

D2.7 ï aerOS architecture definition (2)

Deliverable No. D2.7 Due Date 31-05-2024

Type R ï Document,

Report

Dissemination Level Public

Version 1.0 WP WP2

Description aerOS final architecture design, technical components identification and

description.

This project has received funding from the European Unionôs Horizon

Europe research and innovation programme under grant agreement No.

101069732

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 2 of 136

Copyright

Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA ES

NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL

ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES

TTCONTROL GMBH AT

TTTECH COMPUTERTECHNIK AG (third linked party) AT

SIEMENS AKTIENGESELLSCHAFT DE

FIWARE FOUNDATION EV DE

TELEFONICA INVESTIGACION Y DESARROLLO SA ES

COSMOTE KINITES TILEPIKOINONIES AE EL

EIGHT BELLS LTD CY

INQBIT INNOVATIONS SRL RO

FOGUS INNOVATIONS & SERVICES P.C. EL

L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL

ICTFICIAL OY FI

INFOLYSIS P.C. EL

PRODEVELOP SL ES

EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY

TECHNOLOGIKO PANEPISTIMIO KYPROU CY

DS TECH SRL IT

GRUPO S 21SEC GESTION SA ES

JOHN DEERE GMBH & CO. KG*JD DE

CLOUDFERRO S.A. PL

ELECTRUM SP ZOO PL

POLITECNICO DI MILANO IT

MADE SCARL IT

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES

SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer
This document contains material, which is the copyright of certain aerOS consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the aerOS Consortium

(including the Commission Services) and may not be disclosed except in accordance with the Consortium

Agreement. The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authorsô view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 3 of 136

Authors

Name Partner e-mail

Carlos E. Palau P01 UPV cpalau@dcom.upv.es

Ignacio Lacalle P01 UPV iglaub@upv.es

Rafael Vaño P01 UPV ravagar2@upv.es

Andreu Belsa P01 UPV anbelpel@upv.es

Salvador Cuñat P01 UPV salcuane@upv.es

Raúl San Julián P01 UPV rausanga@upv.es

Raul Reinosa P01 UPV rreisim@upv.es

Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr

Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

Thanos Papakyriakou P02 NCSRD thpap@iit.demokritos.gr

Spyros Georgoulas P02 NCSRD spygeorgoulas@iit.demokritos.gr

Andreas Sakellaropoulos P02 NCSRD asakellaropoulos@iit.demokritos.g

r

Roger Briz P03 INNOVALIA rbriz@innovalia.org

Andreas Locatelli P04 TTC andreas.locatelli@ttcontrol.com

Jan Ruh P04.1 TCAG jan.ruh@tttech.com

Anna Ryabokon P04.1 TCAG anna.ryabokon@tttech.com

Philippe Buschmann P05 Siemens philippe.buschmann@sie-

mens.com
José Fontalvo-Hernández P05 Siemens jose-eduardo.fontalvo-

hernandez@siemens.com

Korbinian Pfab P05 Siemens korbinian.pfab@siemens.com

Renzo Bazan P05 Siemens renzo.bazan.ext@siemens.com

Amparo Sancho Arellano P05 Siemens amparo.sancho-

arellano@siemens.com

Ken Zangelin P06 FIWARE Foundation ken.zangelin@fiware.org

Ignacio Dominguez Martinez-

Casanueva

P07 TID ignacio.dominguezmartinez@telef

onica.com

Lucia Cabanillas Rodriguez P07 TID lucia.cabanillasrodriguez@telefoni

ca.com

Fofy Setaki P08 COSM fsetaki@cosmote.gr

George Lyberopoulos P08 COSM glimperop@cosmote.gr

Ioannis Chouchoulis P10 IQB giannis.chouchoulis@inqbit.io

Ioannis Makropodis P10 IQB giannis.makropodis@inqbit.io

mailto:salcuane@upv.es
mailto:rausanga@upv.es
mailto:koumaras@iit.demokritos.gr
mailto:vpitsilis@iit.demokritos.gr
mailto:ignacio.dominguezmartinez@telefonica.com
mailto:ignacio.dominguezmartinez@telefonica.com

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 4 of 136

Vasiliki Maria Sampazioti P10 IQB vasiliki.maria.sampazioti@inqbit.i

o

Katerina Giannopoulou P11 FOGUS kgiannopoulou@fogus.gr

Joseph McNamara P12 L.M. ERICSSON LIMITED joseph.mcnamara@ericsson.com

Katarzyna Wasielewska-

Michniewska

P13 IBSPAN katarzyna.wasielewska@ibspan.wa

w.pl

Przemysğaw Hoğda P13 IBSPAN przemyslaw.holda@ibspan.waw.pl

Wiesğaw Pawğowski P13 IBSPAN wieslaw.pawlowski@ibspan.waw.

pl

Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Tarik Zakaria Benmerar P14 ICTFI tarik.benmerar@ictficial.com

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Nikolaos Gkatzios P15 INF ngkatzios@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Eduardo Garro Crevillen P16 PRO egarro@prodevelop.es

Alvaro Martínez Romero P16 PRO amromero@prodevelop.es

Kyriacos Orphanides P17 ECTL kyriacos.orphanides@eurogate-li

massol.com

Alessandro Cassera P17 ECTL alessandro.cassera@eurogate-

limassol.com

Jon Egaña P20 S21SEC jegana@s21sec.com

Oscar Lopez P20 S21SEC olopez@s21sec.com

Alexander Wagner P21 JD wagneralexander2@johndeere.c

om
Artur Bargiel P22 CF abargiel@cloudferro.com

Danish Abbas Syed P24 POLIMI danishabbash.syed@polimi.it

Francesco Dellino P25 MADE francesco.dellino@made-cc.eu

Lucie Stutz P27 SIPBB lucie.stutz@sipbb.ch

History
Date Version Change

15 April 2024 0.0 Initial planning and timeline, WP2 general meeting announced

22 April 2024 0.1 Initial ToC, sectionsô structure, and assignments

24 April 2024 0.2 Final ToC, sectionsô structure, and assignments

15 May 2024 0.3 First round of contributions

22 May 2024 0.4 Second round of contributions

mailto:vkoumaras@infolysis.gr
mailto:ngkatzios@infolysis.gr
mailto:egarro@prodevelop.es
mailto:amromero@prodevelop.es
mailto:kyriacos.orphanides@eurogate-li

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 5 of 136

24 May 2024 0.5 Submitted for internal review

30 May 2024 0.6 Address internal reviewersô comments

31 May 2024 1.0 Deliverable submitted

Key Data
Keywords IoT, aerOS, meta operating system, continuum, network & compute fabric,

service fabric, data fabric, aerOS knowledge graph, aerOS distributed state

repository, architecture, federation, orchestration, federated orchestration, aerOS

Infrastructure Element, aerOS Domain

Lead Editor P02 NCSRD, Vasilis Pitsilis

Internal Reviewer(s) P25 MADE, Carlo Ongini

P26 NASERTIC, Daniel Cobo Boregga

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 6 of 136

Executive Summary
This document, the second iteration of the aerOS architectural design, delivers the finalized reference

architecture, detailing all functional and technical concepts and components. Building upon the groundwork

established in the initial deliverable, this document not only presents enhancements and practical

implementations of the aerOS framework but also guides further instantiation and deployment for all use cases

in WP5 and through subsequent open calls. Additionally, it provides a refined prototype that serves as a robust

reference for future implementations beyond the project's conclusion.

To develop the comprehensive aerOS architecture, we adopted and refined a robust methodology throughout

the project's lifespan. This approach effectively processed incoming requirements, identified key stakeholders,

mapped critical concerns and flows, defined architectural components and their interactions, and instructed de-

ployments while incorporating feedback. These steps were fundamental to ensuring both the feasibility and

efficiency of our architectural goals.

Reflecting on the rationale for an IoT-Edge-Cloud continuum, this deliverable moves beyond identifying

deficiencies in the current landscape. As of today, IoT developers were limited in their ability to leverage

distributed capabilities across the continuum and lacked a common execution environment supportive of IoT

service deployment and reuse. Building upon aerOS reference architecture, the project has successfully

demonstrated how IoT developers are enabled to leverage distributed capabilities across the continuum and

benefit from a common execution environment. This shift from isolated resource usage to a unified compute

and network fabric has been realized, providing a cohesive orchestration and execution environmentðnow

evident in the implemented service fabric. The means to provide the most efficient and smart orchestration of

underlying resources is based on an innovative data fabric implementation, which is thoroughly discussed along

with computing and service fabric.

As a Meta-OS, aerOS manages and orchestrates underlying fabrics, presenting a seamless continuum of

compute, network, and service resources. This advancement offers IoT developers a streamlined service

deployment experience, successfully transitioning a theoretical concept into practical application.

The basic concepts and innovations of aerOS as a Meta-OS are presented. Federation of distributed resources

is the basis for a smart orchestration that can span across several administrative domains. The technologies that

make possible the federation of heterogeneous (hardware and software) and scattered resources are explained.

An innovative orchestration architecture, which separates smart-enabled decision layer from enforcement layer

is introduced. The combined activity of federation and orchestration across all domains ensures the most

efficient usage of resources and the optimal placement of IoT applications, and this is documented, within this

deliverable, along with the supporting innovative data fabric mechanisms.

The infrastructural components enabling the implementation of these concepts are detailed, along with the

processes for integrating any compute or network resource as an aerOS element. The capabilities of aerOS

domains and the essential services running within each domain are demonstrated, ensuring clarity on the

operational aspects of aerOS.

This document aims to provide stakeholders with a clear understanding of the innovations introduced by aerOS

that support IoT development across the cloud-edge continuum, the benefits of these enhancements, and the

processes involved in transitioning legacy compute and network resources to aerOS elements. Furthermore, it

outlines the procedures for deploying IoT services within the aerOS ecosystem, reflecting the practical achieve-

ments and readiness of aerOS for widespread adoption.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 7 of 136

Table of contents

Table of contents ... 7

List of tables .. 9

List of figures .. 9

List of acronyms .. 11

Topology and Orchestration Specification for Cloud Applications .. 12

1. About this document .. 13

1.1. Deliverable context .. 13

1.2. The rationale behind the structure .. 14

1.3. Outcomes of the deliverable... 15

1.4. Lessons learnt. .. 15

1.5. Version-specific notes .. 16

2. Architecture definition methodology ... 17

3. aerOS initial Reference Architecture validation and review motivations ... 19

4. IoT-edge-cloud continuum ecosystem rationale .. 20

4.1. IoT as enabler of edge and cloud computing ... 22

4.2. Rationale towards an IoT-Edge-Cloud continuum... 23

4.2.1. From heterogeneous IoT data to a unified data fabric ... 23

4.2.2. From a distributed cloud eco-system to a unified network and compute fabric 24

4.2.3. From monolithic applications to intelligent distributed services ... 26

4.2.4. From decentralized services to federated domains .. 28

5. The aerOS continuum .. 29

5.1. Meta-OS approach and aerOS vision ... 29

5.2. aerOS building blocks .. 32

5.3. Conformance of an aerOS continuum .. 37

5.3.1. Laying out the domains in a desired continuum: ... 37

5.3.2. Entrypoint domain selection .. 38

5.3.3. Next steps after continuum conformance .. 41

5.4. aerOS stack and runtime .. 42

5.4.1. aerOS Infrastructure Element .. 42

5.4.2. aerOS decentralised orchestration.. 44

5.4.3. aerOS distributed state repository .. 48

5.5. aerOS basic services ... 51

5.5.1. Network and compute fabric .. 51

5.5.2. Data Fabric ... 53

5.5.3. Service fabric ... 55

5.5.4. aerOS cyber security components .. 57

5.5.5. aerOS self-* and monitoring .. 59

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 8 of 136

5.5.6. aerOS decentralised AI .. 60

5.5.7. aerOS common API ... 61

5.5.8. aerOS management framework.. 63

5.6. aerOS auxiliary services ... 65

5.6.1. aerOS auxiliary AI ... 65

5.6.2. Embedded analytics ... 67

5.7. User services and global pilot services .. 69

6. aerOS Reference Architecture ... 71

6.1. High-level view .. 71

6.2. Functional view .. 74

6.3. Process view ... 77

6.4. Data view ... 86

6.5. Deployment view ... 88

6.6. Business view ... 90

7. aerOS Reference Architecture instantiations and evaluation .. 93

7.1. aerOS demonstrator development .. 93

7.1.1. aerOS MVP .. 93

7.1.2. IoT application over the aerOS continuum .. 95

7.1.3. Achievements and Conclusions ... 99

7.2. aerOS Reference Architecture in project pilots .. 100

7.2.1. Data-driven Cognitive Production Lines ... 100

7.2.2. Containerized Edge Computing near Renewable Energy Sources .. 113

7.2.3. High Performance Computing Platform for Connected and Cooperative Mobile Machinery116

7.2.4. Smart Edge Services for the Port Continuum .. 121

7.2.5. Energy Efficient, Health Safe and Sustainable Smart Buildings ... 125

7.3. Mapping and alignment of aerOS RA to the European CEI continuum .. 129

8. Conclusions and next steps .. 133

References ... 134

A. aerOS Terminology .. 135

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 9 of 136

List of tables

Table 1. aerOS Terminology table .. 39
Table 2. Deployment Level of components in aerOS continuum ... 90
Table 3. Granular mapping of aerOS components within pilot 1 ñUPDATE MEò scenario. 101
Table 3. Granular mapping of aerOS components within pilot 1 ñAutomotive Smart Factory ZDMò scenario.

 ... 105
Table 5. Granular mapping of aerOS components within pilot 1 ñZero Ramp-up Safe PLC Reconfiguration for

Lot-Size-1 Productionò scenario. .. 108
Table 5. Granular mapping of aerOS components within pilot 1 ñAGV zero break-down logistics at pre-

industrial levelò scenario ... 111
Table 6. Granular mapping of aerOS components within ñContainerized Edge Computing near Renewable

Energy Sourcesò pilot. ... 114
Table 7. Granular mapping of aerOS components within ñHigh Performance Computing Platform for Connected

and Cooperative Mobile Machineryò pilot. ... 117
Table 8. Granular mapping of aerOS components within pilot 5 ñSmart Edge Services for the Port Continuumò

 ... 122
Table 9. Granular mapping of aerOS components within pilot 5 ñEnergy Efficient, Health Safe and Sustainable

Smart Buildingsò ... 126
Table 10. aerOS architecture mapping and beyond EUCEI common blocks .. 130
Table 11. aerOS Terminology table .. 135

List of figures

Figure 1. Cloud-edge-IoT continuum perspective source: EUCloudEdgeIoT .. 21
Figure 2. Schematic of aerOS Cloud Resource Types: Central Cloud, In-network Computing fabric, Edge Cloud

and End Devices .. 25
Figure 3. aerOS domain as part of the continuum ... 31
Figure 4. Compute, Service and Data Fabrics as aerOS continuum constituents. ... 32
Figure 5. aerOS architecture. ... 36
Figure 6. Example of domains topology design in an aerOS continuum .. 37
Figure 7. Concept of entrypoint domain in an aerOS continuum .. 39
Figure 8. Simple example of entrypoint domain selection rationale ... 41
Figure 9. aerOS runtime component as part of aerOS stack.. 42
Figure 8. Possible Infrastructure Elements in a continuum ... 43
Figure 9. aerOS two-level structured orchestration for decentralised decision-making 45
Figure 10. Entrypoint domains in decentralised decision-making of aerOS ... 46
Figure 11. Example of a Distributed State Network of Brokers .. 49
Figure 12. aerOS continuum ontology .. 51
Figure 13: Semantic lifting based on mappings between the conceptual and physical levels. 54
Figure 14. High-level architecture of the aerOS Data Fabric. ... 55
Figure 15. Self-* capabilities relationships ... 60
Figure 16. aerOS APIs: REST APIs and event driven communication .. 62
Figure 17. aerOS Management Framework (left: aerOS Management Portal, right: aerOS Federator) 64
Figure 18. AI workflow in the continuum ... 66
Figure 21. Embedded Analytics Tool Architecture .. 67
Figure 22. aerOS Template for authorised function on EAT ... 68
Figure 23. Function Authoring ... 68
Figure 22. aerOS high-level View ... 72
Figure 23. aerOS entities and actors overview .. 76
Figure 24. aerOS domain functional blocks .. 77
Figure 25. Installation and aggregation of computing resources to the continuum. .. 79
Figure 26. Optimally deploy a service by leveraging the aerOS continuum orchestration processes. 80

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 10 of 136

Figure 27. Detailed interaction among aerOS orchestration components. .. 81
Figure 28. Service reorchestration triggered by the self-orchestrator module .. 82
Figure 29. Secure access to data within the continuum through the Management Portal 83
Figure 30. IoT Service (monitoring and actuation) deployment and functioning ... 84
Figure 31. Trustworthy exchange of immutable and irrepudiable messages across the continuum 85
Figure 32. Decentralized AI task coordination and execution process ... 86
Figure 33. Workflow during onboarding and creation of data products in the aerOS Data Fabric. 87
Figure 34. Federated architecture of the aerOS Data Fabric. .. 88
Figure 35. Deploying an aerOS domain and rendering resources as part of the continuum 89
Figure 32.Business view interactions .. 91
Figure 33.Exploitation perspective intertwining aerOS architecture views and decisions 91
Figure 36. MVP topology .. 94
Figure 37. aerOS domains and IEs in management dashboard ... 95
Figure 38. aerOS 5G-car IE ... 96
Figure 39. Monitoring IoT service deployment process with K9s .. 97
Figure 40. aerOS EAT integrated in IoT application. ... 98
Figure 41. Mobile domain integration. .. 98
Figure 42. IEs status in management dashboard, IE Overloaded.. .. 99
Figure 47. aerOS compliant high-level diagram for pilot 1 SIPBBò scenario. ... 101
Figure 48. ZDM dimensional metrology continuum part of aerOS Trial. ... 103
Figure 49. ZDM dimensional metrology service suite deployable in the aerOS continuum. 104
Figure 50. aerOS compliant high-level diagram for pilot 1 ñóAutomotive Smart Factory Zero Defect

Manufacturingôò scenario. ... 105
Figure 47. aerOS compliant high-level diagram for ñZero Ramp-up Safe PLC Reconfiguration for Lot-Size-1

Productionò use case scenario. .. 107
Figure 52. aerOS compliant high-level diagram for pilot 1 ñAGV zero break-down logistics at pre-industrial

levelò scenario. .. 111
Figure 49. aerOS compliant high-level diagram for ñContainerized Edge Computing near Renewable Energy

Sourcesò. .. 114
Figure 51. aerOS compliant high-level diagram for ñHigh Performance Computing Platform for Connected and

Cooperative Mobile Machineryò. .. 117
Figure 52. Port Continuum use case scenarios of aerOS. .. 122
Figure 53. aerOS compliant high-level diagram for ñEnergy efficient, Health Safe and Sustainable smart

buildingsò pilot at COSMOTE. ... 125
Figure 54. EUCloudEdgeIoT Working Groups ï at the right, WG5 aerOS leadership. 130

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 11 of 136

List of acronyms

Acronym Explanation

AAA Authentication, Authorization and Access

AGV Automated Guided Vehicles

CB Context Broker

CEI CloudEdgeIoT

CMF Container Management Framework

CNF Cloud Native Function

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CR Custom Resource

CRI Container Runtime Interface

CRD Custom Resource Definition

CSI Container Storage Interface

CSR Context Source Registration

DSNB Distributed State Network of Brokers

DSR Distributed State Repository

FaaS Function-as-a-Service

FQDN Full Qualified Domain Name

HLO High-Level Orchestrator

IE Infrastructure Element

IaaS Infrastructure-as-a-Service

IoT Internet of Things

JSON-LD JavaScript Object Notation for Linked Data

K8s Kubernetes

LCM Life Cycle management

LLO Low-Level Orchestrator

MANO Management and Orchestration

MEC Mobile Edge Computing

Meta-OS Meta Operating System

MVP Minimum Viable Product

NFV Network Function Virtualization

NGSI-LD NextGeneration Service Interface ï Linked Data

OAuth Open Authorization

OIDC OpenID Connect

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 12 of 136

OPC UA Open Platform Communications Unified Architecture

PaaS Platform-as-a-Service

Protobuf Protocol Buffers

RA Reference Architecture

RDF Resource Description Framework

REST Representational State Transfer

RPi Raspberry Pi

SDN Software Defined Network

SPARQL SPARQL Protocol and RDF Query Language

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VPN Virtual Private Network

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 13 of 136

1. About this document

The primary aim of this deliverable is to offer a comprehensive overview of the architecture that underpins

aerOS as a Meta-OS instantiation, reflecting the culmination of developments and enhancements made since

the initial version. This document delves deep into the system's structure, elucidating its design principles,

components, and their interplay. It delineates the high-level vision and objectives, introduces fundamental

architectural concepts, and details how various elements synergize to achieve the desired functionality and

performance across the continuum.

Furthermore, the document outlines the technology stack, data flow, communication protocols, and key

integration points, providing a definitive roadmap for both the development and deployment of the system. By

capturing all essential architectural aspects, this deliverable aims to serve as a definitive reference for

stakeholders, engineers, and decision-makers. It is designed to ensure a unified understanding of the system's

design and to guide its successful implementation and ongoing evolution.

As the second and final document in this series, it integrates all advancements since the first deliverable, based

on the deployment of Minimum Viable Product (MVP), integration of Pilotsô architecture design, and precise

component implementation details emerging from the activities of WP3 and WP4. These elements have been

essential in refining and finalizing an efficient and accurate architecture for aerOS, tailored to meet both current

and anticipated future needs.

1.1. Deliverable context

Item Description

Objectives O1 (Design, implementation, and validation of aerOS for optimal orchestration): Design a

Meta-OS approach, based on open sources components, for efficient resource provisioning

and services orchestration on heterogeneous nodes across the IoT-edge-cloud continuum.

O2 (Intelligent realization of smart network functions for aerOS): Design networking inte-

gration and components development to support programmable functions, service mesh

methods, and secure communication channels between distributed resources. Design for in-

dustry IoT communication technologies and protocols integration.

O3 (Definition and implementation of decentralized security, privacy, and trust): Design a

holistic cross layer solution for cybersecurity and federated and distributed data govern-

ance. Design for dedicated components seamless integration, with aerOS services, for cy-

bersecurity, privacy, and trust.

Work plan D2.7 receives input from

¶ T2.1 (state-of-the-art): Novel components and technologies research for further de-

sign choices.

¶ T2.2 (use cases and requirements): Receives requirements to drive architecture

building and components design. To be evaluated and fulfilled with the proposed

architecture blueprint.

