Knowledge Graph J [— Consume —»{ Consuming |
\ "Domain / Ingest raw data R dataproduct \ Domain / \\ Domain s dataproduct \ Domain /
N~ S L 1 N -~ ~_
- DATA FABRIC - DATA FABRIC
NGSI-LD API: NGSI-LD API
Consume Consume
data product data product
3 App Protocol
App Protocol: App Protocol
Ingest raw data Ingest raw data Ingest raw data
i -~ N - TN N
/ Data A j/ Data ,'/ Data [Dbata [/ Data \
| Providing | | Cconsuming | | Providing | | Providing | | Consuming |
_ Domain / _ Domain / _ Domain / \Domam/ \ Domain /
~ A N S N S “ - S
INFRASTRUCTURE ELEMENT A-2 INFRASTRUCTURE ELEMENT A-3 INFRASTRUCTURE ELEMENT B-2

6.5. Deployment view

Deployment view refers to the process of positiomiogtainerisegoftware components on top of the physical

layer and establishing the necessary topology needed to make aerOS systems and applications available an
operational in industry verticals use casesde- It p
ploying, positioning, configuring, and interconnecting all needed software components, on the physical layer,
needed to ensure that aerOS capabilities are accessible and ready to operationally serve stakeholders accordir
to their specified and designadentions.

Although the goal and overall deployment process remains in line with what was described in first version, two
activities that were initiated after the first version release, provided valuable input based on which the
deployment view has been defined inrmdetail. The first activity was the deployment of the MVP, described

in section7.1.1, and the other source of feedback was the discussions curried out with WP5 regarding the scoped
instantiation of aerOS reference architecture within project pilots.

The goal of aerOS deployment is to enable resource owners to register their assets as part of the aerOS
continuum. On one hand this means to deploy aerOS stack, over available hardware, and render them to IEs
collectively hosting, and supported &yommon set of aerOS services and thus exposed and orchestrated as an
aerOS domain. On the other hand, this means to automate the integration of any new registered domains with
already enrolled resources and thus set them able to discover resouroess s@d/ data which could support

their purposes. The overall process is fully documented and supported by both a deployment toolset and
management portal registration activities.

Initially the process requires that stakeholders, resource owners, register themselves within the aerOS
continuum. This provides the required identity for them to be able to expose and supervise their resources. Then
the design provides a one stop prodesgards rendering available computing and network resources to an
aerOS domain. This process is automated with the use of, aerOS provided, tools which undertake the
deployment of all that is needed to expose enrolled computing resources as IEs and thretopadeploy all

aerOS services which unify them under the umbrella of an aerOS domain. This includes the deployment of self
* packages and LLOs to target the variety of inte

Version 1.0 i 31-MAY -2024 aerOS° - Page88 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

suite (section5.5 which will unify, and transparently manage and orchestrate integrated resources as one
administrative entity, i.e. an aerOS domain. Once this process is completed, the new domain will host all aerOS
basic-and selected auxiliargervices and this meansttit will be able to securely provide selected resources

and consume resources hosted in other domains. Having transformed all legacy hardware into aerOS IEs, the
aerOS runtimedection5.4), acts as an abstraction layer on top of them and seamlessly provides the basis for
aerOS services execution which in turn provide connectivity, orchestration, Data Fabric integration and
interface to all other integrated domaif#gure 1Figure 35 provides an example of aerOS deploymever
stakeholder resources on top wiost probably heterogeneous hardware and operating systems. Gaided
tools-supported aerOS runtime deploymentill abstract underlyingliversity and will provide a common

runtime on top of which aerOS basic and auxiliary services are running and transparengyctak of all
underlying resourcedike a legacy OS would dgroviding a common and federated execution environment

for loT developers to deploy their applicatiofitiese applications will now receive, fraarOS service fabric,

all Life Cycle Management (LCM) support needed to run smoothly over a secure environment and take
advantage of federated capabilities.