D2.7 defines WP5 process as it guides:

¶ T5.2 which undertakes the implementation in vertical industry pilots based on the

produced architecture blueprint.

D2.7 establishes a close collaboration with:

¶ WP3, in the way to develop, deploy, and connect infrastructure components to sup-

port continuum implementation as a product of network and compute fabric and

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 14 of 136

service fabric orchestration.

¶ WP4, to employ data fabric features to optimize usage of data based on data auton-

omy, interoperability governance and provide data as a product to AI consumers.

Milestones This deliverable accomplishes the realisation of MS5 ï Final architecture defined,

achieved in M21, and contributes to MS6 ï Final integrated software solution that will be

achieved in M24 and to the realisation of MS7 ï Final Software Components released, that

will be achieved in M30.

Deliverables This deliverable is part of an iteration of living deliverables. The first version is in M12 and

the second in M21. This deliverable receives inputs from ñD2.6 aerOS architecture

definition (1)ò, which is the initial version, and which indirectly integrates inputs from "D2.1

State-of-the-Art and market analysis report", ñD2.2 Use cases manual, requirements, legal

and regulatory analysis (1)ò. Additionally, it receives input from ñD2.3 Use cases manual,

requirements, legal and regulatory analysis (2)ò and ñD5.2 Integration, evaluation plan and

KPIs definition (2)ò.

It is expected to support final technical deliverables versions ñD3.3 Final distributed

compute infrastructureò and ñD4.3 Software for delivering intelligence at the edge final

releaseò and ñD5.4 Use cases deployment and implementation (2)ò.

1.2. The rationale behind the structure
The content of the deliverable is organised in eight main sections, that can efficiently present T2.5 and explain

the architectural structure of aerOS as a Meta-OS.

¶ Section 1. Provides the overview, context, and structure of this deliverable.

¶ Section 2. Provides the methodology and the standards consultation used to provide a solid and

structured architectural design approach.

¶ Section 3. Provides insights on the feedback received since the initial version of the deliverable, the

received validation of the design and the motivation behind any adaptations towards finalizing the

architecture.

¶ Section 4. Provides the status, as of today, across the IoT edge to cloud systems and the emerging needs

that guide the transition to a continuum across the path from edge IoT devices to cloud resources. It

highlights the fragmented nature of computing and network resources, of services deployment and the

data heterogeneity and the need to move towards unified fabrics to proceed from monolithic

applications to intelligently distributed services across the continuum. aerOS approach, as a Meta-OS,

to enable and orchestrate the continuum that integrates all the fabrics is presented in detail.

¶ Section 5. This section introduces the basic concepts and the vision that aerOS introduces as a Meta-

OS across the continuum. The implementing building blocks that aerOS employs towards continuum

establishment and operation. Architectural decisions and their significance and consequences are

detailed. Technologies employed towards a federated orchestration of distributed resources are

explained. The basic components serving as building blocks undertaking aerOS services deployment

are exposed and aerOS services are described.

¶ Section 6. Building on the foundational concepts and components introduced earlier, this section offers

a comprehensive exploration of the aerOS reference architecture through multiple viewpoints. It

systematically delineates the roles and functionalities of each component, clarifies their

interconnections, and maps their interactions. This structured analysis ensures each component's

placement and interaction are optimally aligned with achieving the operational goals of aerOS. The

section breaks down into high-level, functional, process, deployment, and business views, each

providing targeted insights to inform and guide effective system implementation.

¶ Section 7. This section examines the practical applications and efficacy assessments of the architecture.

It details the, MVP based, aerOS demonstrator as an applied IoT service orchestration over the

continuum, describes the mapping of aerOS architecture concepts in each of the pilots which guides

https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 15 of 136

components integrations, demonstrating practical applications and adaptability and finally discusses

how aerOS aligns with and supports European strategic goals, ensuring compliance and relevance in

broader initiatives.

¶ Section 8. Concludes the document by summarizing the key findings and achievements of the prototype

aerOS Reference Architecture. This section reflects on the architecture achievements and challenges,

outlining the significant impacts on the IoT-Edge-Cloud continuum. It also delineates the next steps for

aerOS, proposing directions for future developments, enhancements, and broader implementation

strategies to ensure continued relevance and optimization in real-world applications.

¶ Appendix A. Finally, this section contains a brief presentation of main, commonly, and frequently

aerOS related, and for its purposes produced, terms usage.

1.3. Outcomes of the deliverable

The outcome of the deliverable is the final document of aerOS Meta-OS reference architecture.

aerOS manages to integrate diverse resources across the IoT-Edge-Cloud continuum under a common exposure

facility. This integration provides a seamless environment where resources can be managed and utilized

efficiently, irrespective of their physical or virtual nature.

aerOS provides a cohesive management and orchestration of these resources via the integration of them within

peer entities, the aerOS domain, which provide all the set of core functionalities needed to securely expose their

resources and support decision making for services placement within their jurisdiction or over any other domain

across the continuum.

aerOS significantly enhances the flexibility and scalability of IoT applications. by federating all integrated

domains exposes a unified runtime which supports reusable applications that are built once and can run on all

underlying hosting nodes, despite any architectural variations.

1.4. Lessons learnt.
Building a Meta-OS for the continuum emerges as a complex and multifaceted endeavor, demanding a very

careful approach to navigate through its intricacies. Recognizing this, our journey underscored the importance

of breaking down complexities into manageable steps and proceeding methodically, analyzing, and refining

each component along the way. From the outset, it became evident that a careful design approach is paramount,

as the convergence of numerous technologies and interactions necessitates a solid foundation from day one.

Without this foundational design, the risk of encountering obstacles is not unlikely, potentially leading to dead

ends and setbacks.

It is of paramount importance to keep the commitment to guide efforts according to the perspective and

expectations of industry IoT developers. It became clear that deviating from this focal point, however innovative

the solution may seem, could result in solutions that fail to meet market needs. Thus, maintaining a continuous

dialogue with stakeholders, validating ideas, and incorporating feedback throughout the development lifecycle

proved indispensable.

Furthermore, our journey underscored the value of creating a dedicated playground for idea validation, where

concepts could be tested, refined, and adapted in real-time. Leveraging Minimum Viable Products (MVPs)

emerged as a powerful tool in this regard, offering a tangible platform for experimentation and iteration,

enabling rapid validation and course correction.

Something equally important was the realization that the employment of existing standardized open source

frameworks adds a great advantage as it enables the integration of already battle tested solutions which also

offer the community support. For example the integration and extension of FIWARE Orion-LD CB provided a

robust basis for building aerOS data fabric core storage engine and federation mechanisms.

Lastly, as pioneers in a field with limited prior knowledge, we recognized the importance of community

validation. Engaging with the broader community, soliciting feedback, and integrating valuable insights

emerged as essential components of our process. By leveraging the collective wisdom of the community, we

were able to refine our ideas, address blind spots, and ensure alignment with industry standards and best

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 16 of 136

practices. Through these lessons learned, we forged a path forward that not only addresses the complexities of

building a Meta-OS for the continuum but also fosters innovation, collaboration, and continuous improvement.

1.5. Version-specific notes
This document represents the second and final version in a series of two architecture deliverables. Taking over

from the first version, which provided an initial framework, this document is designed to be a comprehensive

and self-contained reference. It not only includes the changes and updates made since the first version but also

incorporates the foundational content to offer a complete and coherent overview of the architecture.

The content of this deliverable is the result of the collaborative work of partners in most of the work packages

of the project, as their experiences and input were instrumental in driving the architecture revisions. While most

of this document has been prepared in the ground of Task 2.5 (which is the responsible one for this deliverable),

input and feedback is coming from technical and integration work packages. WP3, WP4 and WP5 have tacitly

but effectively collaborated for this version.

For sections that are more research and theory-oriented, this document largely replicates the content from the

first version. These sections, written just a few months ago, remain relevant and accurate, and thus, do not

require significant updates.

In contrast, sections that detail the actual design and implementation of the architecture have been significantly

enhanced. This final version includes all the updates and improvements that have emerged from the technical

components' implementation, continuous feedback loops, and integration of the Minimum Viable Product

(MVP).

The sections that inherit from D2.6 (although substantially improved when relevant are): 4, 5.5, 5.6, 5.7 and 6.

The new sections, and those that have been largely modified are: 5.1. 5.2, 5.3, 6.6, 7, 7.1, 7.2 and 7.3.

The work done all this period, from first version to this final version has provided valuable insights which

support clarification of componentsô responsibilities and interactions. Based on a more complete understanding

of the Meta-OS and its expected operations over the continuum, we have made notable changes that result in a

clearer presentation of the integrated aerOS fabrics, explained in detail in this document, and their

functionalities. This enhanced clarity allows for an enhanced depiction of the various components and their

roles within the aerOS architecture. Additionally, we have strengthened aspects related to the security policy

framework to offer seamless and automatic federation of user information and integrate associations with all

integrated entities, thereby enhancing the access management framework. These improvements collectively

contribute to a more resilient and effective orchestration of resources across the continuum, from edge to cloud,

thereby providing a flexible, trusted, and unified development and execution environment for IoT service

developers across multiple industry verticals.

These updates reflect the latest developments and refinements in our architectural approach, ensuring that this

document serves as a definitive guide for stakeholders. This final version is not just a summary of changes but

a standalone document that integrates the foundational elements from the first version while providing

comprehensive updates and enhancements. Reflecting on the latest advancements and feedback from ongoing

development and MVP integration, it ensures that stakeholders have a complete understanding of both the

theoretical underpinnings and practical Meta-OS implementation possibilities based on aerOS architecture.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 17 of 136

2. Architecture definition methodology

An architecting process should raise early in the overall development process of a system definition. Such is the

case of aerOS, that aims at delivering a Meta-Operating System (Meta-OS) for governing the IoT-edge-cloud

continuum. The process must begin with the discussions about what is feasible, efficient, hard, costly, etc., most

commonly in parallel with systems analysis and requirements definition activities, resulting in a set of

requirements and finally in an architecture that meets those requirements. Identified stakeholders along with a

set of technical/user/system requirements and architectural decisions should provide the necessary input for

coming up with an architecture description which most probably in turn will lead to updated requirements as

architecture evolves through a reviewing process where more architectural decisions are taken. A precise

architecture description will provide detailed technical specifications and drive the development process

towards realization of the system architecture.

To this end, ISO/IEC/IEEE 42010 standard "Systems and software engineering ï Architecture Description" and

first published back in 2011 [1], provides valuable guidelines by defining what should be considered when

building an architecture description, while it does not mandate how to produce one. Without mandating any

specific architecting process, it provides a conceptual model of architecture description and best practices for

defining a hopefully highly efficient one. aerOS reference architecture definition is based on the methodology,

principles and best practices included in the latest update of the standard, issued in 2022.

In the standard, the architecture of a system is defined as: ñfundamental concepts or properties of a system in

its environment embodied in its elements, relationships, and in the principles of its design and evolutionò. An

Architecture Description (AD) is used to express an Architecture of a System. Stakeholders have interests in a

System; those interests are called Concerns. A systemôs Purpose is one very common Concern. Concerns range

over a wide spectrum of interests (including technical, personal, developmental, technological, business,

operational, organizational, political, economic, legal, regulatory, ecological, social influences). The terms

"concern" and "requirement" are not synonymous. A concern is an area of interest. So, i.e., system reliability

might be a concern/area of interest for some stakeholders.

Systems have Architectures. Every System inhabits its Environment. A System acts upon that Environment and

vice versa. Architecture Descriptions are comprised of AD Elements. Correspondences are used to identify or

express named relations within and between AD elements. Creating an Architecture involves making

Architecture Decisions. In the process of how to best answer the questions listed as the stakeholders' concerns,

Architecture Views provide what the answers are, while Architecture Viewpoints provide how they can be

captured. An Architecture View is important to capture the rationale for the key decisions and to include them

in the architecture description. Architecture Viewpoints, as an abstraction that yields a specification of the whole

system related to a particular set of concerns, reflects the architecting purpose, typical stakeholders and their

perspectives, identified concerns, defined aspects of the entity of interest, and particular AD Elements. A well-

defined set of viewpoints, reviewed by stakeholders and developers, facilitates capturing architectural decisions.

Although the difference between Views and Viewpoints is quite clear, we will use the terms interchangeably

for the rest of the document, as this is a common practice for a more accessible content, while in fact we are

closely following the approach of the methodology.

This document provides the aerOS reference architecture. The main difference between software architecture

and reference architecture is that software architecture is a design solution for a specific software system; on

the other hand, reference architecture offers a high-level design solution for a class of similar software systems

belonging to a given domain. Thus, reference architecture is more abstract than software architecture and must

be instantiated and configured to attend to the specificities of the software being built. Such instantiation will

be exhibited in the various aerOS pilot use cases in the revisions of this document to follow.

Although an Architecture Framework maybe considered to offer a higher level of abstraction than a reference

model; defined in the standard as the conventions, principles and practices for the description of architectures

established within a specific domain of an application and community of Stakeholders; however, minimum

requirements set for a framework are considered common for a reference model as well: (1) Information

identifying the architecture framework, (2) The identification of one or more stakeholders, (3) The identification

of one or more stakeholders' concerns, (4) One or more architecture viewpoints that frame those concerns, (5)

Any correspondence rules.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 18 of 136

aerOS architecting process is comprised of the following steps:

1. Identification of aerOS Stakeholders.

2. Recording of technical, user, and system Requirements.

3. Identification of system Purpose and Environment.

4. Identification of Stakeholders Concerns.

5. Identification of core Architectural decisions.

6. Architecture Views/Viewpoints development.

7. Re-evaluation of Viewpoints, cross-View consistency, Architectural decisions, and Requirements.

This document, being the second and final version aerOS architecture, embodies requirements (item 2 in the

above mentioned list) of both deliverables ñD2.2 Use cases manual, requirements, legal and regulatory analysis

(1)ò and ñD2.3 Use cases manual, requirements, legal and regulatory analysis (2)ò which provide the initial and

the final version of requirements, use cases and scenarios definition as well as legal and regulatory analysis.

A selection of architectural viewpoints that address aerOS stakeholders' concerns, capturing their requirements

to provide for a consistent aerOS reference architecture description, is documented in this deliverable and

comprises of the following viewpoints:

1. High-level view. It describes interactions, relationships, and dependencies between the system and its

environment.

2. Functional view. It describes the main functional elements of the architecture, interfaces, and

interactions.

3. Process view. It deals with the dynamic aspects of a system, describes the system processes and their

interactions, and focuses on the run time behaviour of the system.

4. Data view. It describes data models, data flows, and how this data is manipulated and stored.

5. Deployment view. It provides a consistent mapping across the existing and emerging technologies

and the functional components specified in the Functional View.

6. Business view. It addresses the business processes, organizational structures, roles, responsibilities,

and strategic objectives that the system supports.

In the following sections all the prerequisite information is provided to describe the aerOS environment,

concepts, terminology, and architectural decisions, before presenting and documenting the various architecture

viewpoints considered to provide for a precise aerOS reference architecture description.

https://aeros-project.eu/wp-content/uploads/2023/06/aerOS_D2.2_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D2.3_Use-cases-manual-requirements-legal-and-regulatory-analysis-v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 19 of 136

3. aerOS initial Reference Architecture validation and

review motivations

This section details the methodologies and approaches employed to validate the initial Reference Architecture

of aerOS and to gather crucial feedback that informed the updates and revisions. Understanding these methods

is key to appreciating the context and rationale behind the architecture concepts acceptance and any changes

adopted.

The motivation behind the comprehensive review and validation process of the initial architecture stems from

the need to ensure that the architecture remains robust, scalable, and adaptive to the rapidly evolving

technological landscape and user requirements. As the foundation upon which all project functionalities are

built, the initial architecture must not only meet current specifications but also anticipate future expansions and

integrations. The review process was driven by the objective to validate the architecture against real-world

scenarios through the deployment of a Minimum Viable Product (MVP), ensuring that it effectively supports

all intended use cases while maintaining high standards of performance and security. Furthermore, the review

sought to incorporate feedback from all project partners, including technical teams, and end-users and industry

experts as final consumers, to refine the architectureôs design and functionality. This proactive approach was

designed to identify and mitigate potential deficiencies early in the development cycle, thereby enhancing the

overall system resilience and user satisfaction.

The cornerstone of the validation process was the development of an MVP, designed to test the core

functionalities of the Reference Architecture. The MVP provided a practical, real-world environment to evaluate

the architectureôs effectiveness and gather actionable feedback from system developers and integrators. This

approach made it possible to both identify and address critical shortcomings and to refine the user experience

based on direct interaction with the deployed system. The process of MVP deployment and architectural

concepts realization and validation was also supported by weekly meetings, supervised and coordinated by the

technical leader and with the participation of all technical partners, with the task to bring up and address any

issues regarding the transition from design to implementation.

Alongside the MVP, detailed pilot usersô feedback was received via WP5 tasks. Regular meetings concerning

the transfer and implementation of architectural concepts to aerOS pilots were held. Each pilot actively engaged

in dedicated meetings designed to facilitate the effective transfer of architectural concepts to its specific use

cases. Complementing these focused discussions, regular meetings of WP5 provided a strategic overview of the

ongoing integration strategies and mapping of components to pilot use cases. These meetings acted as a source

of input regarding the efficiency and usability of aerOS architecture.

Meta-OS design, as an innovative field, does not demonstrate much prior examples to follow and thus aerOS

participation in the European Cloud, Edge and IoT Continuum initiative has been instrumental in validating

design and obtaining feedback on the strategic direction. Engaging in extended discussions within assembly of

all sibling projects allowed aerOS to present its innovative concepts and, in turn, gather insights that are not

readily available in existing literature or practice. This collaborative environment facilitated a rich exchange of

ideas and experiences, offering a valuable external perspective. The feedback received through these

interactions confirmed that aerOS architectural design path is aligned, or even complementary (see 7.3), with

what other researchers and development teams are building and with emerging industry trends and emerging

standards. This process introduced the possibility to refine design but also reinforced confidence in the projectôs

direction.

The methodology employed to design the aerOS Reference Architecture, as explained in section 2, is based on

the ISO/IEC/IEEE 42010 standard "Systems and software engineering ï Architecture Description". No changes

have been made to this approach and as a result, the architecture continues to be described in this document

through its diverse viewpoints and by illustrating the interfaces of the various components.

Overall, the key ideas of architecture have not changed to any significant degree since ñD2.6 aerOS architecture

definition (1)ò. That is because aerOS had already foreseen to create a modular architecture, which allows the

system to flexibly integrate and scale various services and components. This modularity is crucial in supporting

a range of functionalities from the edge to the cloud, seamlessly adapting to diverse operational requirements

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 20 of 136

and environments. This foresight in design has ensured that the core principles remain relevant and robust

against diverse deployment requirements, and they can support the integration and orchestration of heterogenous

resources in a diverse and extended technological landscape, maintaining consistency in strategic direction and

deployment capabilities. Finally, the key concepts of the project that enable the delivery of the projectôs

objectives and targeted outcomes have not changed. The federation of aerOS domains, for example, not only

supports a common execution environment across the edge-to-cloud continuum but also allows for

administrative autonomy and nuanced control over resource exposure. The idea of an orchestration framework

which introduces separation of concerns regarding, the AI supported, decision engine and the enforcement layer

seamlessly aligns with the underlying federation of resources and their on-demand and semantically enriched,

discovery and exploitation, across the continuum. Furthermore, integrating all aerOS domains as peers within

the continuum, each equipped with the same set of core services has proven to be a solid approach confirming

the service fabricôs ability to orchestrate services securely and efficiently over a unified network and compute

fabric. The aerOS continuum model, essentially a knowledge graph that correlates and semantically describes

all integrated resources, has exceeded our initial expectations and has proven to be a crucial element in

deploying robust services and fostering collaboration across all domains on diverse processing units.

A short reference of most noticeable updates would include:

¶ A clearer view of Network and Compute fabric and Service fabric: These updates detail their respective

levels of concern, their interactions, and their support in establishing a continuum for resource

abstraction and service orchestration.

¶ Robust integration of asynchronous communication within each domain: Standardization based on

AsyncAPI extends the seamless integration of components, enhancing the overall system's efficiency

and interoperability.

¶ Integration of LDAP in the Identity Management (IdM) system: This enhancement provides more

efficient and granular control over resources, whether they are APIs or data, thereby strengthening

access management and security.

¶ Updates in the deployment process, including the detailing of specific flows such as IoT monitoring

and actuation service materialization, immutable exchange of key messages, tailored re-orchestration

and others.

¶ Clear mapping to the tentative pre-standardisation activity driven by EUCEI, and how aerOS aligns

with the building blocks and components, and goes beyond, technologically.

Instantiation of the reference architecture and mapping of all design concepts and component to pilots are

presented in section 7.

4. IoT-edge-cloud continuum ecosystem rationale

The outstanding evolution in the last few years of technologies like Kubernetes (K8s), OpenStack, StarlingX

and others (mainly related to cloud computing) -that allow a significatively advanced management over the

previous machine virtualization techniques- has opened the possibility of optimizing usage and maximizing

efficiency of computing resources. The latter, together with the advent of edge computing as a real alternative

for IT ecosystems deployment (mainly due to their benefits in privacy and latency) and the increased

miniaturization level and computing capacity of devices in the edge, is creating a solid scenario to build on for

generating advanced combined approaches. Cloud-native technologies are also spreading their influence beyond

classic, centralized systems and are proposing more lightweight alternatives, compliant with edge computing

principles (such as CNCF, which stands for Cloud Native Computing Foundation).

The aforementioned combination of both approaches has nurtured the concept of Cloud-Edge-IoT continuum.

The term, and the research around it, has been fostered specially in EU during the last few years, being mainly

promoted by the EC via a joint coordination and support action named CloudEdgeIoT.eu. Pragmatically, the

goal behind this initiative consists in the creation of a paradigm (CEI ï CloudEdgeIoT) as a result of the

convergence across the whole digital spectrum driven by the advancement in computing technologies. It

https://kubernetes.io/
https://www.openstack.org/
https://www.starlingx.io/
mailto:https://www.cncf.io/mailto:https://www.cncf.io/
mailto:https://eucloudedgeiot.eu/

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 21 of 136

embraces the idea of approaching the inclusion of a wide variety of heterogeneous computing resources as a

single manageable entity (spanning from IoT devices, edge nodes, private or public clouds, etc.).

Figure 1. Cloud-edge-IoT continuum perspective source: EUCloudEdgeIoT

Technologically, the continuum approach should achieve better management of the widespread and

heterogeneous computing resources stretching along the line from small devices to large cloud datacentres. The

continuum must enable and simplify the execution of workloads (applications, services, workflowsé)

leveraging aspects like network virtualization, energy management, performance, dynamic demand by on-going

services, etc. The underlying classification of those elements (nodes) in the continuum, their abstraction, and a

common way of accessing and managing them will allow to alleviate the fragmentation and the isolation of

technologies for handling those resources, which is the situation nowadays.