This whole process, as explained, is designed to be supported and automated by artifacts publicly available to
interested parties. These artifacts are packages tackling all the above activities, and container images, built for
a variety of architectures,eeded for the deployments. In fact, these packages are modular components,
requiring minimal configuration, which address a) IE rendering for each integrated computing element, b) basic
services deployment for domai nmstiorsie theugontirmumdhenctie d o ma
aerOS stack deployment and registration is complete and stakeholders can further control and modify access ta
resources and proceed to services deployment on top of these resources or on top of a federated computing
underlay partly composed of theesources and partly from other resources which aerOS-®etaight
transparently provide as more suitable candidates.

aer0s Orchestrated 10T Services

aer05 Domain

Infrastructure Components ‘ @
=

It is obvious that aerOS stack deployment on top of existing resources and subsequent registration in the aerOS
continuum is a smooth and straifgintvard process. What is yet important to explain is that aerOS, as an open
system which does not enforce any kind of hierarchy or dependencies, with the same flexibility offers the
possibility, and the means to initiate and set up the whole-@8t&om sratch. If a collaboration or federation

or any other kind of interested party would like to build their staibde ecosystem, they should be able to do

so. The only additional thing they should address is the Entrypoint domaip,s&t a first step artaefore

anything else. Entrypoint domain requires some more components to be deployed additionally to what is already
described for an aerOS domain. These include the AAA subsystem and the management framework, which
mainly integrates the previously memtex portal. But this should not be any difficult as the modular design
foresees the HAENntrypoint domain packageo which wi
resourcesd integrati on i-OS, thelp®cedu® isdtsiamelas dasciibeddil@ve. a e r

Version 1.0 i 31-MAY -2024 aerOS° - Page89 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

The following tabledepictsthe basic components expected to be deployed within an aerOS continuum, which
consists 6N domains ad X IEs. This list is not exhaustive but aims to provide a comprehensive picture of the
continuum's components and their distribution. The overall concept is to correlate the multitude of components
across the continuum, within each domain, and on top of l&adoreover, his helps to understand what is
required for each unit to operate as an aerOS entity.

Component/service | In the whole continuum In each domain In each IE
aerOS Managemen!
Portal

Single Instance (1) - -

aerOS Federator N (as many as domains) |1 -

HLO N (as many as domains) | 1 -

Total numbenof D (the multitude of IEcontainer

LLO (0] Igl(;r%snlgutge(\l managemerframeworktypes in- iLaSsouated
. tegrated in the domajin
domain3g
Keycloak Single Instance (1) - -
OpenLDAP Single Instance (1) - -
KrakenD N (as many as domains) | 1 -
DataFabricenabler .
(Orion-LD) N (as many as domains) | 1
Self-* X (one pellE) X (one pellEs) 1

The table highlights the essential components that make up the aerOS continuum, illustrating how they are
distributed acrosg within domains and IESSome of then have a single instance in the continuum, some need

to have presence within each domain and some need to be hosted in édaticéEhat for LLOs there might

be small number of distinct types, but each of them should be replicated in each domain which integrates this
type of IE.

Although the whole deployment view is quite close to what was already presented in first version, there are
some updates that are related to careful decisions and feedback received during this period both from technical
partners but from pilot engaged p&opoo. The integration of LDAP which provides a more granular and
efficient access control and the wish to make the whole procedure less divided arsgagleployments and

via dashboard metadata and information provisions, instructed the creatiackafj@s as mentioned above,

which only require the existence of an associated and registered aerOS user and then take over the rest that ar
needed for both deploying and registering. On the other hand, the decision that deployment process for aerOS
does ot include machines setup, e.g. OS or VMs provisioning, set a clear borderline as to what is a prerequisite
and what is an aerOS deployment view. This moved away the initially declared possibility, in version 1, to
integrate into the management dashboantstand processes to perform tliach an approach would introduce
complexity and raise security concerns, potentially making the system more susceptible to vulnerabilities and
functional instability. Consequently, this could lead to increased reluctance among users to adopt the system

6.6. Business view

The business view describes the functionality of the aévi@a-OS from the perspective of external actors

(e.g., endusers not directly involved on aerOS related administrative actions). Furthermore, this view
contributes to the development of a suitable business model for the aerOS exploitation context and helps on
understanding the main activities and interconnections among the aerOS services. Consequently, this view