In addition, the management of distributed resources in such a way will open up the capacity to support data-

intensive applications (data consumers) that make use of data sources which might be located in any spot across

the continuum. This will also enable advanced access policy management, ensuring data governance and

allowing the emergence of concepts like data spaces or data fabric. Also, manipulating workloads and network

in a Meta-Operating System (Meta-OS) for the continuum will enable the reduction of latency in certain

distributed services, like real time verticals, multimedia streams, or bandwidth-constrained applications. Here,

security and privacy also play a key role, as well as automated discovery and adjustment, enabling multi-tenant

(multi-stakeholder) participation in a continuum. All the previous will require interdisciplinary approaches, like

the one proposed in aerOS.

According to the most prominent initiative in the field, the compelling need of solutions for managing the

computing continuum is expressed by the following list of requirements (that must be covered in years to come):

aerOS tackles the 6 aspects, focusing mainly on the signalled traits. It is within the objective of the project to

deliver a Meta-OS, deployable in heterogeneous resources and across verticals, that will serve as the first (and

main) solution for orchestrating the continuum. And that is exactly what this document delivers: the reference

architecture of aerOS Meta-OS.

https://eucloudedgeiot.eu/

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 22 of 136

aerOS shares this quest with five other EU-funded projects (ICOS, FLUIDOS, NEPHELE, NEMO and

NEBULOUS), that share their ideas and advances periodically, collaborating in the pursue of a reliable, unified,

European vision of the continuum and its management. This unification starts with the definition of the terms

that rule the functioning of it, and continues by defining the building blocks, required functionalities and

prominent examples and success stories. This is being done by gathering representatives of EU Meta-OS

projects to work collaboratively on the development of a common standardised taxonomy for all Meta-OS

European projects. Besides, the CloudEdgeIoT ecosystem has developed a shared taxonomy in the field of the

continuum, eliminating ambiguities and duplication of terminology and being as specific as possible.

Among the previous, aerOS is introducing their specific proposals into the new paradigm of continuum. A full

list of terms is included in the Appendix A, however, the most representative terms (that will repeat over the

document are):

¶ Infrastructure Element: the most granular entity of computing (able to execute workloads) in the

continuum. It can be instantiated in many forms.

¶ Domain: grouping of Infrastructure Elements according to certain aspects defined by aerOS.

¶ Data Fabric (thus, federation): the conception of all data available in a continuum as a single box that

can be queried and will forward the proper information. Mechanisms within are rather sophisticated.

4.1. IoT as enabler of edge and cloud computing
As the years go by, increasing data volumes keep forcing the leveraging of data processing capabilities into on-

demand available computer system resources, known as ñthe cloudò. To achieve scalable and sustainable

solutions, the distributed edge-cloud computing complexity must be managed via standards and deployment

models. To face this challenge the Next Generation Internet of Things (IoT) has emerged to define the

requirements and appropriate approaches to harness the power of IoT and edge-cloud devices. IoT elements

consist of physical objects with sensors, computational power and connectivity capabilities that connect and

exchange data over the Internet.

However, the challenge of latency arises, among other glaring issues. To start off, data need to travel back and

forth between the edge devices and the cloud. As a result, traditional cloud computing models suffer from

latency problems. IoT can alleviate this issue by bringing the computational power closer to the data sources;

thus, reducing latency. However, certain factors such as network distance limitations may persist and cannot be

eliminated by IoT alone. Another problem of increasing the load in the cloud is bandwidth consumption, since

sending large amounts of data from the edge devices into the cloud can consume significant bandwidth, straining

the network. IoT devices can ease this by employing edge-computing techniques, processing, and filtering data

locally, sending only the relevant data to the cloud. This selective data transmission reduces bandwidth usage

and optimizes the usage of the network resources. However, bandwidth limitations will persist and need to be

addressed at the infrastructure level.

To exploit the advantages that IoT offers, an innovation shift is required towards an edge-cloud computing

continuum, in which computing resources, as well as storage resources can be located everywhere in the

network. With this, an expanded network compute fabric is created, spanning over both the devices and the

cloud.

In aerOS, the role of IoT will be crucial, as the ever-increasing number of devices will be an intrinsic part of the

continuum. Those will be considered as an active part of the complexity and heterogeneity of the continuum,

providing relevant data to both manage the infrastructure and facilitate added-value services to stakeholders.

Data served by IoT devices will be integrated in the global Meta-OS following specific mechanisms (i.e., Data

Fabric ï see 5.5.2), posting data in a way that will be accessible by any participant of the continuum. In addition,

IoT devices will be associated to an element of the global ecosystem (even being an active part of it), whenever

they have the required computing capacity. This design choice is aligned with the miniaturization trend.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 23 of 136

4.2. Rationale towards an IoT-Edge-Cloud continuum
Each one of the computing layers that enable IoT applications, namely IoT Devices, Edge computing, and Cloud

computing, exhibit distinct characteristics concerning data handling and sovereignty. IoT devices are

responsible for data collection and interaction with the physical environment. They possess limited resources

and focus on real-time data processing, often transmitting only essential information to conserve bandwidth.

Edge computing, located between IoT devices and the cloud, aggregates, and pre-processes data locally,

reducing latency and ensuring faster response times. The cloud, on the other hand, provides extensive

computational power and storage capacity, enabling large-scale data analysis and long-term storage. Each layer

plays a vital role in the overall architecture, addressing specific requirements and challenges.

Certain applications benefit from leveraging the vast computational resources of the cloud. These applications

involve intensive data processing, complex analytics, or require access to sophisticated Machine Learning (ML)

algorithms. By harnessing the power of the cloud, organizations can analyse massive volumes of data, derive

meaningful insights, and execute resource-intensive tasks efficiently. On the other hand, some applications

demand low latency and real-time responsiveness. These applications operate on the edge, closer to the data

sources, to minimise delays and enable near-instantaneous decision-making. Edge computing ensures faster

response times, reduced network congestion, and improved overall performance for latency-sensitive

applications.

However, a growing number of new applications necessitate a dynamic approach that intelligently utilises the

resources of all three computing layers (IoT, edge, and cloud) to achieve optimal performance while adhering

to data sovereignty and privacy restrictions. These applications will leverage the strengths of each layer while

optimizing resource utilisation. They will employ intelligent data routing and processing mechanisms to

determine where and how to handle data most effectively. By intelligently distributing tasks across IoT devices,

edge servers, and the cloud, these applications strike for a balance between real-time responsiveness, efficient

data processing, and compliance with data regulations. This dynamic utilization of resources allows

organizations to achieve high-performance outcomes, while respecting data sovereignty, privacy, and

compliance requirements.

The dynamic capabilities of those new applications drive the innovative concept of IoT-Edge-Cloud Continuum;

an architecture approach where the management of data, services, network resources, and computing

capabilities is performed with an overarching and unifying view across the three computing layers.

4.2.1. From heterogeneous IoT data to a unified data fabric

The IoT landscape has experienced a proliferation of heterogeneous data sources, containing data in different

encoding formats and structures, but also, exposing these data through different access protocols depending on

the technology of each data source.

The composition of a continuum based on multiple technological domains ranging from IoT devices, Edge sites,

to the Cloud, highly increases the complexity of the data management activities. Data sources are not only

statically located in physical locations, such as IoT sensors, but they can also be spread across multiple physical

and virtual locations across the different domains. This constitutes a highly changing environment, wherein new

data sources become available, move to other domains, and even disappear (unexpectedly or orchestrated). Such

an intricate and heterogenous data landscape presents several challenges in two main aspects: i) data

consumption and ii) data governance.

Vertical services deployed on the continuum, such as ML/AI applications, that aim to find and analyse these

data to realize their business demands, would have to deal with such a complex and heterogenous data landscape.

Vertical services first would have to find and understand the data of interest for their use case. They would also

need to implement specific mechanisms for ingesting, processing, and consuming the data of interest. Moreover,

advanced use cases would require ML/AI applications to correlate and combine heterogenous data from multiple

data sources. This whole workflow entails an extremely time-consuming effort that, in addition to having data

engineering skills, requires a deep understanding of the available data.

Similarly, data governance processes must be able to cope with this diversity of data in a dynamic environment.

The security and privacy teams must ensure that data are properly classified and protected, accessed only by

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 24 of 136

authorised consumers, and used for a specific reason. Keeping track of all these activities calls for a holistic

view of the available data and how they are exchanged within the continuum.

The aerOS Meta-OS achieves to deliver a feeling of a continuum, thus, when it comes to data management,

aerOS provides a uniform access to all the data, regardless of their location in the continuum, their original

encoding format, or the underlying technology used by the ñgoldenò data source. To this end, aerOS builds on

a semantic layer over the continuum that abstracts data consumers from the technological complexities and

facilitates the discovery, understanding, and access to all the data through a uniform interface. Precisely, this is

the idea behind the data fabric paradigm; however, aerOS goes beyond that, by extending the data fabric

throughout the IoT-Edge-Cloud continuum following federated and distributed architectures. The aerOS Data

Fabric aims to become a one-stop-shop for data consumers to easily find, understand, and access any data

available in the continuum; whereas the data governance team is provided with a complete view of how these

data are being used within the continuum.

4.2.2. From a distributed cloud eco-system to a unified network and

compute fabric

Over the course of time, the field of computation has witnessed the evolution of diverse paradigms, ranging

from traditional parallel and grid computing to the advent of cloud computing. Cloud computing, encompassing

service models like Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service

(SaaS), offers numerous advantages and capabilities. These include scalability, on-demand resource

provisioning, a pay-as-you-go pricing model and streamlined provisioning of applications and services.

The emergence of 5G and beyond has brought forth a multitude of novel applications, such as massive Internet

of Things, mobile video conferencing, connected vehicles, e-healthcare, online gaming, and virtual reality. As

indicated by both industry and academic research initiatives, these applications require high data rates ranging

from 1 to 100 Gbps, as well as low latency in the range of 0.1 to 1 ms for ultra-low latency applications.

However, cloud computing alone falls short in meeting these evolving requirements due to several issues.

The primary challenge lies in the considerable distance between cloud resources and end devices, as the

connection is established over the Internet, resulting in latency issues. Additionally, the processing capacity of

cloud servers is insufficient to effectively cater to the emerging demands. For instance, the latest generation of

general-purpose computing instances in Amazon EC2 cloud service possess processing capabilities on the order

of 5 to 50 Gbps. Nevertheless, this level of processing power fails to adequately accommodate the vast number

of applications and the traffic generated by IoT, where high data rates are necessary for many applications, such

as data rates of multiple-Gbps for high-quality 360-degree video.

The concept of edge computing, encompassing paradigms such as cloudlet, mobile edge computing, and fog

computing, was introduced as a solution to address the challenges associated with cloud computing. While edge

computing improves latency and enhances processing capacity by providing resources at the network edge, it is

not expected to sustain the continuous growth in traffic volume. Additionally, the latency achieved through edge

computing falls short of the stringent requirements for ultra-low-latency applications, which demand round-trip

latencies of less than 1 ms, possibly as low as 0.1 ms.

The concept of distributed cloud computing has recently emerged as a solution to enhance the performance of

cloudlet, mobile edge computing, and fog computing paradigms. It achieves this by utilizing the computational

and storage capabilities of nearby intelligent devices for offloading computations or caching data. However,

there are significant challenges related to the limitations of computation and power, the mobility of

neighbourhood devices, and particularly the security concerns associated with offloading computations to these

devices. To address these challenges, there is a need for a more secure, power-efficient, and reliable

computational infrastructure with a high processing capacity, which can complement the existing computational

paradigms.

In this regard, the in-network computing paradigm, which is based on programmable data plane technology (an

evolved concept of Software Defined Networking ï SDN), can provide power-efficient network elements with

high processing capabilities at the network's edge. By effectively utilising in-network computing, packets can

be processed at line-rate, along the path, and before reaching the edge/cloud servers. This paradigm offers faster

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 25 of 136

processing capabilities at locations closer to end devices, surpassing the performance of edge or cloud servers

employed in traditional edge and cloud computing paradigms.

Figure 2 provides a schematic representation of the different computing resources that may be utilised by aerOS

whereby its Infrastructure Elements can be hosted. It illustrates the in-network computing fabric, which

comprises network elements such as programmable switches, Field Programmable Gate Arrays (FPGAs), and

smart Network Interface Cards (NICs) accelerators embedded within a host. These network elements can be

strategically positioned between end-devices and servers offered by edge computing, including Multi-Access

Edge Computing (MEC) servers, fog nodes, and cloudlets. Alternatively, they can also be deployed between

end-devices and cloud datacenters, or even between edge servers and cloud servers. This architecture enables

efficient utilization of computing capabilities across various computing resources. The different resource types,

shown in Figure 2, may serve different purposes. Below a limited selection of examples is provided:

(i) Analytics: The available resources can be leveraged for conducting analytics tasks. This includes

ML, data aggregation, heavy flow detection, query processing, control operations, and deep packet

inspection. Such tasks can be performed either on the path in the case of In-Network Computing or

at specific locations such as central cloud servers, edge cloud servers, or end devices.

(ii) Caching: The diverse resources can be utilised to establish a caching infrastructure on top of storage

servers. This aims to reduce data access time and is relevant for key-value store applications as well

as information-centric caching.

(iii) Security: The resources distributed across different locations, namely in-network computing and

edge cloud, can be employed to fulfil specific or comprehensive functionalities necessary for

detecting and mitigating attacks on the infrastructure or the provided services. This approach aims

to minimise attack mitigation latency and operational costs associated with dedicated security

servers.

(iv) Technology Specific Applications: Applications can either run exclusively on a single resource

type, such as the central cloud, or specific components of the applications may be distributed across

alternative resource types, such as the edge cloud or the end devices. End devices may also offload

their computations to virtual resources running in the edge cloud, in order to overcome the limited

available resources at the devices. These virtual resources at the edge cloud can expand and shrink

dynamically and will have scalability with respect to the service requests. End devices can offload

their computations to the edge cloud in their proximity, thereby overcoming the poorness of

resource limitation in the device, as well as guaranteeing real-time interactive responses. In cases

where the edge cloud or cloudlet is inaccessible in proximity, there remains the possibility of

connecting to a remote central cloud. However, such a connection may result in a degradation of

response time for obtaining the required service.

Central Cloud

In Network
Computing

Edge Cloud

End Devices

Figure 2. Schematic of aerOS Cloud Resource Types: Central Cloud, In-network Computing fabric, Edge Cloud

and End Devices

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 26 of 136

In the presence of diverse cloud resources, including cloud, near and far edge cloud, and in-network computing,

ensuring efficient orchestration of these resources is of utmost importance from various perspectives [2]. There

exist different strategies for resource orchestration, spanning from initial resource selection to service and

resource migration. A significant research direction lies in orchestrating a wide array of resources to meet

application requirements, necessitating solutions for resource allocation and traffic steering to deploy desired

applications effectively. While some studies have addressed resource allocation in hybrid environments

consisting of network elements and cloud computing nodes [3], [4], with the aim of maximizing request

admission or minimizing deployment costs, their scope remains limited. Further research is warranted to explore

orchestration approaches that encompass additional objectives, such as maximizing throughput, minimizing

bandwidth utilization, reducing power consumption, and optimizing quality of service metrics, including latency

and reliability.

Effectively, the current cloud ecosystem is comprised of multiple cloud providers, each representing a separate

cloud domain. These domains are characterised by their individual Virtual Infrastructure Managers (VIMs) or

controllers, which govern the virtualised infrastructure. This decentralised architecture necessitates the

management of applications and resources across multiple cloud domains, leading to challenges in scalability,

complexity, and cost-effectiveness. With the advent of near and far edge computing, the diversity within the

cloud ecosystem is further accentuated. Edge cloud providers bring computation closer to the point of data

generation or consumption, enabling reduced latency, improved responsiveness, and enhanced user experience.

However, integrating these edge cloud domains into the existing multi-cloud environment amplifies the

complexity of managing applications across diverse infrastructures. Moreover, considering that such

hybrid/multi-cloud environments currently rely on container management frameworks such as Kubernetes,

which are not properly serve the requirements of such heterogenous and distributed IoT services and equipment,

the need for developing a homogeneous overlay management system is becoming a necessity. To achieve

specific objectives such as geographical distribution, low end-to-end latency, efficient bandwidth utilization,

and other application-specific requirements, it becomes imperative to deploy applications across multiple cloud

domains, but under a unified management framework, which may include catering to a dispersed user base,

reducing latency for cloud-based services, accommodating bandwidth-intensive applications, and more.

As applications become hyper-distributed, they rely on computing resources (clouds, edge, data centres in

general) belonging to different providers, connected via networks with varying bandwidth, latencies, and

probability of connectivity loss, often beyond the control of the application owner. These computing

infrastructures consequently operate as isolated aggregations with fragmented resources, making seamless

provisioning of hyper-distributed applications challenging. Managing such deployments through individual

interfaces to each cloud VIM becomes highly complex, has limited scalability and lacks cost-effectiveness.

The complexity of managing applications across multiple (cloud) domains is further exacerbated by the need

for external networks and the maintenance of Quality of Service (QoS) requirements. Applications rely on

communication among their components or microservices, necessitating network connectivity between different

(cloud) domains. QoS parameters such as latency, bandwidth, jitter, and packet losses must be maintained to

ensure optimal application performance. Managing this network-compute fabric in a unified and uniform

manner poses challenges at several levels, as mentioned above. To address the complexities and limitations

associated with managing multi-cloud environments, there is a growing need for a unified framework. Such a

framework would provide a centralised management approach for the diverse cloud domains and the associated

network infrastructure. The offer of a unified interface would streamline application deployment, resource

allocation, and network connectivity across cloud domains. This unified framework aims to resolve the

aforementioned challenges and maintain QoS requirements across the entire network-compute fabric.

4.2.3. From monolithic applications to intelligent distributed

services

In a typical cloud-centric approach, applications and services usually have a monolithic, albeit highly scalable,

architecture. It assumes the existence/availability of a specific set of cloud-based computing resources but may

also include selected IoT/edge resources, playing mainly the role of data sources. A monolithic application is a

single, closely connected software system that is designed and delivered as a single entity. The use of the cloud

as today's ultra-powerful ñmainframeò allows to take advantage of its incredible potential, but, at the same time,

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 27 of 136

it introduces obvious latency and privacy issues. This is exacerbated when applications become data-centric, as

data typically does not come from the cloud and may be sensitive imposing additional restrictions on centralised

processing.

The term "monolith" is frequently associated with something big and glacial, which is not far from the truth of

a monolith architecture software design. A monolithic architecture is a single, vast computing network with a

single code base that connects all business concerns. Making changes to this type of application necessitates

accessing the code base and developing and delivering an updated version of the service-side interface. This

makes updating difficult and time-consuming. A monolithic architecture has the following advantages:

¶ Simple deployment - A single executable file or directory simplifies deployment.

¶ Development - It is easier to build an application when it is developed using a single code base.

¶ Performance - In a centralised code base and repository, one API may frequently perform the same job

as several APIs using microservices and communication between internal components does not cause

additional cost overhead.

¶ Testing is simplified since a monolithic application is a single, centralized entity, allowing for faster

end-to-end testing than a dispersed program.

¶ Simple debugging - With all code in one location, it's easy to track a request and identify a problem.

However, a monolithic application has the following drawbacks:

¶ Slower development pace - A huge, monolithic program complicates and slows development

(specifically with time and growing complexity of the system).

¶ Scalability - Individual components cannot be scaled or scaling requires some essential modifications.

¶ Reliability - If any module fails, the availability of the entire application may suffer.

¶ Adoption of technology is hampered since any changes to the framework or language influence the

entire program, making modifications costly and time-consuming.

¶ Lack of adaptability - A monolith is confined by the technology that it presently employs.

¶ Deployment - Making a little update to a monolithic program necessitates redeploying the entire

monolith.

¶ Single-ownership assumption is made omitting the problem of potential restricted data sharing and

processing.

Moreover, the monolith application cannot take advantage of the heterogenous infrastructure on top of which

the solution could be deployed in a distributed way. The IoT-Edge-Cloud Continuum governed by aerOS

introduces an agile architecture and mechanisms that allow for dynamic (re)allocation of resources (both

computational and data-related), and efficient deployment/configuration of services. Thanks to the application

of thoughtfully selected mechanisms and intelligent decision-making techniques aerOS will be able to

intelligently manage the execution of application workloads and deployment of services across the continuum.

In particular, it will support dynamic distribution and placement of services and user applications, offering user-

configurable ñpoliciesò. Additionally, thanks to the concept of Data Fabric, distributed data sources and services

based on them, will be able to flexibly manage data access policies and mechanisms as close to the data origin

as possible, minimizing possible security and privacy risks.

A proper application type that can take the advantage of this distributed aerOS architecture is based on a

microservices architecture software design. A microservices architecture, commonly known simply as

microservices, is an architectural solution that is based on a collection of independently deployable services.

These services have their own deployment requirements, business logic and database, and they serve a

specialised purpose. Each service has its own lifecycle undergoing updates, testing, deployment, and scalability.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 28 of 136

Microservices split important business issues into separate, independent code bases. Microservices do not

diminish complexity, but they do make it visible and controllable by breaking activities down into tiny processes

that work independently of one another while contributing to the overall total. Moreover, with the proper

deployment, micro services can optimise the utilisation of the underlying infrastructure with respect to

computational costs and energy consumption.

However, microservices come also with their challenges, which aerOS comes to address. When establishing a

microservice application in the cloud, the scheduler must properly plan each service on dispersed compute

clusters, which may have varying resource demands. Furthermore, network connection between various services

must be managed carefully, as communication circumstances have a substantial impact on service quality (e.g.,

service response time). It is becoming increasingly vital to ensure the required performance of service-based

applications, particularly the network performance between the relevant services. Therefore, the unified

network-compute fabric that aerOS envisions becomes fundamental for the optimal microservice placement

process, while the unified management the aerOS offers as a Meta-OS facilitates this orchestration process.

Considering additionally the distributed nature of the aerOS across the continuum, the orchestration of the

microservices is also evolved. In a microservice architecture, orchestration and choreography are two techniques

of interacting with other software components. In general, orchestration is used when there is a need for a

centralized authority to control the interactions. Orchestration is based on the orchestra notion, in which

numerous artists are masters of their instrument, which is a service in our microservices design. The conductor

of an orchestrator directs everyone in relation to the nodes. Similarly, when a parent service administers the

request, it forwards the request to the appropriate service and gathers the data. The final answer is created in the

primary service known as orchestrator and delivered to the client application.

Microservices, unlike orchestration, function in parallel in choreography, which is used when there is a need for

a more decentralized and autonomous interaction between services, which is the case for the aerOS Meta-OS.

Substantial parts of the systems are built on an event-driven architecture, in which a service gets data from a

message bus, performs business logic, and then submits data to another message bus.

There are several subjects in microservice choreography to which a service may subscribe and update another

topic. The microservice's task is specified, and it simply checks whether the subject is empty or not. Unless the

subject is empty, it continues to accomplish the work at hand. In a choreographed microservices architecture,

adding and deleting services is significantly easier. All that is needed is to connect (or detach) the microservice

from the proper channel in the event broker. The installation and removal of microservices does not compromise

current logic with loose service coupling, resulting in reduced development turnover.

aerOS is proposing a hybrid approach in the management of service placement between the typical Orchestration

and Choreography approach, which is based on the combination of two-level orchestrators and an intelligent

load balancer that are coordinated in a decentralized and autonomous way, adopting the event-driven

choreography principle.

4.2.4. From decentralized services to federated domains

In recent research trends, there has been a significant shift towards developing more resource-efficient and

effectively managed distributed computing environments. Current research [5] suggests the transition from

traditional centralized and semi-centralized models to advanced federated architectures. These federated

systems represent a paradigm shift, offering a more egalitarian framework where all nodes within a network

operate as peers, each with equal access to resources and decision-making capabilities. Such an approach not

only enhances autonomy but also promotes a more granular level of control over distributed resources,

fundamentally altering the ecosystem for orchestration and resource utilization.

Federation in distributed systems transcends basic decentralization by embedding peer-based operational

equivalence across the network. This ensures that each node can retain its autonomy and does not have to depend

on other nodesô capabilities to be fully functional and at the same time no single node bears excessive burden

or possesses undue control, thereby eliminating operational bottlenecks and facilitating a more streamlined and

resilient orchestration process. The move towards federated architectures is driven by the necessity for systems

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 29 of 136

to adapt to diverse and dynamic operational environments without compromising on autonomy, efficiency or

scalability.

In contemporary distributed computing environments, the centralized orchestration model often results from a

fragmented understanding of the state across the continuum. Each administrative space would possess only a

partial view, limited to its local resources. This fragmentation compels a centralized approach where local state

fragments are aggregated at a central location, typically where the orchestrator resides, enabling efficient service

component placement decisions across the continuum.

However, this centralized model introduces inefficiencies and hierarchies in decision-making. Some alternate

designs attempt to alleviate complete centralization by establishing a hierarchical structure in orchestration

capabilities. In these designs, "semi-central" nodes possess an expanded, albeit incomplete, view of the

continuum's state. These nodes can make limited decisions or escalate them to higher-level nodes that

encompass a comprehensive view of the continuum, thereby enabling final orchestration decisions. Such

hierarchical models inherently create disparities in node capabilities, leading to a more complex, energy-

intensive, and slower orchestration process.

Against this paradigm, architectures which integrate federation, by treating each domain as an equal peer within

the continuum, ensure that all domains have equal and direct access to comprehensive state information of all

resources. This democratization of information underpins the ability to deploy a uniform set of orchestration

services across all domains. Consequently, any domain can make informed placement decisions and manage

resources anywhere across the continuum, from the far edge to the cloud. This peer-based architecture not only

simplifies the orchestration process but also enhances the autonomy of each domain.

As the discussion often revolves around how to achieve optimal orchestration, ensure data consistency, and

handle the complexities of cross-domain transactions and interactions in a secure and efficient manner, the

integration of cutting-edge technologies such as artificial intelligence, distributed ledger technologies, and

advanced cybersecurity measures strongly support the development of these federated systems. Artificial

intelligence can further enhance decision-making with predictive analytics and automated management tasks,

distributed ledger introduces immutable records and enhanced security protocols for transactions across the

network, and cybersecurity advancements ensure robust protection mechanisms are in place to safeguard against

evolving threats. Together, these technologies provide the essential tools needed to manage and secure

distributed IoT-Edge-Cloud networks effectively and promote the adoption of federated architectures.

Thus, the shift towards federated models not only represents a significant innovation in the way distributed

services are orchestrated but also sets a new standard for the future of networked systems. It shifts away from

hierarchical and centralized models, promoting an equitable and efficient framework where each node or domain

retains full autonomy and capabilities, mirroring a truly distributed network that leverages collective intelligence

for operational excellence. This research trend points towards an ecosystem where distributed computing not

only meets the demands of modern applications more efficiently but also does so in a manner that is inherently

secure and scalable, driven by the latest advancements in technology.

5. The aerOS continuum

5.1. Meta-OS approach and aerOS vision

A Meta-OS aims at mimicking crucial services and functionalities of an operating system, operating within an

environment that integrates numerous distributed input/output resources in an information-driven manner. The

type and number of functionalities offered may categorize it as neither an operating system nor a framework. A

good example of a Meta-OS approach is the popular Robot Operating System (ROS) [6] in the robotics domain.

ROS, a Meta-OS for robots, is an open-source platform whose functions are equivalent to that of an operating

system; functions include low-level device control, hardware abstraction, message passing between processes,

implementation of commonly used functionality, and package management. The ROS Meta-OS also provides

libraries and tools for obtaining, building, writing, and running code across multiple computers while

accommodating different combinations of hardware implementations. Meta-OSs developed in various domains

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 30 of 136

enable different levels of coordination among heterogeneous devices (physical or virtual), operating systems,

and services [7] [5].

aerOS builds on the Meta-OS approach to intelligently manage and integrate a distributed set of resources into

a seamless continuum, supporting the orchestration of hyper-distributed applications across the IoTïEdgeï

Cloud spectrum. aerOS aims to implement a Meta-OS that unifies and orchestrates computing and network

resources in the most efficient way, providing a common and unified execution environment for IoT service

developers across a distributed computing environment. These resources are located in various geographical

and administrative domains and have significant diversity in their capabilities and operating systems. End users,

i.e., IoT developers from various industry verticals using aerOS, should experience seamless integration of these

underlying resources and transparently benefit from the smart, aerOS-enforced orchestration and federation

decisions in their effort to deploy services in closest possible alignment to their requirements leveraging the

most appropriate and efficient resource capabilities exposed from the entire infrastructure, from edge to cloud.

This necessitates aerOS, as a Meta-OS, to implement, operate, and manage the continuum across all involved

layers. To understand aerOS as a Meta-OS, it is necessary to explore the concept of the continuum as a derivative

of layered fabrics supporting end-to-end and edge-to-cloud orchestration, lifecycle management, and federation

of computing and networking nodes (physical or virtual), services, and data. Thus, aerOS can be perceived as

the enabler and administrator of the continuum, acting as a key facilitator with the dual role of i) orchestrating

diverse resources and ii) establishing a unified execution environment for IoT services deployment. This enabler

effectively bridges the edge-to-cloud pathway, offering functionalities akin to an operating system that manages

legacy hardware resources.

To ensure that network, compute, and data resources work together, enabling optimal performance, scalability,

and reliability for hyper-distributed applications aerOS builds on the idea of ñfabricò which abstractly represents

a unified framework that seamlessly integrates and orchestrates these resources. Within this context, in the

highly distributed computing environment encompassing a diverse range of physical and virtual computing and

network devices, the establishment of the ñaerOS Network and Compute Fabricò enables seamless

connectivity, unified exposure, and orchestrated management of the underlying infrastructure. This fabric spans

from the edge to the cloud and across multiple domains and stakeholders. Currently, many non-connected,

distinct computing islands host applications with specific demands. Elements in these islands provide

processing, storage, or networking capabilities only to a certain extent and often rely on big cloud providers to

execute intensive computing tasks. The aerOS Network and Compute Fabric aims to expand these capabilities

by providing federated access to unused and available resources from edge to cloud, establishing a ñcontinuumò

of resource exposure.

Built on the foundation of the "Network and Compute fabric", aerOS offers a comprehensive framework for

building and managing microservices and container-based applications. It provides the infrastructure to deploy,

manage, and scale services efficiently across various environments. Essential mechanisms, deployed as aerOS

microservices, facilitate seamless and transparent resource sharing, orchestration, and federation, supporting

core aerOS functionalities. This is the ñaerOS Service fabricò. Service Fabric includes management and

orchestration (MANO) capabilities for full lifecycle management (LCM), including development, deployment,

and scaling of IoT applications and services. This abstraction empowers developers to create scalable, reliable,

and highly available applications by simplifying access to underlying infrastructure and ensuring efficient

placement, resiliency, and migration of services. It enhances overall performance by continuously selecting the

most efficient placement of services on appropriate resources. aerOS Service Fabric consists of basic and

auxiliary services running within each registered domain on top of their network and compute elements. This

fabric exhibits key characteristics for effective service management. Orchestration decisions within the aerOS

Service Fabric break down IoT service deployment requests into microservices, provisioning them based on

resource availability and required capabilities. This provides comprehensive support for IoT developers to

deploy applications across vertical domains, from the edge to the cloud (public or private). Features include

lifecycle management, intelligent orchestration, resilience, scaling, discoverability, messaging, monitoring, and

more.

The Network & Compute fabric as well as the Service fabric encompass extensive information about their

capabilities, availability, and context-related information (e.g., location). Each computing resource and service

produces substantial runtime data, providing insights into their current state and how their capabilities and

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 31 of 136

availability change over time. A comprehensive layer, the ñaerOS Data Fabricò, is implemented to facilitate

the efficient management, integration, and access to all this data across distributed systems and diverse data

sources. The Data Fabric provides a unified and consistent data layer. Methodologies, pipelines, and tools,

constituting this layer, abstract the complexities of data acquisition, processing, semantic and syntactic

homogenization, storage, governance, provision, enabling aerOS data producers and consumers across discrete

administrative domains to transparently exchange data. At the heart of aerOS Data Fabric a knowledge graph is

employed to store, represent, and correlate aerOS-integrated resources (hardware and services) and their

properties. This choice allows resources, along with their state, to be depicted as entities with connected

properties and attributes. Relationships deployed within the knowledge graph represent their physical,

multilevel connections, with flexible relationship objects visualizing a potentially ñmobileò world where the

presence of computing resources and IoT services may change anytime, triggered by unforeseen events. This

contextualized provision of aerOS information, representing and interrelating, devices, data, and resources is

used as the substrate for cognitive operation related to both continuum orchestration and services peer support.

Thus, aerOS builds both on the concept of developing an unprecedented graph of interconnected or interrelated

computing, networking, services, and IoT resources for the continuum and on the mechanism to distribute this

information on demand and in real-time among all connected domains and elements. These capabilities enable

access to information about all aerOS entities deployed, providing a full overview of the ecosystem at any time

for any consumer, and the exploitation of this information across the ecosystem, from edge to cloud, to develop

mechanisms that recursively adapt and reconfigure resource usage and orchestration to meet user or owner

criteria.

All the above highlight a system that can seamlessly integrate a wide spectrum of computing and network

resources and services, spanning from the edge to the cloud. It represents a unified architecture where computing

capabilities distributed across different administrative domains and physical locations, are federated, and

orchestrated allowing thus for the most efficient and optimized placement of workloads. This seamless

integration and orchestration of resources, services, and data across multiple domains, locations, and

heterogeneous devices and operating systems, along with the data fabric capabilities to share and distribute data

under interoperable mechanisms, establish a continuum. A continuum that spans distinct administrative

domains, diverse device capabilities and architectures, and different connectivity networks, working seamlessly

and leveraging all underlying resources for the benefit of IoT developers and users. A continuum that provides

a common execution environment for this community.

As a result, aerOS, as a Meta-OS, intelligently establishes and manages a seamless continuum that integrates

resources and services, generating valuable data continuously monitored, processed, and utilized by distributed

AI services to enhance continuum functionality. Insights derived from AI-based data pipelines feed into the

Figure 3. aerOS domain as part of the continuum

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 32 of 136

orchestration processes, adapting and reconfiguring resources and services, enabling a Meta-OS self-sustaining

loop. This process operates under a zero-touch management paradigm, where automation and intelligence drive

the continuous evolution and optimization of the continuum ecosystem. Ultimately, aerOS provides a

comprehensive framework to establish a seamless continuum across computing, service, and data layers. As a

Meta-OS, aerOS supports the establishment, sustainability, and efficiency of this continuum, offering IoT

service developers, in industry verticals, a unified execution environment built upon a transparent ecosystem of

resources. This unified environment streamlines the development, deployment, and management of IoT

services, fostering efficiency and innovation within the industry.

5.2. aerOS building blocks
To develop aerOS, following a Meta-OS approach that encompasses all continuum aspects discussed earlier

and addresses the project objectives, the architecture design incorporates key building blocks structured to

realize its fundamental concepts. This section provides a comprehensive overview of the aerOS system,

consolidating the main concepts and building blocks. Subsequent sections delve into precise descriptions and

thorough analyses of the core elements, services offered, and functionalities exposed by the system.

The approach chosen to describe the overall capabilities and components of aerOS is incremental, reflecting the

evolving demands of transitioning from a legacy IoT systemôs approach to a Meta-OS for the IoT-Cloud-Edge

continuum. We gradually introduce the system's fundamental concepts, implementing components, and exposed

capabilities, acknowledging the dynamic nature of this transformation.

The design and establishment of the aerOS continuum, which seamlessly integrates IoT devices and resources

from the edge to the cloud, is built upon multiple aerOS domains. Each of these domains consists of a collection

of Infrastructure Elements (IEs), with at least one IE per domain. Among all aerOS domains, the Entrypoint

Domain is assigned a special role across the continuum, functioning as the primary access point for the system.

While uniquely instantiated in one domain, it is capable of seamless migration to any other during runtime. The

integration of these domains and their constituent IEs forms the fundamental building blocks of aerOS. This

architecture leverages these building blocks to deploy a comprehensive suite of services, all the way from edge

to cloud, thereby creating a federated environment exposed as a continuum. This structured approach ensures a

scalable framework that embodies the capabilities expected from a Meta-OS. It supports the orchestration of

diverse and dynamic IoT application requirements across the continuum, as well as the orchestration of the

underlying resources providing the hosting environment for these applications.

To facilitate the seamless integration of resources and the deployment and management of services across all

domainsðfrom the far edge to the cloudðtwo key concepts play a prominent role: federation and

orchestration. aerOS incorporates its own design, perspective, and implementation of these concepts as

functional enablers for the realization of an efficiently governed continuum. Their interdependent and mutually

supportive integration establishes an innovative federated orchestration process. Before detailing the tangible

Figure 4. Compute, Service and Data Fabrics as aerOS continuum constituents.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 33 of 136

building blocks that constitute the aerOS stack, it is essential to explore these concepts from an aerOS

perspective and understand their integration within the aerOS architecture.

Federation plays a crucial role in leveraging the collective capabilities and resources across multiple aerOS

domains within the IoT-Edge-Cloud environment. It is built as a set of services within each domain which

collaboratively establish the backbone to support resource sharing across the continuum. This is primarily built

on the capability to publish and share, under a common and interpretable schema, all information regarding

capabilities and status of all constituting elements of each domain. This opens the possibility to components that

need it, regardless of their hosting domain, to have on-demand access to this information. This transparent

access empowers components to make informed decisions regarding resource engagement, even beyond the

boundaries of their respective domains. By breaking down silos and enabling cross-domain communication,

federation promotes efficient resource utilization and collaboration, ultimately enhancing the overall

functionality and performance of the aerOS ecosystem.

aerOS federation is implemented based on a ñFederatorò enabler (component) included within each aerOS

domain and a central registry informed of all integrated domains in the continuum. The Federator is

implemented as a set of services and functionalities, facilitating the bidirectional exchange of information with

other domains of the continuum. The central registry is located in the Entrypoint domain (see 5.3.2), and its role

is to keep an inventory of all integrated domains and promote new domains registration and connection with

those that are already part of the continuum. Once the registrations are set, all continuum information is

disseminated across aerOS domains, through the federator functionalities inherent to each domain. This

distributed approach mitigates the risk of single points of failure and minimizes runtime dependencies, ensuring

the robustness and reliability of the federation framework. Further details regarding this design are elaborated

in section 5.4.3.

Federation incorporates mechanisms for efficiently transporting information and facilitates resource sharing

across all domains within the aerOS ecosystem. Its underlying framework leverages functionalities provided by

the various aerOS fabrics discussed earlier. Microservices, as part of these fabrics, are utilized to retrieve data,

expose information, and facilitate resource sharing.

While federation provides the essence of continuum, Orchestration is the complementary counterpart which

enables aerOS to act as a Meta-OS over the continuum. It is vital for managing and coordinating the deployment

and execution of containerized workloads across multiple domains spanning from the edge to the cloud.

Building upon the foundation laid by federation, aerOS orchestration elevates standard orchestration principles,

particularly those of CNCF, by integrating distributed AI-driven decision support systems, trust services, and

knowledge graph-based aerOS state models. This integration empowers aerOS orchestration to optimally

allocate workload placement based on a comprehensive understanding of resource availability and capabilities

across the continuum. Leveraging the capabilities provided by federation, aerOS orchestration exploits cross-

domain communication facilities to coordinate activities over resources situated in various administrative

domains throughout the aerOS ecosystem. Furthermore, facilitated by the aerOS Data Fabric enabled as part of

the federation process, orchestrator components gain a holistic view of resource availability and capabilities

across the entire continuum in real-time. This extensive information equips orchestrators with a multitude of

options for workload placement decisions.

In each aerOS domain, an orchestrator component plays a pivotal role in making informed decisions regarding

workload placement. The architecture of the aerOS orchestrator comprises a dual-layered design. At the higher

layer, the High-Level Orchestrator (HLO) receives deployment requests using a templated descriptive model.

Supported by AI algorithms and trust management components, as well as the privileged access to real-time

information across all domains provided by federation functionalities, the HLO makes well-informed decisions

on workload placement. If local Infrastructure Elements (see 5.4.1) can accommodate the workload, the HLO

provides a suitable Deployment Decision Blueprint to the Low-Level Orchestrator (LLO), which leverages

local deployment facilities within the domain to execute the deployment. Conversely, if a remote Infrastructure

Element is deemed more appropriate, the request is forwarded to the remote high-level orchestrator, to take on

with the deployment using the respective LLO.

A key takeaway regarding aerOS orchestration is its inherently distributed nature, where each orchestrator

operates within its domain's jurisdiction while also benefiting from real-time knowledge of all domainsô statuses

and capabilities thanks to aerOS federation and the Data Fabric support. This enables orchestrators to make

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 34 of 136

informed decisions and access remote orchestrators to deploy workloads based on specific demands and

resource availability. Finally, the innovative architectural decision to implement orchestration in two layersð

where the higher layer integrates pluggable decision support systems such as AI and trust componentsðensures

efficient and secure workload placement, driven by sophisticated decision-making processes.

The functionalities described above are realised through a cohesive set of interconnected functional components

residing within the aerOS ecosystem. These components are not confined to specific identifiable elements, but

are distributed across all aerOS domains, residing on some of the contained Infrastructure Elements.

Collectively, these components provide the aerOS Federated Orchestration capabilities, as a framework,

spanning from edge to cloud, which provides the basis for management and orchestration of all resources and

deployed functionalities across the continuum. Although federation and orchestration are closely interrelated,

for the purpose of this document, each concept is referred separately to provide a more detailed and granular

description of their functionality. This approach allows to delve into specific aspects, while maintaining an

understanding of their cohesive nature within the aerOS ecosystem.

Concluding aerOS Federation and Orchestration concepts, and before delving into the detailed description

of the aerOS building blocks, which provide the foundational implementation infrastructure, it is essential to

underscore the significance of the aerOS Data Fabric and the knowledge-graph based model representation and

their importance supporting o process over a federated continuum. These concepts are pivotal for depicting the

state of aerOS resources and their relationships across the continuum.

Each aerOS domain integrates an aerOS Data Fabric component, which empowers any interested consumer

within the domainðwhether it be the high-level orchestrator, the trust manager, or an AI decision support

componentðto request and receive data seamlessly from the continuum. This approach eliminates the need for

these components to directly access other domains or data producers across the continuum. Instead, a local Data

Fabric agent handles all the underlying complexities, ensuring efficient and secure data retrieval.

The technologies and protocols developed and integrated for the realization of the Data Fabric enable the

creation of the aerOS distributed state repository. This repository facilitates various methods of data interaction:

consumers can poll for data, receive notifications about subscribed changes, or be updated based on established

registrations. These interactions can occur across different administrative domains, extending from the edge to

the cloud.

A particularly interesting aspect of the aerOS Data Fabric is its ability to provide updates through multiple

mechanisms while maintaining a unified and coherent view of the continuum. The choice of a knowledge-graph

model plays a crucial role here, allowing the representation and querying of infrastructure within a context of

dynamically related resources. This model enables resources to be characterized and connected by a set of

properties that are indicative of their most important features. This characterization is critical in determining the

eligibility of resources for task execution, making the knowledge-graph model an invaluable tool for efficient

resource management and orchestration within the aerOS continuum.

In summary, the aerOS Data Fabric and the knowledge-graph based model representation are key enablers of

the aerOS ecosystem, providing a robust framework for data management and resource orchestration. These

components ensure that each domain can interact with the continuum in a seamless, efficient, and context-aware

manner, significantly enhancing the overall functionality and performance of the aerOS Meta-OS.

aerOS stack and building blocks

The Infrastructure Element (IE) is the fundamental building block of the aerOS system, providing the essential

computational unit required to host and support the deployment of workloads. It can be any physical or virtual

entity capable of supporting containerized workloads, with aerOS offering dedicated Low-Level Orchestrators

(LLOs) to manage this diversity. IEs are deployed within or connected to an aerOS domain, playing a crucial

role in hosting, and executing containerized applications or services. As the minimal execution unit, IEs form

the base of the aerOS stack by exposing the core capabilities necessary for workload execution. These are

enhanced with a set of lightweight aerOS self-intelligent enablers, as detailed in section 5.5.5. Each IE is

equipped to support containerized workloads, and it is agnostic of the purpose of these workloads. This ensures

that IEs can fulfil various roles within a domain, executing workloads regardless of their specific purpose. These

workloads can range from vertical-oriented IoT applications to components of the aerOS Data Fabric, parts of

the orchestrator, or any other tasks. IEs contribute their capabilities to the network, with the compute fabric and

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 35 of 136

service fabric taking over to deploy and manage the most suitable and appropriate services. This structured

approach allows IEs to provide their resources in a way that enables seamless integration and efficient workload

management across the aerOS ecosystem. The flexibility and robustness of IEs ensure that they can adapt to

various demands, supporting the dynamic and heterogeneous nature of the IoT-Edge-Cloud continuum.