Version 1.0 i 31-MAY -2024 aerOS°- Page90 of 136

D2.71 aerOS architecture definition (2) =3 aer0s

strongly relies on the previously introduced ones, as it relates the concepts describedrigtiver@2presents
the type of this relationship:

Functional —_—)
View

Business View .
Perspective

According to the first design of this viewailable infiD2.6 aerOS architecture definition @)External actors

in the aerOS context mainly include éhdusers which may develop servicebuilt on top of the aerOS
infrastructure and (iiend users which consume aerOS serviceBhe main differencéetween them is that

while the developer has control over some physical components of aerOS (i.e., aerOS is seen as-asPlatform
a-Service (PaaS)), the consumers only make use of aerOS services and produced data (i.e., aerOS is seen as
Softwareasa-Sevice - SaaS).

In"D2.1 Stateof-the-Art and market analysis reporél comprehensive survey among several stakeholders that
form part of these potential enders was conducted and published. Theteopchallenges envisioned for a
platform such as aerOS shall be addressed were in that priority order: (i) Integratidexiymi) Data
collection & Analytics processes, (iii) Privacy, (iv) Securiregwork, devices or datév) Scalability, (vi)Cost

of maintenance and managemdnti) Connectivity of devices edge-cloud, (viii) Endto-end loT solution
monitoring (ix) Vendor Lockln, and (x)Regulatory and safety certification

However, in this document, reflections from the reality of aerOS architecture design and adoption have driven
the team to include the relevant perspectivexploitation route.

aerOS has been conceived as a modular systerre several components (basic and auxiliary services) can be
selected, always running on top of the aerOS runtime §s@e The decisions to be taken about which
components to select, or where to deploy them upon will differ based @xplatation viewpoint of the
adopter entity.

Therefore, a specific flow can be envisioned as follows:

Functional View

Selection of aux. ssrvices Internal loT services for own company

Internal policies and rules
J

aerOS Cloud-edge infrastructure provisioning
Data View [— Rt
Semantics intensity ‘4
Security & trust degrees L Data homogeneization and
o EXP|°|tat'_°n discoverability for internal exploitation
Perspective
Process View | —

Data sharing to customers

Manual/semi-/automatic
orchestration

Decentralization flexibility

Deployment View | —

Domanins layout design
Selection of entrypoint Resource and data cataloguing for
interoperability in a cluster

\Contamer depl. preference)

Version 1.0 i 31-MAY -2024 aerOS°- Page91 of 136

https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

As it is illustrated above, different exploitation routes directly affect the decisions taken across all aerOS
architecture views. While the functional, process, data and deployment view follow the principles explained in
6.2, 6.3 and 6.4 sections corresgimgly, the way they will be approached/focused may vary.

This way, the exploitation perspective acquires a relevant dimensiorQfatase.

If a company aims at exploiting aerOS for increasing their internal 10T services capacity (more sensing,
actuation,reat i me moni toring of real l'ife enterprise fith
self-configuration, sethealing, advaced networking component, or other rather than powerful serverless cloud
capacity, semantic annotation and translation, or , among others.

Similarly, cloud providers would opt for cloumhtive container management frameworks (i.e.-B&sed), thus
aligning their deployment options to those such as-sealfing, unified lowlevel orchestration, higher
centralization of services, etc., whili@lkeeping aerOS continuum traits.

Other exploitation cases might pivot around data sharing, either for internal interoperability or for potential
commercialization of the information. There, Data Fabric additional tools -(h&¥€d results, semantics
expressioné) and translaton alstwill aoma landy Alsoarnstwarthidess components
provided by aerOS might be given preference, and might be installed in more computationally powerful nodes,
etc.

Many examples could be found, and will need to be analysed carefully by the adopting entity how to approach
the finetuning of aerOS uptaking based on their own exploitation path.

Once the exploitation viewpoint has been settled to drive the decisions on how to follow aerOS architecture
adoption and materialisation, in the following sections, a short explanation on how aerOS and its corresponding
servicegnap the business perspective of the adopting Bty is presented:

Scalability: Scalability is one of the main design drivera@rOSThe core service providing this feature is the
Network & Compute Fabric (see sectidrb.l), which allows expanding aerOS infrastructure seamlessly,
without sacrificing performance, as new servers, devices or workloads are introduced in the aerOS ecosystem.