An aerOS Domain constitutes a complete aerOS runtime environment, formed by at least one or more

Infrastructure Elements (IEs). There are two prerequisites that must be met for a set of connected compute and

network resources to qualify as an aerOS domain. The first prerequisite is that these compute resources are

integrated as IEs, as described earlier. This integration ensures that they can support workload execution and

provide a minimum set of aerOS integration capabilities, such as manageable network functionality. These IEs

act as the fundamental units within the domain, enabling the deployment and execution of containerized

applications and services. The second prerequisite is the deployment of a core set of basic aerOS services on

top of these IEs. This means that an aerOS domain can be defined as a group of IEs that share the same set

and instance of basic aerOS services, ensuring a cohesive and functional execution environment. The basic

aerOS services running within each domain are distilled from the previous discussions and include:

¶ Federation service, provided by the federator component enables the bidirectional exchange of infor-

mation with the other domains of the continuum. Exchange of information regarding the status of do-

main and IEs facilitates resource sharing, workload distribution, and interoperability. It is responsible

for managing subscriptions, and registrations to other aerOS domains which are instrumented to dis-

cover resources across the continuum. It is built as a set of coworking microservices offered by aerOS

fabrics. Underlying protocol used for these exchanges is NGSI-LD, discussed in section 5.4.3.1.

¶ Orchestration service which is crucial for managing the deployment of IoT services based on user-

defined intentions. This service translates user requests into actual deployment instructions and execute

them on Infrastructure Elements (IEs). This orchestration process operates at two levels: the high level,

which receives constraints and queries the continuum and handles decision-making complexities with

the support of AI-enriched decision support systems, and the low-level which has the actual access to

underlying IEs and translates decision to implementation directives. Based on the federation services,

orchestration service within each domain acknowledges the state of IEs across the continuum and can

produce decisions including remote domains resources.

¶ Data Fabric services, enable seamless data integration and accessibility within the domain and across

the continuum, supporting advanced data management and query capabilities. They manage the identi-

fication, collection, and integration of data in an interoperable manner. Data Fabric services facilitate

seamless data access, for all aerOS consumers. This ensures that data is readily available and accessible

across the entire aerOS ecosystem, supporting efficient and informed decision-making. Raw data con-

cerning all aspects of aerOS, including domain status and IoT applications, are ingested and transformed

into a common, interpretable format. This standardized information forms the substrate for the federa-

tion service, which is responsible for sharing and propagating this data across the entire continuum.

¶ Cybersecurity services which enforce authentication, authorization, and access control policies based

on roles and identities. These services ensure secure access to all domain resources and validate requests

in close coordination with the Entrypoint domain's policies and usersô registries. By integrating robust

security protocols, they maintain the integrity and confidentiality of data and services across the aerOS

continuum.

Additionally, a range of aerOS services integrated within each domain provide an intelligence layer to the aerOS

Meta-OS. These intelligent services enhance the system's ability to make informed decisions, optimize resource

allocation, and improve overall operational efficiency.

¶ AI decision support services, which leverage data retrieved by the Data Fabric to provide critical input

to the orchestrator. These services analyse and interpret the data to recommend optimal workload place-

ments, whether locally within the current domain or across other domains, ensuring efficient and effec-

tive resource utilization.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 36 of 136

¶ Trust management services, which ensure the integrity and reliability of interactions within the aerOS

ecosystem. These services validate and monitor the trustworthiness of IEs within each domain and pro-

vide insights to the decision engine regarding the reliability of candidate hosting resources.

¶ Embedded analytic tools, which provide real-time data analysis and insights directly within the aerOS

ecosystem. These services enable continuous monitoring, assessment, and optimization of system per-

formance and IoT applications, empowering stakeholders with actionable intelligence to enhance deci-

sion-making and operational efficiency.

Finally, each aerOS domain, in addition to these core services, exposes a comprehensive and efficient

Application Programming Interface (API) to facilitate communication with stakeholders, agents, and other

domains.

Figure 5 provides a comprehensive diagram reflecting the aerOS architecture. This diagram illustrates the

formation of the continuum through the seamless federation of aerOS domains. It highlights the operations

within each domain and the unified layer provided by the aerOS Meta-OS, offering a cohesive environment for

IoT developers.

ñEntrypoint domainò, reserves an extra mention, in this narrative. It is enriched with additional components

related to management and AAA capabilities, designating this unique node as a key aerOS point of presence.

This domain hosts the aerOS Management Portal, which serves as the primary user interface to the system,

providing access to Meta-OS management functionalities. It integrates several crucial features: the aerOS access

dashboard, a registry of users and policies, an inventory of registered domains, and a mechanism to support

balanced distribution of user service deployment requests across the continuum. The dashboard is the sole,

graphical, entrypoint to the aerOS ecosystem for all stakeholders, acting as a single window for managing the

continuum, similar to a terminal or shell in a traditional OS. It maintains connectivity to the Identity and

Authorization Manager and provides a user-friendly administrative interface for the User Registry, enabling the

creation, editing, and deletion of users, as well as role management. Furthermore, the dashboard offers space

offering functionalities related to the management and visual representation of the current state of aerOS

domains and the continuum. The uniqueness of this ñspecialò aerOS domain does not imply immutability. It

can be exchanged or migrated to another aerOS domain at any time, either due to failure or by administrative

choice, ensuring flexibility and resilience in the system's management infrastructure.

Figure 5. aerOS architecture.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 37 of 136

By design aerOS is not a centralised solution and opts for a fully federated and decentralized architecture. To

achieve this, it leverages the aerOS Management Framework. This framework, comprising the Management

Portal and a suite of mechanisms, facilitates the creation and upkeep of federation connections among the

numerous aerOS domains constituting the continuum. Each time a new domain joins the continuum, the

Management Framework orchestrates the necessary networking procedures to ensure its seamless discovery and

connection with existing domains.

The subsequent sections delve into the intricacies of aerOS building blocks and components, describing their

pivotal roles within the system. These components are carefully designed to orchestrate a federated continuum

of resources spanning from the edge to the cloud. The overarching aim is to provide a flexible, trusted, and

unified development and execution environment tailored for IoT services developers across diverse industry

verticals.

5.3. Conformance of an aerOS continuum
As it has been explained, aerOS Meta-OS revolves around the concept of domains. These are virtual groupings

that gather one or more computing nodes (Infrastructure Elements, see section 5.4.1).

A ñdomainò is a relevant figure in aerOS technology, outstanding as a crucial aspect whenever designing a

continuum. It can be defined as ña set of elements (that can run containerised workloads) that are judiciously

grouped together based on certain criteria, and that allow the Meta-OS system administrator to organise the

deployment and other technological decisions accordinglyò. In addition, each domain must contain a unique

instance of the full set of aerOS basic services.

5.3.1. Laying out the domains in a desired continuum:

Depending on various aspects, the decision on what (should) constitute a domain in a specific case will be

different. Even though there are some common guidelines that have been envisaged by the aerOS developers,

the final decision on how to group computing nodes to form a domain is completely open and up to the adopterôs

system administrator.

Figure 6. Example of domains topology design in an aerOS continuum

Pragmatically, the decision on how to design the domains in a use case serves to delimit and put boundaries to

the scope of aerOS installation, and to understand where certain components should be placed.

As a reference, the decision might be guided by the following orientations:

¶ Geographically: it might be convenient to create a domain that includes all the computing resources in

a specific geographical area. For instance, if a cloud provider owns servers (among other equipment) in

different regions, one domain could be created per each region, facilitating the management and the

incorporation/removal of those elements into/from a continuum. Another example would be within a

campus.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 38 of 136

¶ Per administrative scope: if a continuum includes computing elements that are owned by different

companies, it might be interesting to create such boundaries via the creation of specific per-entity

domains. There, the domain of company A would still be able to share workloads, service and data with

company B, but still several managerial and operational aspects (such as which aerOS installations are

needed) would remain independent.

¶ Based on container management framework: another valid criterion for designing the domains in a

continuum is the container management framework underlying the computing nodes (IEs). For instance,

if a continuum must include certain nodes that are part of a K8s cluster, others that are Virtual Machines

(with capacity to execute containerised workloads), others that require KubeEdge cloud and edge

counterparts, or any other possible cases, this could guide the decision as well. Here, it is relevant to

point out that aerOS is capable of handling different container frameworks in the same domain (thanks

to the versatility of the orchestration schema ï see section 5.4.2), but, often, those may impose certain

restrictions that may require specific treatment. In such cases, the management benefits from the

separation in different domains.

¶ Depending on the network: a typical of the aforementioned restrictions is the network. A relevant pre-

condition is that every domain is accessible (i.e., has its own IP or addressable namespace ï more details

in section 5.5.1). aerOS assumes that companies stick to their pre-existent network configuration and

topologies. Therefore, a design decision may come from the limitations/options available in that regard.

¶ Other: although the previous have been envisaged as the most common decision criteria, it does not

prevent system administrators to deepen their considerations:

o Operational decision: for instance, in manufacturing or logistic environments, a domain could

comprise all elements that stay in the same production line or process area (e.g., parking yard).

o Per type of computing node: it may be relevant to separate domains based on the hardware or

the type of nodes. In some cases, specific conditions by COTS or commercial equipment might

be of application, driving the domain topology design.

o Per tier in the continuum: elements pertaining to the cloud (e.g., in the case of using AWS,

Azure or other cloud VPS), edge elements, or IoT tier could be also valid examples, as long as

every domain will comply with the minimum requirements (see section 6.5).

Often, the design of domains in a continuum will be a combination of the previous, especially in large scale

scenarios. Therefore, the step of defining and selecting domains is crucial for the rest of Meta-OS configuration

and deployment.

Several examples on how (and why) certain domain topologies have been designed (in aerOS pilots) can be

found in section 7.2.

5.3.2. Entrypoint domain selection

A crucial step in the conformance of an aerOS continuum is the selection of the entrypoint domain. Once the

layout of the different domains has been established, the system owner of the adopter entity must decide which

of those should act as the domain holding special characteristics.

aerOS has been designed to be as decentralized as possible, and indeed the workload and data orchestration,

execution and management is done without prejudice of location or position of the domain in the continuum.

However, due to the very nature of distributed systems, one of the domains must act as the entrypoint.

In aerOS, the entrypoint domain is the one containing the necessary singleton elements for the proper

management of the continuum. Reasonably, there are some aspects that do not match the fully distributed

paradigm, such as the aerOS portal, which is a web service that contains the UI through which the user handles

different aspects of the continuum, its services and the data. Also, although security matters are highly

decentralized (every domain handles the roles, permissions and access profiles to different aerOSô domains

features and data), there is still the need of a federating entity gathering together common policies for a

continuum.

In short, the entrypoint holds the relevance of the direct interaction with the continuum IT professionals,

acting as the landing area and exposing via a UI the main management capabilities of the continuum.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 39 of 136

Noteworthy, all underlying domains will perform all operations of the continuum acting as equal peers

(including the entrypoint).

Figure 7. Concept of entrypoint domain in an aerOS continuum

It is important to highlight here that only small set of components will live in an entrypoint domain compared

to all the rest. Everything related to data acquisition, data transformation, data exposition, federation, nodesô

exposure for potential microservice allocation, monitoring, and smart capabilities remains equal to all nodes.

Therefore, characteristics such as data access, trust or interdomain communication remail unaltered regardless

the entrypoint domain selection.

Without digging in detail of the components (see 5.5 and 5.6 for that purpose), here is the list of the elements

of the Meta-OS of aerOS that will need to mandatorily live in the entrypoint domain:

¶ aerOS Management Portal: very relevant element as it acts as the ñgateò to the continuum data and

management, including the commissioning of workloads orchestration.

¶ aerOS Identity Manager: relying on mature open-source solutions, it becomes necessary to share

common information about profiles from all the domains in the continuum.

¶ Active Directory Database to feed the two previous elements and to act as rooting element for users,

profiles and global information about the users of aerOS.

Remarkably, one of the paramount requirements of aerOS is flexibility, therefore there is no mandate on which

domain should act as the entrypoint. Resting on various aspects, the decision on which domain in a continuum

should act as entrypoint may be different. Even though there are some common guidelines that have been

envisaged by the aerOS developers, the final decision on where to place the entrypoint domains (i.e., where to

place the components of the list above) is completely open and up to the adopterôs system administrator.

Since any domain in the continuum can act as entrypoint as per userôs choice, impact in terms of KPIsô fulfilment

can vary. Also, there will exist variability in the impact of the decision depending on the number of actionable

aerOS nodes or legacy nodes. From another perspective, data transactions efficiency may come into play when

intertwined with network considerations. Also, when the design of a continuum is oriented to data-intensive

applications, their structure, format, semantics, etc. are important elements to consider for the decision. Also,

errors in transactions could be related to the necessary inter-domain communication related to the entrypoint.

The following table offers some hints to serve as guidance for selecting an entrypoint in a continuum.

Table 1. aerOS Terminology table

Angle taken from adopter Guidelines and recommendation Impact in KPIs

User Performance: it is desired

to maximize QoS and QoE for

the user managing the

continuum.

Here, the recommendation is to settle the entrypoint

domain that hat has better inbound and outbound

access from the internet, assuming that the user will

be connecting from a remote machine (browserôs

host). Therefore, the QoE will be increased.

However, it is worth mentioning that for different

QoE ŷ

QoS-UI ŷ

More agile update

of security users

and policies ŷ

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 40 of 136

It must be considered that a user

will access via the public internet

to the management portal.

operations (e.g., data delays) will depend on other

factors as well.

Overall system performance:

two aspects outstand: (1) the

more capacity in the entrypoint,

the better manageability, (2)

aerOS is a distributed system

relying on federation of domains.

The guidelines here will be to place the entrypoint

domain where most abundant computing resources

rely. Usually, this leads to select the entrypoint in the

domain that is in (or closer to) the cloud, as it will

entail: (i) better capacity to install larger software,

(ii) more availability, (iii) better network connection,

allowing for the federation to experiment smaller

delays.

Response time in

orchestration Ź

NFV and SDN

potential ŷ

Cloud-native

compatibility ŷ

Data angle: aerOS allows to

inspect existent data via the

portal, using EAT, Grafana and

other tools. Also, there will be

cases with heavy batch data

loads, that clearly benefit from

entrypoint closeness.

If: (i) the expected use cases are data intensive, at rest

and at move, such as managing batch and stream,

pub/sub schemas or direct query access and, (ii) the

origin of data is usually known, the recommendation

is to place the entrypoint at the same domain where

data will be coming from.

Consistency ŷ

Data losses Ź

Simultaneous

data pipelines ŷ

Data transfer rate

ŷ

Exploitation angle: in a case

where a company wishes to

employ aerOS to ensure

compatibility with their already

existent tools, it is important to

place the entrypoint correctly.

The recommendation is to spot the entrypoint

domain where enterprise applications are located.

This roots on the potential sharing of permissions,

cybersecurity policies, roles-based access, etc. Also,

placing the manageability web dashboard close to

the already functional elements will reduce the risk

of losses, as same backup/maintenance mechanisms

will be easier to replicate.

Unsuccessful

correct

authentications Ź

Efficiency of API

Gateways ŷ

Trust level ŷ

Developersô usability: the

installation of aerOS and further

services requires access to

certain repositories, and may

imply modifications to low-level

capacities in the IEs forming the

continuum.

Here, the recommendation is to decide the entrypoint

where: (i) the easier management access to IEs (via

SSH, K8s management tools, é) is, (ii) the more

permissions are provided to developers ï e.g., access

to system kernel or network interfaces, installation

options, (iii) better network connectivity to access

package repositories.

Diversity of IEs

supported ŷ

IoT scenarios

covered ŷ

Self-features in

nodes ŷ

Multi -stakeholder presence

and preference: a continuum

can (and most likely will) contain

computing nodes and data

coming from different owner

(stakeholders) that wish to share

their resources for a common

purpose. Such scenarios entail

some specific reflections.

In general, in those cases it is recommended to place

the entrypoint domain in one domain that is owned

by the entity with the most prominent role

(coordinator of a consortium, main representative of

a cluster, etc.). Once this is decided, the previous

considerations would apply. However, it is accepted

in aerOS (in those cases) to propose the existence of

multiple entrypoint portals, each of them acting over

the ñcontinuumò of a single stakeholder, and

performing the federation over mutual resources and

data.

Number of

stakeholders

deploying aerOS

ŷ

Data exploitation

ŷ

Federation

potential ŷ

Overall analysis: A relevant consideration that applies to all reflection is that, in general, a wise selection

for the entrypoint is the one that has more computation, storage and network capacity. Usually, those criteria

imply that cloud domains (high availability, reliability, bandwidth) are often preferred. Also, if the adopter

entity knows in advance where the services will be deployed most of the time, or if the data location is

acquainted for, the selection of the entrypoint domain will be more straightforward.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 41 of 136

However, due to the intelligent design of aerOS decentralization capabilities, there are elements that

SHOULD NOT be a factor for the decision. This is because most of aerOS basic and auxiliary services are

conceived to be present in all domains. Some of those factors could be:

(i) Type of nodes included in the domain: as they will appear to the orchestration schema equal to

the rest (defined by their own characteristics, without preferences).

(ii) Consistency of formats in the data, or the convergence of data sets into a semantically expressed

ontology. Tools such as semantic annotator and semantic translator may live in any domain

(entrypoint or not).

(iii) Data Fabric features. Every domain will have its own Data Fabric, that will include data

federation, data security, data protection, etc.

Trust in message exchange ï IOTA Tangle will be present in the continuum materialised in a hornet node

per Infrastructure Element, therefore regardless the domain type (entrypoint or not), the desired messages

will be immutable and traceable.

In the next figure, a simpler example can be found. Departing from the demonstrator showcased in the mid-term

review (April 10th, 2024), an uncomplicated rationale can be explained.

There, three domains came into play. One was focused on IoT sensing and actuation while the other two

provided useful computing equipment. One of the latter offered nodes tiered on edge and far-edge spots of the

continuum, sticking to unreliable network (4G SIM card underlying a low-power wireless connection), while

the other rested at a cloud datacenter. Based on reflections #1 and #2 in the table above, and considering that

exploitation and data diversity were not a determinant factor, the selection of the entrypoint fell to the cloud

domain. Further information about the particularities of the demonstrator can be found in Section 7.1.

Figure 8. Simple example of entrypoint domain selection rationale

5.3.3. Next steps after continuum conformance

At this stage, system owners will be ready to tackle the deployment of aerOS. The philosophy of the installation

and usage strongly relies on those domains (see conceptual installation procedure in deliverable D5.2

ñIntegration, evaluation plan and KPIs definition (2)ò). Depending on whether a node belongs to one domain or

to another, and also the role that it holds within it, will contain certain basic and auxiliary services or other.

Remarkably, once domains have been selected, and the components of aerOS architecture have been properly

placed, those must be combined together to form the actual continuum. The mechanism through which such

combination (i.e., federation) takes place in aerOS is thoroughly described in section 5.4.3.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 42 of 136

5.4. aerOS stack and runtime
To develop aerOS, following a Meta-OS approach that encompasses all continuum aspects discussed earlier,

the system is structured around key fundamental concepts. Section 5.3 has offered a comprehensive overview

of the aerOS system, consolidating such main concepts and building blocks.

The aerOS runtime involves any parts of the Meta-OS of aerOS that make the global functioning of the resource

and service fabric to function. In a way, the aerOS runtime covers those essential aspects of the Meta-OS around

which the rest of the components (basic and auxiliary services) orbit. The conception of this runtime is a novelty

introduced by the aerOS project can be conceived as the first step to consider an IoT-Edge-Cloud IT ecosystem

ñaerOS-compliantò or ñpowered by aerOSò.

The same way the Linux-based computers work over a set of processes

interacting with a set of instructions of the processor (the kernel) to allow

the management of the filesystem, the network, interfaces, etc. the

aerOS runtime allows to handle the underlying complexity derived

from widespread, heterogeneous resources into a practical, agreed,

standardised, canonical set of methods and tools that permit the

interaction (southbound) and the creation of services on top of it

(northbound).

In practical terms, it can be said that the installation of an aerOS runtime

in the computing elements of an IoT-Edge-Cloud deployment becomes

the first step for continuously using the continuum, thus becoming the

essence of the Meta-OS. Therefore, a distributed system that builds on

top the presented runtime is what can be called ñaerOS-basedò.

The goals of the aerOS runtime are the following:

¶ To abstract the underlying heterogeneous resources so that they are seen (and managed) uniformly

(taking advantage of the concept of IE).

¶ To manage diverse operating systems (e.g., Ubuntu, custom Yocto-based OS), container runtimes (e.g.,

Docker, containerd) or any deployment management layer above (e.g., Kubernetes), so that the effective

execution of workloads is achieved as expected.

¶ To be able to orchestrate such workload execution based on requirements (intentions as blueprints)

expressed by users (deployers) but also considering the global evolution of the continuum and

advancing eventualities thanks to ML models.

¶ To introduce that smartness all around the continuum, ensuring an actual decentralisation in the

orchestration, avoiding single points of failure, and truly empowering the edge areas in a distributed

ecosystem.

¶ To make the resources (although quite different and geographically dispersed) discoverable from any

point of the continuum; thus, allowing a quick and efficient re-distribution of the workflows in a system.

¶ To make sure that certain actions related to the continuum (e.g., reorganization) are traceable and

immutable.

The following sub-sections dig deeper in the particular mechanisms that conform the aerOS runtime.

5.4.1. aerOS Infrastructure Element

As mentioned, the essential functioning of the Meta-OS of aerOS is based on the establishment of computing

nodes (infrastructure Elements) and how they group together (in domains). In aerOS, an IE is the most granular

entity able to be controlled and managed by the Meta-OS, conceived as the most atomic element for computing,

network and data orchestration in the continuum.

Figure 9. aerOS runtime component

as part of aerOS stack

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 43 of 136

The whole organisation of the services in aerOS assumes that there are entities (forming part of the continuum)

that can be relied to offload the execution of workloads upon. Those entities (IEs) are heterogeneous, as is the

continuum, but have several aspects in common. The features that must characterise an IE of aerOS are:

¶ Capacity of running containerised workloads.

¶ Existence of an underlying OS where upper software can be installed.

¶ Availability of computing, storage, and networking capabilities.

¶ Availability of network interfaces that can be controlled.

¶ Capacity of hosting an API exposing their monitoring and services.

¶ Capacity of OS accessibility and manageability at administrator level.