Cost of maintenance_and managemenfThis challenge has not yet been prioritised, although continuously
borne in mind, considering the initial stages of the project, without a clear business model identified yet. aerOS
will tackle this challenge more thoroughly in future activities relateelxoitation. In the next architecture
definition deliverable further details will be provided.

Connectivity of devices edgdo-cloud: aerOS envisions the connectivity of devices as set of services running

on specific IEs, which provide physical access/connectivity to the device (e.g., a device connected using a
Bluetooth connection). aerOS will facilitate the establishment and maintiaynabsuch connectivity through

the self* features (described in deliveratii®3.1 Initial distributed compute infrastructure specification and
implementatiod) and the network & compute fabric (Sectf®.]), potentially integrating technologies such
asLigo and Netmaker to allow resource sharing (i.e., access to a physical device) between IEs and domains.

End-to-end 10T solution monitoring: aerOSwill provide and endto-end monitoring. To do so, multiple
metricsfrom the different aerOS core and auxiliary services will be gathered and available to either just
visualisation purposes, or for platform malfunctioning alerts, through the embedded analytics servime (Secti
5.6.2. Furthermore, tools and guidelines for also allowisgrto publish customized metridsom their own

user applicationwill be provided. These monitoring metrics will be as well propagated to the rest of IEs in the
domain.

Vendor Lock-in: aerOS is a MetaDS, which provides a set of opeaurce based core services. Therefore,
aerOS does not impose any vendor lotlon the deployment infrastructure, meaning that the running host
system (either a hardware device or a virtualized one) cagldeted by the final user. This does not preclude
that any service/application desiganed om ttdhp dfuta

Regulatory and safety certification Following the preliminary analysis carried out in deliverablg.1 State
of-the-Art and market analysis repoyiéll aerOS components are GDPR compliant by default. Furthermore,
they will also address specific European and national regulations regarding data privacy.

Version 1.0 i 31-MAY -2024 aerOS°- Page92 of 136

https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf

D2.77 aerOS architecture definition (2) =3 aer0s

7. aerOS Reference Architecture instantiations and
evaluation

Within this section the practical applicability and partial validation of the aerOS architecture design is
demonstrated. The deployment of the architecture invedt scenarios, ensuring that the theoretical concepts
are translated into tangible implentations is highlighted. The foundational capabilities and functionalities

of the aerOS architecture in a controlled environmamet showcased bgletailing the development of a
Minimum Viable Product (MVP) based demonstratBurther,it is illustrated how the aerOS Reference
Architecture maps to various ©project pilots, pr c
concerned aerOS concepnally, it is described how the aer@®eference Architecturis alignedwith the

EUCEI continuum (se&.3, highlightingthe commitmentn aerOSo meetEuropean standards and contréout

to wider technological frameworls These activities collectively underscore the robustness, versatility, and
relevance of the aerOS architecture, reinforcing its potential to drive innovation and efficiency over multiple
domains related to European Mé&& vision.

7.1. aerOS demonstrator development

With a focus on the instantiation and validation of the aerOS reference architecture, a demonstrator was designed
and executed to serve as a practical proof of concept, showcasing the entire deployment flow of an loT
application supported by the aerOS M&3. This demonstrator is a simulated real usetbaseas run on the

aerOS instantiation thaiffers theMVP., which indeeds a continuously running deployment and validation

space for aerOS concepts and design. The demonstrator, making use of many aerOS components, illustrates th
continuum setup and orchestration capabilities of aeNaE.only validatest the core functionalities of the

aerOS architecturdout also highlights its potential in reabrld 10T applications, demonstrating seamless
integration and effective orchestration of diverse components within thREdg&Cloud continuum.

7.1.1. aerOS MVP

aerOS architecture integrated and performed research and implementation beyond current state of the art in the
fields of compute and network fabric, service fabric and data fabric. These activities introduced development
and integration complexities, whielne reflected in the great variety of technologies and tools that must coexist,
cooperate, and seamlessly provide M@t functionalities for the looEdgeCloud continuurn{see?.3). aerOS

MVP was deployed to serve as a practical paradigm where all complexities could be addressed, and concepts
validated.