In an IoT-Edge-Cloud deployment, every computing-capable piece of equipment (virtualised or not) meeting

the previous characteristics would qualify as a potential IE of aerOS. This way, this concept can embrace a wide

variety of potential computation targets. Figure 8 depicts only a few examples of potential IEs in aerOS. Some

of those examples are: i) nodes in a K8s cluster (master and workers alike), ii) an edge-computing single-board

computer (SBC) with a preinstalled OS (e.g., Raspberry Pi), iii) nodes in a KubeEdge deployment (cloud and

edge alike), and iv) virtual machines. Other examples might be envisioned.

The previous examples already help to realise that the concept of IE has been established to nominate resources

that can live across the whole continuum, starting from resource-constrained devices up to traditional (and new)

edge computing equipment and local data centres or large clouds. This way, the first step towards a uniform

management of the underlying complexity of the continuum is laid out.

However, all IEs will have their peculiarities. In order to consider those in the Meta-OS functioning, aerOS is

developing a novel, semantic description for expressing the different capacities and characteristics of a single

IE in an aerOS continuum (such semantic data model is elaborated in section 5.4.3.3). This includes total

resources, ownership, list of peripherals available, computing capacity, container management framework, and

OS, among many others. Within these definitions, enough descriptive fields have been established to indicate

aspects about where in the continuum the specific IE is located. As said, IEs may exist in the whole arch of the

topology of the continuum. All previous information can be used to populate the ñtagò about which IE flavour

it is. This way, IEs are more easily identifiable depending on the spot in the continuum that they are located in,

opening up advanced orchestration capacities. For instance, it might be established that the ñfar-edge IEsò

cannot accept heavy workloads such as full-fledged, large databases.

A relevant, specific case related to IEs in the architecture of aerOS are the IoT devices. As indicated in Section

4.1, IoT devices are a crucial part of ñcontinuumò deployments, as they can be considered both productive

elements (providing context, monitoring, exploitable data or actuation capacities) and also potential receptor

elements that could be orchestrated globally in the Meta-OS. In such case, the characterisation of IoT devices

within the continuum topology/architecture is very simple. In the case that an IoT device entails enough ñsmartò

capabilities to meet the requirements of the list above (has an OS, can run containerised workloads, can expose

an API and can be accessed in terms of storage and network), it must become actual part of the continuum

as an IE. In the case that any of the previous were not met, the IoT device would need to be attached to a proper

IE. This is the case of usual IoT devices such as certain sensors. Here, the expected set up would be for them to

directly attach (connect) to their nearest IE (for instance, an edge element with I/O capacity to connect sensors

via some communication protocol).

Figure 10. Possible Infrastructure Elements in a continuum

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 44 of 136

In addition, although the IE is the most granular entity in aerOS, there is no need of directly mapping one single

ñcomputing entityò to one aerOS IE (1:1 relation). It is possible that several computing entities are joined and

seen (from the continuum perspective) as a single IE. These specific configurations are a userôs choice (system

administrator); thus, enhancing the trait of flexibility of the aerOS architecture.

As outlined in section 5.3, on top of IEs, another level of organisation emerges. In aerOS, the grouping of

various IEs form the domains. These are characterised as a set of one or more IEs sharing a common instance

of the basic services of aerOS among them.

The two previous descriptions are rather useful in terms of deployment organisation, as it has been designed (by

architecture) that IEs and domains must stick to certain functioning roles (directly mapping to components

installation):

¶ IEs: must incorporate HW/SW monitoring capacity, continuously providing to the whole Meta-OS the

information about its status. Also, they must take an active role in terms of smart self-capacities (see

5.5.5), including the registration of judiciously selected events that must be traceable.

¶ Domains: must incorporate exposure capacities, being the essential assembly unit. It also must contain

the intelligence to govern services within its boundaries (IEs that are part of it), and must deal with

users, cybersecurity, data handling and serverless usability.

5.4.2. aerOS decentralised orchestration

At the very core of aerOS proposition is the capability of accomplishing smart, automatic, decentralised decision

making in terms of service orchestration across the continuum. In the moment when all heterogeneous

computing resources in such continuum are abstracted and accessible (as IEs) and the status of those resources

is known across the ecosystem (see Section 5.4.3), the Meta-OS is ready to unleash its orchestration power. The

other two sub-sections (Section 5.4.1, Section 5.4.3) expose how to deal with the former (IE, Distributed State

Repository -DSR). Here, the approach behind aerOS orchestration is portrayed.

As per the original conception of aerOS, an orchestration process has been envisioned to oversee arranging,

managing, and coordinating services, provisioned as part of applications, with a comprehensive management of

both IT and logical network resources. Allocation and orchestration of logical resources executing a service

chain requires solving constraint-based double optimisation problems, with data about application requirements

and infrastructure as input. The discussed module includes the federated orchestration capacity, provided that a

service cannot be executed in a local domain, of spanning deploymentsô requests along the continuum, having

an overall view of it, and offloading to other domains.

After the analysis of the state-of-the-art and the evolution of the technical design of aerOS architecture (depicted

in this document), which has been successfully tested in the first implementation approach (the MVP, see section

7.1.1), it has been decided that the decentralised decision-making must be carried out by a clear two-level

structured orchestrator. In addition, the federation part of the deal is taken over by another, separate element

(aerOS Federator ï see Section 5.5.8).

According to this structure, the decentralised decision-making, materialised in services orchestration decisions,

is divided into a HLO and a LLO (as mentioned in Section 5.2). The goal of these modules is to permeate the

intelligence and flexibility of aerOS in the allocation of computing spots for the containerised workloads that

are handled by the continuum. There, by making use of advanced AI algorithms that optimise parameters such

as latency, it can be smartly decided which resources within the continuum to employ. Also, to ensure accuracy

on decision-making, the principle of locality must be overcome, reaching the horizon of continuum visibility.

Here comes into the scene the federated infrastructure of a distributed network of brokers, that allows

observation of the current state of the whole continuum. The component in charge of connecting the previous

(the different domains) is the aerOS Federator, and the conjunction of all the elements (HLO, LLO, aerOS

Federator) is the aerOS Federated Orchestrator.

In this section, the focus is put on how the two-level orchestration will be implemented in aerOS. This point is

where a major part of aerOS novelty lies. Figure 9 expresses the basic functional principle of it.

The aerOS decentralised orchestration decision-making process begins with the expression of an end user

intention to deploy a vertical service (a non-aerOS, Basic or Auxiliary, service) in the previously established

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 45 of 136

IoT-Edge-Cloud computing continuum: a set of IEs running aerOS Runtime and Basic services grouped in

domains. Because of the heterogeneity nature of the continuum, it is not possible to provide users complete

freedom to express their potential deployment requirements. Thus, this deployment intention is expressed

through the selection and specification of a finite set of predefined requirements, which have been properly

defined after a thorough process which involved staff with previous experience in the subject (technical task

leaders and use case scenarios leaders). After the definition of the deployment intention in the Management

Portal by filling a form (New service deployment), this component converts the request into an Intention

Blueprint (in TOSCA1 format), which needs to be forwarded to the aerOS Federated Orchestrator module.

There, the combination of HLO and LLO (supported by overall continuum perspective brought by the aerOS

Federator) achieve the successful execution of the vertical service in an IE (or set of IEs) of the continuum.

It is worthwhile to describe the orchestration module in more detail. As mentioned, the decentralised decision-

making orchestration module or the aerOS orchestration basic service is composed of two different modules:

¶ High-Level Orchestrator (HLO): this component follows a general approach for all the continuum,

being independent from the IE types which compose a domain. Every domain has exactly one instance

of HLO. This part of the orchestrator is in charge of taking the final deployment decision, thus deciding

where each component of the required service will be deployed (specific IEs from specific domains).

However, the HLO does not actually deploy the services, but sends its decision in the form of a

ºImplementation Blueprint to the specific LLOs, depending on the selected IEs.

¶ Low-Level Orchestrator (LLO): this component follows a specific/custom approach depending on

the underlying container management framework of the IEs of a domain. In that sense, the

Implementation Blueprints coming from an HLO will be interpreted differently by each LLO in order

to provide the expected (deployment) functionality. In aerOS, the LLOs are based on the K8s Operator

Pattern, which provide a framework to automatically control the lifecycle management of resources.

This does not mean that LLOs only support the management of K8s workloads, but that actually

leverage this widely used and tested resource management framework to finally reflect the desired state

of services (to be deployed in a certain IE), with a common way to express the Implementation

Blueprints (custom K8s Custom Resources) that is independent on the container management

framework used in the selected IE, so that agnostic for the HLO. Therefore, a custom K8s Operator has

been developed to cover the most common and state-of-the-art container management frameworks:

Kubernetes, Docker and standalone containerd.

The first step of the process in Figure 10 (vertical service deployment request with specific requirements) is

conducted in the aerOS Management Portal (described in depth in the section 5.5.8), which provides a user-

friendly interface to facilitate the deployment request with determined requirements. The portal is only deployed

in a single domain, named as Entrypoint domain. This Entrypoint domain does not act as a superior layer entity

in the continuum. On the contrary, any domain in the continuum can act as an entrypoint, as per user's choice

(see mitigation/migration concept in Section 5.3).

1 https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

Figure 11. aerOS two-level structured orchestration for decentralised decision-making

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 46 of 136

After the definition of the deployment intention in the Management Portal, this component converts the

request into an Intention Blueprint, which is further forwarded to the HLO. As explained above, each aerOS

domain has a single instance of the HLO, so it is needed to decide to which domain will be forwarded the

orchestration request to. Selecting a single domain to act as an ñorchestration Entrypointò would add a new

centralization point to the architecture (thus, potential single point of failure), which collides with the

decentralized nature of aerOS decision-making. Therefore, given how the networkôs load balancing has been

approached in the state of the art [8], aerOS has foreseen the development of a specific component here, called

Entrypoint balancer ï which is based on the state-of-the-art least connection load balancing algorithms ï that

aims to relax the centralised needs of a unique, 1:1, direct relation Portal->HLO, towards a 1:N, fairly distributed

approach. In fact, with this addition, the existence of an Entrypoint balancer emphasises the decentralised nature

of aerOS orchestration. This way, regardless of the "Entrypoint domain" choice, the inception of orchestration

(the HLO that will initiate the process) is balanced across domains. This conceptual approach is represented in

Figure 10, in which the central domain has been picked for the sake of visual clarity.

 The aerOS Management Portal interacts with the appropriate HLO (as selected by the Entrypoint balancer).

The HLO receives the Intention Blueprint and executes the necessary logic to conduct the allocation decision,

which is run for each service component that compose the service. This logic includes a pre-filtering engine (to

dismiss the IEs that do not meet the specific requirements) and the usage of judiciously selected frugal ML

algorithms2 that optimise the allocation based on the current and forthcoming state of the continuum. For the

latter to happen, the HLO benefits from the federation of domains exerted by aerOS Federator. In that regard,

the HLO is aware of the domain to which belongs the selected IE to deploy the service component, so if the

selected IE belongs to another domain, the deployment request is sent to the HLO of the selected domain.

Finally, an Implementation Blueprint is generated and fed to the proper LLO(s).

Reflecting on the two previous points, it is worth to highlight the different between HLOs and the Entrypoint

balancer. Directly requesting the HLO of the Entrypoint domain to be the unique entry gate for deciding the

allocation would create unnecessary unbalance in the continuum. Simply put, if the HLO of a hypothetic domain

(A) is always charged with the first decision (allocation within the domain A, or offloading to other domain), it

might be overloaded, as it will be forced to perform certain calculations every time that a workload must be run

in the continuum. However, creating a load balancer before directly requesting to the HLO of domain A,

guarantees that other HLOs in the continuum are requested first, thus distributing better the ñneeds of the first

processing of the decisionò. In other words, the main differences between both are:

2 The algorithms to be used, their design, training, inference, etc. will be a matter of focus during the next months of the

project, as an intersection of tasks T3.3 and T4.3.

Figure 12. Entrypoint domains in decentralised decision-making of aerOS

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 47 of 136

¶ In every moment, there is only one Entrypoint balancer existing in the continuum (located exactly

where the management portal is, and attached to it), whereas there are always as many HLOs as domains

exist.

¶ The HLO interprets the workload that must be executed, the Intention Blueprint, the state of the

continuum, etc. and takes an allocation decision. This requires (likely, heavy) processing to be

performed by the IE where the HLO lives. On the contrary, the Entrypoint balancer doesnôt analyse the

information of the workload to be executed. It just applies a (rather simple) algorithm to forward the

first request to one HLO in the continuum (not based on the operation information of the particular case,

but on balancing rules). Thus, not heavy processing is required.

Thus, in essence, the existence of an Entrypoint balancer does not overlap the role of the HLO. In contrast, they

are mutually complementary to deliver a more efficient, decentralised continuum.

 Afterwards, LLO(s) (several may exist in a domain, one for each container management framework that

run the IEs) receives the Implementation Blueprint (it follows the same format instead of the LLO type) and

interprets it in a way that actual workload deployment can take place on its underlying, controlled IEs.

Therefore, custom developments have been made to achieve the LLOs expected functionalities, which are

described insightfully in the deliverable ñD3.2 Intermediate distributed compute infrastructure implementationò

and in the future ñD3.3 Final distributed compute infrastructure specification and implementationò.

To summarize, this process has been depicted as a sequence diagram that has been included in section 6.3.

 As a live system, aerOS allows to review those decisions in real-time. In addition, apart from the user,

aerOS provides flexibility to the continuum itself (via its IEs) to exert reallocation requests. These reallocation

mechanisms are triggered both manually by the end users to react to some notifications or performance

information provided by the aerOS ecosystem, or automatically by the aerOS basic services (self-capabilities,

orchestrator itself) to avoid potential service execution failures. Finally, a HLO receives a reallocation request,

then makes a new allocation decision, and finally sends instructions to the corresponding/selected LLO(s) in

order to perform the needed actions in the proper IEs: remove service workloads from the old IEs and run them

in the new selected ones. Same as the service orchestration process, this process has been depicted as a sequence

diagram that has been included in section 6.3.

Deployment approaches: Once the orchestration process has been described from an architectural point of view,

it is interesting to move to a more practical approach to envision possible deployment. Three general and

simplified deployment scenarios have been identified:

1. Fully automatic deployment: users do not select a specific domain as an entrypoint to deploy a service

because they want to let the aerOS Meta-OS decide the best deployment location. This is the optimal

(and most novel) functioning of aerOS, that offloads all the decision work to the smart, automated Meta-

OS intelligence. In this case, the singleton Management Portal triggers the ñEntrypoint balancerò, which

will forward the request to one available HLO (based in the configurable balancing rules). In this

scenario the need for the Entrypoint balancer is emphasized, because without this component the same

domain will always be used as the entrypoint for the orchestration request, risking unnecessary

overloads. By following the aerOS approach, a new centralization point is avoided.

2. Semi-automatic deployment: domain administrators or users with a great knowledge of the resources

that underline each domain may want to take part in the decision process to better control the final

deployment location of the required services. At the end, human intervention may improve any decision

taken by state-of-the-art AI models, and in addition, these human decisions can even improve those AI

models. Therefore, in this deployment scenario, the user (through the proper form of the portal) can

specify only a subset of requirements, or give overall, vague instructions about the domains/IEs for

prioritization or selection purposes. The portal forwards the deployment request to the HLO of the

chosen domain, or to one domain from a set of selected domains, so here the ñEntrypoint balancerò can

also fit. Then, the orchestration process is performed as per the first scenario.

3. Manual deployment: users select a specific domain, or even a specific IE or set of IEs from a domain

to deploy the requested service. In this scenario, the Intention Blueprint is directly forwarded to the

specific HLO, so the Entrypoint balancer can be bypassed.

https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 48 of 136

5.4.3. aerOS distributed state repository

5.4.3.1. NGSI-LD mechanisms for aerOS

One of the keys behind the efficient, smart orchestration of aerOS is the capacity of accessing the state of the

continuum in a decentralised way. This means that, regardless the spot in the ecosystem, any HLO can observe

the available resources across the continuum to take the best allocation decisions. To achieve this, far from

relying on a central repository, aerOS has envisioned a novel, ambitious paradigm for sharing the state of the

continuum. Therefore, a well-defined and mature specification for modelling and exchanging contextual

information must be selected, so NGSI-LD perfectly fits in the aerOS scope. NGSI-LD3 is an information model

and API for publishing, querying, and subscribing to context information, standardized by ETSI ISG CIM and

based on JSON-LD.

In NGSI-LD, the world is seen as a set of entities. Precisely, an NGSI-LD entity has:

¶ an entity identifier that uniquely identifies the entity,

¶ an entity type that can be seen as a description of what attributes one can typically expect to be present,

i.e., the data model, and

¶ attributes which are where the real data of an entity are stored. Attributes include system timestamps

(creation, modification and deletion), values and sub-attributes, which are basically pieces of metadata

that describe the attribute such as the unit.

Thus, almost anything can be modelled as an entity, for example, a room, a building, a temperature sensor, or a

person. This is all up to the data model used. In the case of aerOS, a custom ontology has been developed

(thoroughly described in section 5.4.3.3), in which IEs and ServiceComponents are the key entities to handle

in the context of orchestration.

This contextual information is managed by Context Brokers (CB), which stores the most recent value of the

attributes of NGSI-LD entities. These values can be obtained through a direct HTTP request to a REST API or

via a publish/subscribe mechanism provided by the CB. Despite the existence of several implementations of

NGSI-LD Context Brokers, the most logical choice for aerOS is FIWARE Orion-LD4 for two main reasons: (i)

it is developed in C, which is translated into a higher execution performance because this language is compiled

rather than interpreted; and (ii) FIWARE Foundation is an active partner of the aerOS project, so the broker can

straightforwardly be enhanced and fine-tuned to meet the needs of the project.

The context of each CB has a local scope as it is attached to the broker. Nevertheless, NGSI-LD provides

mechanisms for distributing this local context information among different Context Brokers based on the

creation of Context Source Registrations (CSR, from now on shorted to just ñregistrationsò). A registration is a

mechanism to inform an NGSI-LD CB about where to find more (non-local) entities. Upon queries, not only is

an entity looked up in the local store of a broker, but the registrations are also consulted and for all matching

registrations (e.g. a query to retrieve all entities of a certain type and the CB has a registration indicating that

entities of that type can be found in another broker), a distributed query is sent to the broker behind the

registration, and its information (its entities) is appended to the final response, so the process is completely

transparent for the end user.

5.4.3.2. aerOS Federation enablers

In the above subsection, it has been stated that aerOS has envisioned a novel, ambitious paradigm for federated

sharing of the state of the continuum to get rid of centralization. Concretely, the concept of a ñdistributed state

repositoryò has been embraced. In the context of the aerOS architecture, a distributed state repository is a

decentralised storage system responsible for maintaining the state information among different elements or

components present in the continuum, fragmentarily corresponding to local domains.

3 https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_cim009v010801p.pdf
4 https://github.com/FIWARE/context.Orion-LD

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 49 of 136

In practical terms, the distributed state of aerOS is handled by one instance of Orion-LD in each aerOS domain,

building a Distributed State Network of Brokers (DSNB), with the contextual information (as NGSI-LD entities)

federated among them through the automatic establishment of the necessary ñinclusiveò registrations by the

aerOS Federator module included in the aerOS management framework (see section 5.5.8). To achieve it, the

API of the CB must be reachable by the CBs of the other domains, so it must be publicly exposed through the

API Gateway of each domain or via custom networking solutions defined in the aerOS network fabric.

NGSI-LD is quite versatile and offers several ways to configure the registrations for the distributed state, but in

aerOS it has been decided that each broker in the DSNB only is responsible of managing the state of its own

domain (pertinent fragmentation in local domains to achieve global federation), therefore avoiding replication

of data. Thus, in aerOS all the NGSI-LD entities live in a single CB, but users or services in aerOS can query

any of the brokers of the DSNB and obtain the same data, despite being actually stored in a single domain

broker, provided that the registrations are set up correctly. For this layout to work, each CB needs to have (at

least) one registration for each and every other broker in the DSNB (see Figure 11). However, NGSI-LD also

provides mechanisms to replicate entities by creating specific ñinclusiveò registrations, which can be leveraged

to replicate key entities such domains so that enhance the Meta-OS with resiliency and backup mechanisms.

5.4.3.3. aerOS Continuum Ontology

The inherent complexity of the IoT-Edge-Cloud continuum managed by the aerOS Meta-OS needs to be

modelled into a data ontology as easily as possible, being understandable by humans and efficient for machine

communications. In addition, there is a clear lack of existing ontologies for the computing continuum, and the

minimal initiatives that have been found did not fit into the continuum conceived in aerOS. Therefore, an

ontology for the IoT-Edge-Cloud continuum has been created from scratch for aerOS, inspired by some existing

ontologies (e.g., FOAF5) and standardization initiatives such as OASIS TOSCA6. This ontology, as shown in

5 http://xmlns.com/foaf/spec/
6https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=f9412cf3-297d-4642-8598-

018dc7d3f409

Figure 13. Example of a Distributed State Network of Brokers

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 50 of 136

Figure 12. aerOS continuum ontology is intended to encapsulate the essential concepts, relationships, and

properties relevant to data management, processing, and orchestration within this distributed computing

architecture, so that it has been designed having into consideration two essential pillars in the aerOS architecture:

(i) Domain federation and continuum management; and (ii) Decentralized orchestration. Before moving to a

more detailed description of this ontology, it must be stated that, as it was explained in ñD4.2 Software for

delivering intelligence at the edge intermediate releaseò, (i) the Linked Open Terms (LOT) methodology has

been followed to develop it; and (ii) this is a live ontology that will be enhanced as the project progresses, so

some parts of the continuum may not be covered yet or may even be expanded.

When it comes to continuum management, entities that belong to the aerOS AAA (Authentication,

Authorization and Access) block aim to represent the human side of the continuum, which is the relationship

between them and the services and resources that conform the continuum through the definition of users, roles,

and organizations. To create these classes, the FOAF ontology has been used, so aerOS users are assigned with

a unique identifier, and also present additional information such as their given and last name following the

FOAF Person concept. This aerOS user is member of an organization, which has a set of predefined roles that

map to the permissions to perform certain actions in the aerOS Meta-OS. Therefore, each user is member of an

organization and has assigned a role within this organization, which is the owner of the aerOS continuum in

use.

The physical computing resources (converted into Infrastructure Elements after the installation of aerOS, see

section 5.3) are the minimal computing unit of aerOS, so they must be represented to show the current state of

the continuum by taking advantage of the defined monitoring processes in aerOS. Infrastructure Element

emerges then as the central piece of the ontology. For instance, Self-awareness module (see 5.5.5) updates the

attributes of IE entities to enable its performance monitoring.

Nevertheless, isolated IEs entities are not enough to depict the aerOS continuum, so conceptual layers must be

added on top of the IE entity. The domain entity can be seen as the source of truth for the aerOS domain

federation, because it groups a set of IEs and Low-Level Orchestrators (LLO), presents a single public URL, a

Boolean attribute to indicate if the domain is the entrypoint of the continuum and a custom status as the IEs

(preliminar, functional or removed). Moreover, each IE is linked to a single LLO that is mapped to a certain

container management framework: Docker, Kubernetes, containerd and possibly others as this is expandable.

At this point, the ontology covers the aerOS network and compute fabric, but the other essential pilar is still

pending: the decentralized service orchestration. According to the aerOS stack and Service Fabric (see section

5.4 and 5.5.3), aerOS follows a micro-services approach translated into containerized workloads as the minimal

execution module. Thus, the entity named ServiceComponent aims at describing these containerized workloads,

by including the necessary information to finally run them in the IEs (container image, environment variables,

network connectionsé). In that regard, ServiceComponents indeed are the core entities of the aerOS

orchestration as the whole orchestration process is performed independently for each ServiceComponent. This

implies that the specification of requirements to make the allocation decision must be included in the ontology:

IE requirements to let the HLO perform a pre-filtering of candidate IEs and SLAs to feed the allocation AI

algorithm.

Like the relationship between Domain and IE entities, the Service entity has been thought as a conceptual layer

in top of ServiceComponents to apply a logical grouping among them, which facilitates their management by

the end users. Moreover, a lifecycle management model, managed by the HLO and underlying LLOs, has been

designed for the orchestrated IoT services in the continuum, which is applied to the status attribute of the

ServiceComponent entity instead of the Service because of its logical nature. This way, for instance, when

services are removed from the continuum, their components (containers) are removed from the IEs, but their

associated ServiceComponent entities remain stored in the distributed state repository with a Finished status.

This approach allows to control the full lifecycle of service deployments with a transparent monitoring solution,

or even redeploy them if necessary or requested by end users due to the persistence of that information.

Finally, as this continuum ontology is expected to be one of the main outcomes of aerOS, it will be properly

and publicly published according to the standards of the LOT methodology, thus available in well-known public

ontology repositories such as FIWARE Smart Data Models, which is fully aligned with the NGSI-LD standard.

https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 51 of 136

5.5. aerOS basic services

5.5.1. Network and compute fabric

aerOS initial concern as a Meta-OS is to establish an infrastructure continuum over a set of diverse

communication and computational resources. These resources are not only located in different administrative

domains and geographical locations, but they also consist of different architectures, whether physical or virtual.

The aerOS Network and Compute fabric, a main component of its architectural design, establishes the

underlying framework that abstracts this variety of heterogeneous computing resources and exposes them as a

homogenized IoT-Edge-Cloud continuum environment. To this end, aerOS has developed a suite of dedicated

services, among its core offerings, which create a unified layer for managing connectivity, communication, and

computational resources, ensuring efficient integration and secure network interactions.

This design integrates and exposes heterogeneous resourcesô capabilities under a unified management and

orchestration framework, providing a common interface for allocation, runtime access and monitoring. It has

the dual responsibility of both providing a common access interface, which abstracts heterogeneities, and

provisioning for their network connectivity. This layer provides the basis for a seamless operation of

applications and services, as explained next in the service fabric section.

Network and Compute fabric harnesses the aerOS domain as its fundamental building block. Each domain, with

the support of aerOS network and compute fabric services, acts as an independent administrative unit with the

capacity to oversee its own compute, storage, and network resources. The unified control plane, provided by

aerOS Network and Compute fabric, plays a pivotal role in streamlining the management and orchestration of

these resources across the continuum. It offers advanced functionalities such as dynamic resource allocation,

intelligent load balancing, and automated scaling, ensuring optimal resource utilization and performance.

Through seamless integration with the federated domains, facilitated by standardized protocols and interfaces,

Figure 14. aerOS continuum ontology

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 52 of 136

the unified control plane enables cohesive governance and coordination of resources. This integration exposes

a consolidated pool of resources, poised to serve as the foundational underpinning for hosting IoT services and

applications, offering enhanced scalability, reliability, and security for the entire ecosystem.

The network fabric serves as the communication backbone, facilitating fast and dependable packet transmission

between integrated components across the aerOS ecosystem. Meanwhile, the compute fabric encompasses a

diverse array of computing resources, referred to as Infrastructure Elements (IEs) within aerOS. These resources

are responsible for delivering the requisite processing power to execute the requests of IoT developers, utilizing

containerized workloads for efficient deployment. By leveraging this compute fabric, aerOS ensures that a pool

of resources is readily available to fulfill user queries, seamlessly providing the most optimal candidates based

on the specific requirements of each use case. This abstraction shields users from the complexities associated

with discovering and managing heterogeneous architectures, offering a streamlined and user-friendly experience

within the aerOS environment.

While the initial architecture release set the design principles for the compute and network fabric, the

implementation of the MVP provided valuable input that enabled a more elaborate and detailed definition which

is reported in this section. As initially planned the key features of aerOS network and compute fabric are:

¶ Scalability: the ability to expand seamlessly, without sacrificing performance, as additional

infrastructure is introduced to the aerOS ecosystem.

¶ Reliability : ensure robust and continuous operation, even when there are component failures, by

supporting redundancy and failover mechanisms.

¶ Flexibility : The fabric should support various types of workloads and applications, allowing for

dynamic allocation and reallocation of resources as needed.

¶ High Performance: tacitly provide for the fulfillment of each use case the most efficient resources

while ensuring the most efficient communication among dispersed computing nodes.

¶ Transparency: abstract access variety and offer homogenized interface for resource management and

orchestration

The Network and Compute fabric within aerOS mutually benefit from their interaction with the Service fabric.

While the Network and Compute fabric serves as the execution substrate for services, the Service fabric

facilitates the provisioning and management of compute resources through APIs. This symbiotic relationship

enables dynamic scaling and orchestration in response to fluctuating workload demands. By abstracting access

to computing, networking, and storage capabilities, aerOS runtime and services provide a unified interface for

users. Additionally, APIs expose and federate these resources coherently across all aerOS domains, ensuring

seamless integration from edge to cloud. This cohesive approach optimizes resource utilization and enhances

overall system efficiency within the aerOS ecosystem.

As aerOS evolves instrumenting container orchestration, it leverages on containerized environment interfaces

as its foundational framework. Essential functionalities such as persistent storage for data availability and

redundancy, networking between Infrastructure Elements (IEs) with advanced features like overlay networks

and network segmentation, and management of network resources are all standardized through interfaces like

CNI or CSI. To expand its capabilities, aerOS incorporates extensions to these interfaces using operator

technologies.

Within each aerOS domain and on top of each IE, certain services are responsible for managing the domain's

compute, storage, and network resources. Concurrently, other services facilitate the federation of these domains'

resources. This federation enables the sharing of information regarding integrated capabilities and availabilities,

offering an on-demand response to existing resource availabilities. Moreover, it establishes a standardized

access channel for providing resources to host services within each domain, regardless of its location across the

continuum.

aerOS network fabric encompasses the full range of capabilities aerOS provides for establishing connectivity

among IEs within each aerOS domain and across remote domains, located anywhere from edge to cloud. Within

an aerOS domain, this connectivity is primarily based on the Container Network Interface (CNI) and the

programmability potential it offers. Virtual networks are deployed as overlays on top of existing connectivity

and offer the possibility to programmatically define their behaviour. The integration with CNI allows for

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 53 of 136

dynamic network configuration, enabling customizable networking solutions to meet specific use cases, and

ensuring flexible and scalable network management. This high level of programmability supports advanced

networking features such as custom routing, traffic policies, and network isolation, thereby enhancing the

overall efficiency and performance of containerized applications. Often -whenever possible-, network fabric of

aerOS makes use of advanced utilities available in the used frameworks, e.g.,within the Kubernetes clusters.

While all components, their interactions and actual technologies are detailed in WP3 deliverables (ñD3.1 Initial

distributed compute infrastructure specification and implementationò and ñD3.2 Intermediate distributed

compute infrastructure implementationò) the architectural design principles are listed in this section.

When it comes to connectivity across remote domains, the aerOS network fabric relies on additional network

functions to establish secure paths over public networks. These are implemented as cloud native functions

(CNFs) which are responsible for tasks such as routing, switching, firewall, load balancing and tunnelling, all

built on top of containerized environment. Beyond secure paths, there is also provision for dedicated and

completely isolated paths which can ensure both privacy and low latency. This comes as part of the network

fabric involving cloud native implementation of VPNs.

Security within this service and network fabric is paramount and TLS is employed to secure domain access

ensuring data integrity and privacy and Role-Based Access Control (RBAC) is utilized to enforce fine-grained

access control policies, allowing only authorized entities to access or manipulate resources. Furthermore,

Network Policies are implemented to control traffic flow among both IEs and services enhancing security within

each domain.

As aerOS evolves in the cloud native domain, regarding the networking area this is reflected in the shift from

traditional Virtual Network Functions (VNFs) to cloud-native implementations. While traditional VNFs which

were typically deployed as monolithic virtual machines, often faced challenges in terms of scalability,

flexibility, and resource efficiency, aerOS builds networking capabilities on cloud-native network functions,

designed to run in containerized environments and taking advantage of the microservices architecture. Cloud

native network services are deployed and used in service chaining or mesh topologies. As an example, we can

reference that accessing an aerOS domain involves a channel built with a chain of programmable network

functions like ingress proxy, TLS certification enforcing, load balancer, API gateway. All these are implemented

as microservices, and their behaviour can always be adapted based on exposed programmability. In cases when

services require direct access to another service located in a remote domain, a network service mesh practice

injects all required network functions. Generally, that paradigm shift towards cloud native networking practices

not only optimizes resource utilization but also integrates seamlessly with the programmable infrastructure,

providing a robust and adaptable network fabric.

Concluding, aerOS network and compute fabric design transforms the network path from the edge to the cloud

from just a connectivity medium to a unified computing platform with integrated connectivity capabilities, able

to support the implementation and deployment of end-to-end services which can drive innovation and support

diverse, heterogeneous verticals by providing a lower entry barrier for distributed applications, since edge and

far-edge devices will be part of this unified platform. The result is to uncomplicate the connectivity in such

environments, that often require for the IoT developer having a previous deep knowledge on the network and

connection details of every part of the architecture.

5.5.2. Data Fabric

The creation of an IoT-Edge-Cloud continuum brings a highly distributed and dynamic data landscape. With

the goal of providing a holistic view of all the data available in the IoT-Edge-Cloud continuum, whilst enabling

data governance mechanisms that help ensure a responsible use of data, aerOS aligns with the two recent data

management approaches that focus on decentralizing the management of data, namely, data mesh and data fabric

[9].

To cope with the complex data landscape of the continuum, aerOS shifts the management of data close to their

sources, i.e., to the data providing domains. In this sense, aerOS embraces the data as a product thinking and

the domain-oriented data ownership principle, as proposed by the data mesh paradigm. Owners of data

providing domains are responsible for turning their raw datasets into high-quality data products that data

consuming domains can easily discover, understand, trust, and access. Nevertheless, building data products

requires data engineering skills, as well as following standard data models and interfaces, which enable

https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 54 of 136

interoperability with data consuming domains. To help data owners in the creation of data products, aerOS

proposes a self-service data infrastructure that follows the architecture defined by the Data Fabric paradigm.

The Data Dabric paradigm introduces a metadata-driven architecture that automates the integration of data from

heterogenous sources and enables uniform access to the data through a standard interface. Aligning the Data

Dabric architecture with the data mesh principles of data as a product and domain-oriented data ownership,

results into the following novelties: i) the Data Dabric, as the self-service data infrastructure, transforms the raw

dataset of the data providing domain into a data product; and ii) the resulting data product can be accessed and

shared with data consuming domains through the standard interface of the Data Fabric.

Knowledge graphs, as previously described in [9], represent a promising technology for the realisation of the

Data Dabric architecture. Knowledge graphs enable contextualized understanding of data by explicitly

representing in a graph structure the facts (i.e., the data) connected with the knowledge we have about them

(i.e., the concepts). These explicit representations of knowledge, as concepts that relate to other concepts, in a

formal way that can be understood by machines are known as ontologies, and these play a crucial role in the

creation of the semantic layer.

Building on the principles of the knowledge graph, aerOS proposes a definition of the data product as the

transformation of a raw dataset into a semantically annotated data integrated in the knowledge graph, as depicted

in Figure 15. This mapping between the conceptual level (represented by ontologies) and the physical level

(represented by raw datasets such as data streams) is known as semantic lifting. In this semantic lifting process,

the concepts extracted from the physical datasets are captured in the knowledge graph and linked with concepts

from other physical datasets. As a result, each data product represents a subgraph of the whole knowledge graph

created by the aerOS Data Fabric.

Figure 15: Semantic lifting based on mappings between the conceptual and physical levels.

To implement the knowledge graph, aerOS has adopted the ETSI NGSI-LD standard [10]. NGSI-LD (see

5.4.3.1) defines an information model derived from the property graph model, which additionally can reference

ontologies. Thus, the NGSI-LD standard enables building property graphs where data are semantically

annotated. In addition, the Representational state transfer (REST) API defined by NGSI-LD facilitates the

management and interactions with the graph. The compact and natural information model of NGSI-LD, along

with a friendly REST API, makes NGSI-LD a promising graph standard for implementing knowledge graphs,

compared to other traditional graph standards such as the Resource Description Framework (RDF), which is

deemed more verbose and entails a steep learning curve. In terms of the NGSI-LD standard, the NGSI-LD

Context Broker is pinpointed as the component that stores the knowledge graph. The NGSI-LD Context Broker,

by means of the NGSI-LD API, allows data consumers to interact, query, and even subscribe to notifications in

the stored knowledge graph.

The aerOS Data Fabric, as the self-service data infrastructure as per the data mesh paradigm, provides a generic

framework called Data Product Pipeline for data owners to build and onboard their own data products into the

knowledge graph. The aerOS Data Fabric, by means of the Data Product Manager, exposes an interface towards

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 55 of 136

data owners to onboard new data products and orchestrate the pipeline that turns raw datasets into data products.

These components are reflected in the high-level architecture of the aerOS Data Fabric shown in Figure 16.

Figure 16. High-level architecture of the aerOS Data Fabric.

But, as illustrated in the high-level architecture, in addition to creating and sharing data products, the aerOS

Data Fabric also includes data governance mechanisms. aerOS must govern a distributed mesh of data products

scattered throughout the continuum; thus, mechanisms for cataloguing and controlling the consumption of data

products must be put in place.

In this regard, the aerOS Data Fabric also relies on the knowledge graph to integrate the metadata that supports

the data governance services. For example, when it comes to cataloguing data, the knowledge graph would

contain metadata that describe the owner of a given data product, the domain that the data product belongs to,

and even the concepts related to the data product.

Similarly, for securing access to data, sensitive classification of data or access control policies based on the

domain that provides a data product, could also be captured as metadata in the knowledge graph.

5.5.3. Service fabric

While the aerOS Network and Compute fabric provides a seamless and unified layer that removes concerns

regarding the underlying hardware differences and the geographical or administrative distribution of resources,

thereby taking care of the underlying ñexecution environment,ò the aerOS Service fabric complements this by

establishing a common ñservice runtime environment.ò This environment offers a robust framework for

managing and orchestrating IoT applications as microservices in a standardized and unified manner.

The aerOS Service fabric is built as a set of dedicated microservices capable of managing IoT service

deployment, orchestration, and lifecycle management (LCM). The primary concern of this fabric is to relieve

IoT developers of runtime concerns and decisions regarding their applications' orchestration and to automate

lifecycle management and integration with existing consuming and producing counterparts. It comprises a set

of aerOS basic services deployed within each domain, with some operating directly on top of each IE and others

having a single running instance within the domain. Collectively, these services orchestrate microservices, as

containerized-based applications, on top of the available IEs. Additionally, to achieve the most efficient results,

the aerOS Service fabric integrates advanced AI techniques to optimize resource usage, enhance service

performance, and proactively mitigate inferred failures.

The aerOS Service fabric consists of a set of cloud-native services with clearly defined boundaries and

responsibilities, enabling specialized functionalities and independent deployment. The designed service fabric

includes robust lifecycle management tools and APIs, facilitating dynamic scaling based on workload demands

to ensure optimal workload placement and resource utilization. While the orchestration of IoT applications is

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 56 of 136

the primary concern of the Service fabric, it also encompasses security, monitoring, observability, scaling, and

resiliency as integrated functionalities.

Built on top of container management framework provisions, the entire aerOS framework is constructed as

containerized microservices. The aerOS Service fabric extends capabilities and orchestrates IoT services across

various environments that support containerized workload execution, ultimately managing distributed IoT

applications and services seamlessly across diverse aerOS domains.

With the goal to enforce an orchestration process beyond each domainôs administrative boundaries, which

should promote workloadsô most efficient placement based on the overview of the status of all IEs and domains,

aerOS service fabric has adopted a federated orchestration process design which is realised based on a set of

basic services deployed within each domain. This is provided by the combined actions of orchestration services

and the federator component. These services provide to the aerOS service fabric the capability to address

constraint-based optimisation, placement related problems, considering both application requirements and

resources availability, and achieve thus the best placement of IoT vertical applications all the way from the edge

where IoT devices are integrated to the cloud where more powerful computing resources are available. Service

fabric on one hand receives usersô deployments requests, as submitted in the form of templated submissions

compiled in the Entrypoint dashboard, the Intention Blueprint , and on the other hand has an overall knowledge

of the status and capabilities of all IEs and domains across the continuum based on the services provided by the

federator, as implemented within aerOS Data Fabric.

The Intention Blueprint is received in the exposed HLO REST API exposed by each aerOS domain. From there

on, aerOS service fabric initiates the process of service placement including resources orchestration. As a first

step the received Intention Blueprint, a custom TOSCA file, is parsed and all service components, requirements

and constraints are registered in the aerOS continuum as part of the aerOS knowledge graph. The second step

includes the selection of a set of candidate IEs, these that match service requirements, by querying the continuum

via data fabric provided capabilities. Subsequently the set of candidates are forwarded to the Allocator which

integrates predictive and optimisation algorithms to make the most efficient selection for the actual IE which

should host the request. At this point it is important to say that all communication among these components is

standardized both in terms of communication channels using AsyncAPI specifications and in terms of payloads

expected in each stage. Just for informative reasons we refer that Protocol Buffers (protobuf) payloads are used

to exchange information mapping to aerOS continuum entities (IEs, aerOS domains, service components,

ownerships, etc). The flexibility provided by this design enables each domain administrator to integrate their

own decision engine by replacing the Allocator with a custom one as long as it respects the communication

specifications (all fully documented). The Implementation Blueprint which is the output of the Allocator is

forwarded to the deployment engine component. This HLO component is responsible to understand if this

deployment refers to a local IE or a remote one, located to another aerOS domain. Based on this decision the

final step is to call another HLO exposed API, the HLO Allocation Endpoint, of the domain which hosts the

selected IE. This is the exit point towards the actual enforcement layer and all information regarding both

deployed service component and selected IE are available. An Implementation Blueprint is sent to the LLO

which relies on cloud-native technique of custom operators for abstracting the access to integrated resources.

Thus, aerOS Service fabric, as a core functionality, integrates a doubled-layered orchestration engine. A concept

which enforces separation of concerns regarding a) the decision as HLO acts as an AI-powered Decision-

Making Engine as it interfaces with AI/ML services, and b) the enforcement as LLOs have the actual knowledge

of how to proceed to workloads placement, on the underlying IEs. This schema provides the required flexibility

and extendibility to integrate more resources over which aerOS can orchestrate services. It only requires the

development of an additional LLO (K8s operator).

Beyond making transparent to the user the whole process of services placement aerOS service fabric provides

a framework fully capable of overseeing the runtime status of deployed services and responding proactively or

on event triggers as required to enforce decisions that ensure security, scaling and resiliency of hosted services.

Most of the services orchestration functionality are detailed in next sections. Though it is crucial to mention that

once services are deployed, they are not left ñhelplessò, aerOS Service fabric provides the services to either

sense abnormalities and request service migration or even recognize ñsuspiciousò behaviours and request

services isolation. A full suite ready to raise functions on response to events is hosted and serverless capabilities

support programable responses to registered events.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 57 of 136

As privacy and security is of paramount importance, corresponding services are closely integrated within

Service fabric, validating usage and access to resources and data. While all the cybersecurity services which

minimize concerns regarding a secure and safe environment are presented in section 5.5.4, it would be worthy

to mention that having designed for an end-to-end security integration aerOS Service Fabric strongly connects

with DevPrivSecOps pipelines. The development and integration of a component automates aerOS service

updates after being validated in GitLab pipelines and security preserving tool chains.

As a final note, aerOS has standardized all components and functionalities of its Service Fabric. The exposed

APIs and payloads are fully documented based on these standards using OpenAPI. Internal communication

among Service Fabric components is also standardized. Both payloads and communication channels, whether

REST APIs or broker topics, adhere to OpenAPI or AsyncAPI standards. This thorough standardization and the

accompanying documentation provide stakeholders who adopt aerOS over their infrastructure with the

flexibility to extend or even replace components, with the only requirement being to maintain interface

contracts.

In conclusion, the Service Fabric, operating on top of the Compute and Network Fabric, plays a critical role in

enhancing and efficiently utilizing the underlying resources. It manages the deployment, scaling, and

orchestration of services across the continuum, ensuring that application components are optimally placed to

meet performance requirements, Service Level Agreements (SLAs), and energy efficiency criteria. This synergy

between the Compute and Network Fabric and the Service Fabric ensures a cohesive and efficient infrastructure

that supports the dynamic needs of IoT applications.

5.5.4. aerOS cyber security components

The aerOS cybersecurity architecture is a multi-layered and integrated security framework designed to ensure a

robust and trustworthy environment. It represents a sophisticated cybersecurity framework designed to protect

its infrastructure and data. By using a separation of concerns approach, aerOS offers a modular cybersecurity

architecture that combines elements to validate access to distributed resources, register appropriate security

levels, and detect threats at runtime. This integrated approach ensures that each component not only supports

the overall security objectives but also enhances the system's ability to manage and mitigate potential threats

effectively.

A key component of the aerOS cyber security system is the aerOS Identity Management (IdM), whose ability

is to register and evaluate policies for resource and data access. It utilizes Keycloak7 IdM, which provides

comprehensive functions to strengthen its cybersecurity by managing the authentication and authorization of

aerOS clients. Focusing on authentication, this aerOS IdM design employs advanced mechanisms to defend

aerOS from unauthorized access. The aerOS Management Portal, serving as the primary interface for entities

interacting with the framework, incorporates a module linked to Keycloak for authentication and authorization.