The aerOS MVP that hosted the demonstrator, an loT application detailed in the next section, integrated a
topology that initially included two registered aerOS domains. Later, during the demonstrator's ramtime,
additional plugandplay mobiledomain was registered to showcase the flexible extendibility of the aerOS
continuum and service migration. The first two domaseconstantly acting as the MVP baseline, providing

a permanent integration and validation environment for the aerOS architecture.

The goalwasan initial implementation of all the capabilities that aerOS can offer., @Himmsic aerOS services

and some auxiliaries tomereintegrated in the two domains which permanently support MVP purposes, and
later these were also deployed in the;had integrated, mobile domaihe Entrypoint domainsee
sectiorb.3.2) is deployed inCloudFerrg a commercial clougrovider and project partner, premises and the

Apl aind domain resides i n t h-&CSRD.lmaddigos, the mobile dtoman Te c
consisted ba legacy laptp and a Raspberry Pi that was brought physically to the review room in Brussels to
support théneterogeneity of computing resources and execution environments that cartteatd®S Meta

OS.All domainswereexposing their access endpoints in the public internet and each of theadaWwQDN

registry under the domaaerosproject.eu

The Entrypoint domain, located anpublic cloud K8s clustemtegrate all management aerOS services. These
services, which have a singleton presence in the continuum, include the aerOS federator, management portal,
and AAA components such as IdM and LDAP. These components provide a single pointsiipgpbited

entry for vsualized management of the aerOS continuum and based on the implemented usetbaseédole

Version 1.0 i 31-MAY -2024 aerOS°- Page93 of 136

D2.77 aerOS architecture definition (2) =3 aer0s

access control registry, serve as a single point of truth for authentication and authorization permissions for all
resource access.

Beyond these Entrypoisipecific services, which are just deployed in one domain, all other services, described
in sections.5, weredeployed in all domains, thereby exposing APls for resources federation and orchestration
on top of the underlying integrated IEs. Local agents for security enforceveemtlso deployed. Without

going into detail,it can be stated h a t al | net working capabilities,

orchestration capabilitiasereintegratedn this demoAs a result, the domaigsuldinteractamong thenand

were accordinglyepresented in detail within aerOS dashboard. A short visual representation of the MVP as
shaped for the demonstrator use case is presenkéglire 36

Three domainsverepart of the aerO®rchestrated continuum, one in Poland whicle@es the Entrypoint,

one in Greece and one mobile coming frSpain and functionally integrated in Belgium. While the domain
hosted inCloudFerrachas an essence of cloud, the domaiN@SRDis used as a feedge 10T domain hosting

the Athingso and the mobile domain is another donm
the 10T devices in the lIoT domain. All integrated IEs in each domaiedest-* package to report their state,
afederatedOrion-LD CB werehosted in each domaia shardEs statuesin real time, networking components

(in the form of CNFsenforeed secure and private exposure are deployed in each domain, HLO and LLO to
support decisions and enforce onto the IEs are deployed as well and all resources and functionalities are expose
based on aerOS (Open)API . More aerOS comporvesits deployed but it should be clear that the overall
topology is based on the aerOS architecture blueprint.

The kind of computational resources integrated in the MVP for the demonstrator use case, as well as the
connectivity networks expose some variations. This supports the validation of ©Bletquirement to be

able to run on top of and orchestrate diveesmurces. Entrypoint domaimegratel a K8s cluster managed by

a cloud provider (K8s as a Serviceyyhile NCSRD based domain integmtesoth VMs and an RPiyhich is
translated intalifferent underlying processor architectures. Additionally, beyond wired and virtual overlayed
networking used for the VMs, the RPi based IE is connected over 5G network connectivity. This is enabled with
the integration of &/aveshar&G-HAT and under the control of SA (standalone) NCSRD hosted 5G core on

Version 1.0 i 31-MAY -2024 aerOS°- Page94 of 136

https://www.waveshare.com/sim8200ea-m2-5g-hat.htm