This module uses OpenID Connect8, a protocol based on the OAuth 2.0 framework, to offer secure token-based

authentication and Single Sign-On (SSO) capabilities. This enables entities to access the aerOS portal using

credentials obtained from their respective organizations. Elements deployed within the aerOS continuum

requiring access to protected endpoints must first obtain an ID token from aerOS IdM, which is then used to

make API requests. aerOS leverages Role-Based Access Control (RBAC) to grant users access based on their

assigned roles. The integration of aerOS IdM with OpenLDAP has been implemented to enhance the adoption

of aerOS IAM by stakeholders, facilitating the automatic federation of user information from the LDAP

directory. This eliminates the need for manual transfer of user data to aerOS IdM, streamlining user management

and group associations. By leveraging both the Identity Management system for authentication and

authorization and OpenLDAP for user management, a robust and flexible access management infrastructure has

been developed. The integration of LDAP with the aerOS IdM element further improves aerOS Role-Based

Access Control (RBAC) policies, providing additional layers of access control based on user attributes and

enabling more precise and dynamic security policies. aerOS implements a system of precise control and

management over resources, which is seen in the establishment of different roles. Each role is associated with

specific access rights within the aerOS services environment and linked to a corresponding group in

7 https://www.keycloak.org/
8 https://openid.net/developers/how-connect-works/

https://www.keycloak.org/
https://openid.net/developers/how-connect-works/

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 58 of 136

OpenLDAP. These groups are efficiently synchronized with aerOS IdM through LDAP federation, ensuring

consistent and secure access management across the platform.

A Secure API Gateway is located within each domain by the modular design of the aerOS cybersecurity

framework, and it serves as a checkpoint for validating and enforcing policies registered in the IdM components.

The implementation of this API Gateway is based on KrakenD, which acts as a central hub, enforcing security

measures and access controls on all APIs. The integration of the aerOS API Gateway component into the aerOS

architecture plays an important role in enhancing the overall security framework of the system. Initially, aerOS

is described as a Meta-OS comprised of multiple APIs, which inherently lack built-in security mechanisms to

counter threats such as unauthorized access. Recognizing this vulnerability, the incorporation of the aerOS

secure API Gateway is strategic, addressing the critical need for robust security within the aerOS. This aerOS

APIs guard enhances security by utilizing the user roles and groups established in the Identity Management

(IdM) system. This integration between the aerOS API Gateway component and IdM streamlines access control

by granting users permission to specific APIs and functionalities based on their assigned roles. Beyond access

control, aerOS API Gateway fosters a unified entry point for all aerOS components, allowing them to interact

seamlessly with various APIs. This eliminates the need to manage multiple access points, simplifying

communication and data flow within the system. Furthermore, the API Gateway offers granular control over

incoming and outgoing API traffic with features such as message caching and packet modification in the aerOS

API Gateway itself. This empowers administrators to tailor data based on specific needs, perform additional

internal checks, and enrich functionalities through scripting support. In essence, the aerOS API Gateway

component complements the existing security features within the projectôs architecture, particularly the IdM

system. It strengthens the overall security posture by adding a critical layer of defence specifically focused on

API security, which is vital for protecting the integrity of the Data Fabric.

aerOS cyber security framework ensures security at all levels, including the integration of resources at the lowest

level. This is designed to integrate security capabilities into each individual Infrastructure Element (IE). Self-

security in aerOS is robustly supported by an integrated tool, Suricata9, an advanced open-source tool for

network analysis and threat detection at the node level. This component, comprising a Log Monitoring module

and an ETL (Extraction, Transformation, Load) processing module, plays a crucial role in real-time threat

detection and response within the aerOS infrastructure. Suricata continuously monitors network traffic

generated by the network cards of IEs in real-time. This enables the self-security module to identify malicious

activity and potential vulnerabilities or attacks. Upon detecting any malicious activity or vulnerabilities, the

information is immediately relayed to the self-diagnose component. This ensures timely interventions,

bolstering the security of the entire aerOS ecosystem. By offering real-time network traffic analysis and threat

detection, it strengthens the overall security posture of IEs and domains within the aerOS ecosystem. The

inclusion of this self-security module complements the existing security layers within the aerOS architecture. It

bolsters security by providing real-time threat detection, improving vulnerability management on IEs, and

enhancing intrusion prevention through early warnings.

Beyond resources control and policies enforcement, aerOS takes proactive measures to improve the security

foundation and foster trusted communications and interactions among connected IEs. Therefore, an ongoing

process of estimating and validating the trustworthiness of integrated pieces is carried out. The Trust

Management component continuously assesses the trustworthiness of individual Infrastructure Elements (IEs)

and entire aerOS domains. This information is crucial for informed decision-making within the aerOS

ecosystem. The Trust Management component works by collecting various attributes from each Infrastructure

element (IE). These attributes include security events, health scores, service activity, communication patterns,

update status, reputation, and even system information like CPU and RAM usage. Each attribute is assigned a

weight based on its significance to security. Security events, for example, are considered more critical than the

number of services running on an IE. By analysing these weighted attributes, the Trust Management component

calculates a trust score for each IE. This score reflects the overall reliability and security of the IE within the

aerOS environment. In terms of alignment with the overall aerOS security architecture, the Trust Management

component enhances the security strategy by providing dynamic, real-time assessments of trust. This is crucial

in a complex environment like aerOS, where numerous IEs operate and interact. By enabling a clear,

continuously updated view of each IEôs trust level, aerOS can ensure that all operational decisions, such as

9 https://suricata.io/

https://suricata.io/

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 59 of 136

service allocation and system management by the High-Level Orchestrator (HLO), are made based on robust

and up-to-date trust assessments. This alignment with the broader security strategy ensures that aerOS can

maintain high levels of security and operational efficiency across its continuum.

Overall, the aerOS security architecture exemplifies a comprehensive and effective approach to cybersecurity,

characterized by its multi-layered and integrated security components. From identity and access management

with aerOS IdM to real-time threat detection with Suricata, and from the cohesive integration of the aerOS API

gateway to the dynamic assessments by the Trust Management component, each element of the architecture is

purposefully designed to address specific security needs while contributing to the overall security posture of the

system.

5.5.5. aerOS self-* and monitoring

Explanation of the service:

This basic service is materialised in a suite of automated self-* features (microservices) that an IE is

continuously applying to itself. In a widely varied environment where a large number of IEs co-live, each of

those should have a set of capabilities to modify their behavior / status in such a continuum. This set of self-*

capabilities is divided in two, those that are strictly necessary (core) and those whose installation is optional

depending on the circumstances (non-core). Those capabilities, in combination with the global orchestration

and data management, allows the IEs to still be considered empowered entities, playing a crucial role in a large

environment, thus reinforcing the decentralisation principle of aerOS.

Functionally, this service supports the monitoring of inner parameters (some that are exposed to the whole

continuum and some that are not) through the self-awareness and self-realtimeness modules, the logic of

understanding whenever an action must be brought upwards (for instance, rejecting service/workload

assignments or triggering specific orchestration requests) or if a specifically labelled application is complying

with the agreed Service Level Agreement (SLA at node level) using the self-orchestrator, self-diagnose and

self-optimisation and adaptation modules.

This service also includes the management of the IoT devices that can be attached to the IEs, offloading the

need of central management of configuration, control, or healing, by using the self-configuration and self-

healing modules. It also involves certain cybersecurity traits, to relax the demands of centralised

security/privacy control, through the self-security module. Besides, it implements active attempting to recovery

after abnormal activities, dependability, and long-term, up-to-date synchronisation with its custom

configuration and horizontally scaling of resources, mainly by applying the self-scaling (and other) modules.

All the functionalities of this basic service share the automation degree and the dynamicity and capacity of

parameterisation by the user of the continuum. This is partly possible using the self-API module.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 60 of 136

Figure 17. Self-* capabilities relationships

Necessity of the service in aerOS:

In a continuum, many situations might happen that would require advanced logic in the most granular places to

take place. Actions like down network, sudden disconnection from the continuum, a peak of demand in the

running services, increased energy consumption, change of energy feeding type, modification of configuration

(e.g., bit framerate) will likely occur at some spots of the continuum along the time. Relying on a central entity

to continuously gather all those data from all the IEs in a continuum would mean an unbearable network

overload and would clearly jeopardise the autonomy and the decentralisation capacity of the whole ecosystem.

Therefore, there is the need of creating mechanisms within every IE that will constantly monitor and act upon

those events, proactively inspecting and identifying their occurrence, and introducing a certain degree of

intelligence at edge/device level.

Materialisation in the architecture:

These basic services run as a suite of microservices, each of them tackling a specific functionality, that is

installed in the IEs (depending on their flavour or role in the continuum). These microservices are lightweight,

as they are expected to run in heterogeneous IEs, that might live at resource-constrained equipment (e.g., close

to the edge or far-edge of the continuum). More details can be found in the deliverable ñD3.2 Intermediate

distributed compute infrastructure implementationò and in the future ñD3.3 Final distributed compute

infrastructure specification and implementationò.

5.5.6. aerOS decentralised AI

In aerOS, AI is considered from an internal and external perspective. External AI fulfils the requirements

coming from user applications, e.g., those developed within pilot applications. Examples of external AI can be

frugal federated learning on local data or deployment of a prediction model (e.g., air quality prediction model).

In particular, external AI is a specific task that may have a corresponding workflow and can be commissioned

to be executed on the aerOS infrastructure. This functionality is supported by auxiliary AI services described in

Section 5.6.1.

Internal AI supports aerOS internal continuum management by providing intelligent decision-making that spans

across different base services and respective components. Examples of components using internal AI are: HLO

for service allocation and self-* components for self-scaling and self-adaptation/optimization. As part of these

services, AI-related functionalities are deployed in different locations in the continuum. AI-related

https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf
https://aeros-project.eu/wp-content/uploads/2024/03/aerOS_D3.2_Intermediate-distributed-compute-infrastructure-implementation_v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 61 of 136

functionalities can be ñbuilt-inò in specific services being part of an internal component (e.g., in most cases

already trained model is used for predictions), or they can be used as separately deployed services (e.g., when

required, use communication API to request prediction from a model available elsewhere and ñwrappedò as a

service). In the former case, these are the design considerations for specific base services being developed in

aerOS which can also include specific needs related to frugality or explainability depending on the nature of the

service and foreseen potential placement in the continuum. In the latter case and in the case of external AI,

aerOS aux AI services can be used to provide execution environment for AI-related functionalities (e.g.,

deploying trained model for inferencing, training a model in a distributed way) and support for additional

features such as explainability/interpretability or frugality of the solution. Aux AI services are not obligatory in

the aerOS deployment but can be included depending on the characteristics of the use case.

5.5.7. aerOS common API

The primary objective of a common aerOS API is to establish a communication environment that fosters seam-

less interaction among services spanning the entire compute continuum, encompassing the edge to the cloud.

These services include both the system's internal set of basic and auxiliary services, and IoT services deployed

by vertical stakeholders. While this section specifically focuses on the APIs employed internally within the

system to enable and ensure communication within and across system domains, a common approach unifies

how vertical IoT services communicate and exchange data. The rationale behind the design of these APIs is to

abstract the complexity of interacting with individual services, which often implement diverse APIs and produce

incompatible data sets. Services exposure is based on aerOS domain level aggregation and abstraction. This

means that each aerOS domain exposes a common set of endpoints, communicating using the same data

structures and request-response patterns, regardless of the underlying implementation within each domain and

its IEs, and all aerOS domains encompass the same technique to provide a single point of control and access to

the exposed API.

The above discussion highlights the two main concerns that were addressed when designing aerOS common

API. First, how all underlying services should be abstracted and aggregated to a minimum but efficient API

which can take advantage of all underlying services. Second, how to provide a single point of access which

could additionally enforce security policies, handle rate limiting, and of course efficiently route requests to the

appropriate domain services. The answer to the first question was guided by the overall architectural decisions

and the answer to the second emerged through a thorough state of the art analysis regarding APIs centralized

access control architectures.

To illustrate the previous, first, the reasoning behind the APIs to be exposed is discussed and then the common

exposure implementation decision is presented.

As previously mentioned, within each aerOS domain, three primary building blocks act as functional

components, enabling the implementation of the Compute and Network Fabric, the Service Fabric, and the Data

Fabric at the domain level. These components collectively support the seamless integration of the domain into

the broader aerOS continuum. This integration encompasses robust authentication and authorisation, federation

of aerOS domains and IEs status across the continuum, and orchestration requests submission which enables

coordination and management of the various components and services within the continuum. Thus, the

following three service groups are primarily identified for API domain exposure.

Å Authentication and Authorization Service which is responsible for handling user authentication and

authorisation to access domain services. It ensures that only authenticated and authorized users can

interact with the system's functionalities. The common API abstracts the underlying implementation

details of different authentication mechanisms, allowing developers to interact with the service using a

uniform and consistent API contract. Users and applications can securely obtain access tokens or

authentication tokens to authenticate themselves and gain access to the relevant services.

Å Data Fabric and Mesh Services, based on NGSI-LD, implementing federation across aerOS continuum.

The data fabric and mesh services are implemented using the NGSI-LD standard. The common API

abstracts the complexities of the underlying implementations, providing a unified way for clients to

query, update, and manage data using the NGSI-LD data model. Services and applications can

seamlessly interact with the data fabric and mesh services, irrespective of their specific NGSI-LD

implementations, ensuring consistent data exchange. aerOS takes advantage of integrated data mesh

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 62 of 136

and fabric technologies and provides a "Data Access Layer" which acts as an intermediary between the

services that produce data and the applications or clients that consume these data. This is of paramount

importance both for aerOS domains exchanging status information and enabling thus a coherent view

of all continuum state, and for vertical IoT services requesting data produced and exposed in other

domains.

Å Orchestration Services to facilitate the dynamic allocation and scaling of resources, ensuring optimal

performance and resource utilization. The common API acts as an intermediary for clients to interact

with the orchestration services, abstracting the intricacies of underlying orchestrators. This can be

implemented with message queues and event streaming to facilitate asynchronous communication and

data exchange between domains. Messages or events can be published and consumed across domains,

enabling decoupled communication and cross-domain deployment requests.

To realise the above concept, the common API can be exposed through a centralised API Gateway, deployed

within each domain. The API Gateway will act as a single-entry point for other domains, clients, and

applications to access the underlying services.

Beyond forwarding requests to the appropriate exposed components, API Gateway seamlessly integrates

authentication and authorization requests, verifying user credentials and granting access tokens for secure

service access. It routes requests to the appropriate data fabric and mesh services, orchestrating data retrieval

and up-dates as per the NGSI-LD standard. Additionally, the API Gateway can interact with message broker to

coordinate orchestration tasks and distribute workloads efficiently. By adopting this common API approach

with a centralized API Gateway, the ecosystem achieves a cohesive and standardized communication

environment. The abstraction of underlying implementations simplifies development efforts, enhances system

scalability, and enables seamless integration of new services into the ecosystem. This results in a unified and

user-friendly experience for all stakeholders, fostering an agile and dynamic IT system architecture.

Conclusively, by leveraging an API gateway, aerOS domains provide a robust, centralized, and standardized

interface for interacting with the exposed services. The gateway's techniques, such as centralized access control,

API composition, request/response transformation, and load balancing, contribute to enhanced security,

performance, and scalability. Additionally, features like caching, rate limiting, and logging further improve

system efficiency and user experience. Overall, the API gateway plays a vital role in providing a unified,

efficient, and secure access layer to the services, promoting a seamless and cohesive ecosystem.

Figure 18. aerOS APIs: REST APIs and event driven communication

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 63 of 136

In the context of aerOS, REST-based APIs (such as HLO-FE, LLO, and self-* capabilities) are defined using

the OpenAPI standard specification. However, as technology continues to evolve, there is a growing need for

standardized specifications of asynchronous interfacesða capability that OpenAPI does not inherently provide.

To address this limitation, the AsyncAPI initiative has emerged, aiming to establish an industrial standard for

specifying asynchronous interfaces.

Similar to OpenAPI, the use of AsyncAPI would benefit both core and auxiliary services in aerOS by providing

a framework to describe interfaces for protocols such as Kafka and MQTT. For instance, the High-Level Or-

chestrator (HLO) employs Redpanda to facilitate event-driven communication. Additionally, auxiliary services

and pilot projects within this framework can utilize AsyncAPI to standardize the sharing of IoT data structures

across the data fabric, thus integrating various industrial interfaces, including ROS2, DDS, OPC UA, and

MQTT. OpenAPI would remain being the preferred choice for REST-based interfaces due to its widespread

adoption. By using both OpenAPI and AsyncAPI, aerOS ensures that all API information is documented con-

sistently. Additionally, both standards allow for code generation, simplifying the creation of servers or clients.

Additionally, the integration of low-code tools as auxiliary services within the aerOS project enhances flexibility

to trigger actions over the APIs. Behaviour trees, functioning as graphical low-code interfaces, enable users to

define triggers and adjust parameters interactively. These behaviour trees do not directly orchestrate services

within the aerOS domains; that role is specifically reserved for the High-Level Orchestrator (HLO) and Low-

Level Orchestrator (LLO). Instead, behaviour trees trigger functionalities within already running applications,

activating specific service functionalities without initiating or terminating the services themselves. This user-

friendly approach allows for easy modification of operational logic.

5.5.8. aerOS management framework

The Meta-OS developed in aerOS must be managed by end users through the use of a common and recognisable

interface, as in a traditional operating system, in which users can use a terminal or a command shell for this

purpose. For instance, these tools allow users to install, uninstall and run programs or manage the set of users

with the proper rights and permissions to interact with the operating system. In addition, OS have evolved to

provide these users with a simpler and cleaner way of interacting with the system: a visual interface (e.g., a

desktop) on top of the internal processes, so that they can manage the operating system using user-friendly

ñfrontendsò, while the actual processes are still being executed in the background, which means that they are

hidden to the users.

In aerOS, the intention is to follow the same approach that is fully adopted in traditional operating systems, so

it have been decided to create one component to act as a single window for end users to manage the Meta-OS:

the aerOS Management Portal. This means that the portal is deployed in a unique domain, named as

ñEntrypoint domainò. However, the portal provides migration capabilities to be moved to another domain or

IE due to a user requirement or an unexpected failure. Thus, this allows to avoid the loss of the unique

management entrypoint, as is the case with high availability systems. As a global reflection, this approach is

completely aligned with the principles of aerOS of flexibility and decentralisation (ñsingle entrypointò does

not mean a centralized computing approach). This has been expressed more succinctly in Section 5.4.2.

This user-friendly dashboard, developed as a modern Single-page web application (SPA), acts as a frontend for

performing operations regarding the Meta-OS, which are finally performed by the aerOS Basic Services in the

background. For example, an administrator can confirm the addition of a new domain or of a new IE to the

continuum using the portal, but the inclusion of this domain is managed by the aerOS Federator component.

The interaction between the User Interface (UI) of the Management Portal and those basic services is undertaken

by the backend of the aerOS Management Portal. Furthermore, this dashboard displays useful information

gathered by these services to inform users of the status of the continuum (topology graph of the added domains,

deployed services, state of domains and their IEs, etc) in real time. Finally, it is important to highlight that this

portal does not add new capabilities to the Meta-OS, but leverages the capabilities offered by aerOS to respond

to user requests from a functional point of view. It, however, serves as the single window access for interacting

with the continuum.

This set of capabilities or actions which can be performed by users have been properly defined based on

previously specified requirements by technical developers and potential end users of aerOS (e.g., use cases

leaders). In that regard, a benchmarking tool has been identified as necessary to help this kind of end users to

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 64 of 136

improve their knowledge about the current performance of the aerOS Meta-OS. This tool is fed with data from

the continuum to provide two main functionalities that complements the Management portal:

1) Benchmarking and comparison of IE/domains performance against known standards and methodolo-

gies, such as TPCx-IoT and RFC 2544.

2) Internal Technical KPIs dashboard, which provides a snapshot of these KPIs defined for aerOS tech-

nical components in deliverable D5.2 and which are directly measurable from the aerOS stack.

When it comes to Meta-OS end usersô management, aerOS envisions the definition of a set of roles and

permissions to be applied to them. Using a more practical example, the content that is displayed in the dashboard

changes based on the role of the logged user, e.g., an administrator can only deploy certain services in a set of

domains on which he has rights and permissions, as an example. In addition, a common list of user roles has

been implemented for all the domains that compose the continuum, as described in the aerOS cybersecurity

components of the architecture (Section 5.5.4).

Previously introduced in Section 5.4.2 the Entrypoint balancer is an important part of the aerOS management

framework (stuck to the Management portal) to avoid the addition of an additional centralization point, so that

it emphasises the decentralised nature of aerOS. After conducting a thorough review of the cutting-edge network

load balancers, it has been determined that the most suitable LB algorithm in the case of the entrypoint balancer

is the Least Connection type (or one of its modifications). This algorithm includes a straightforwardly updatable

weighting function that is fed with metrics from the data fabric, such as the number of orchestration requests

managed by each domainôs HLO or IE capabilities. Moreover, more detailed technical information can be

consulted in ñD4.2 Software for delivering intelligence at the edge intermediate releaseò and future D4.3.

However, the aerOS Management Framework reaches beyond the capabilities offered only by the Management

Portal. It also includes other management tools that oversee the creation and maintenance of the federation

mechanisms between the multiple aerOS domains that build the continuum. Here comes into the scene the

aerOS Federator, specifically the block related to the registration and discovery of these domains (Domain

Registry and Discovery). The actions within the scope of this block are not performed directly by end users such

as the ones of the Portal, but are smart, automatically conducted to react to some user actions, such as the

creation of new domains or the modification of the IEs that belong to an existing domain. aerOS is not a

centralized solution, so by taking advantage of the mechanisms described in Section 5.4.3 (aerOS distributed

state repository), this block is on charge of establishing the appropriate mechanisms to achieve a fully federated

and decentralized architecture among the aerOS domains. The set of distributed NGSI-LD Context Brokers,

conforming the Distributed State Network of Brokers (DSNB), plays a major role in this architectural block.

Figure 19. aerOS Management Framework (left: aerOS Management Portal, right: aerOS Federator)

https://aeros-project.eu/wp-content/uploads/2024/04/aerOS_D4.2_Software-for-delivering-intelligence-at-the-edge-intermediate-release-v1.0-submission.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 65 of 136

5.6. aerOS auxiliary services
In aerOS, the auxiliary services compose the last category of the services considered in the architecture. They

exist to provide complementary functionality across the continuum, without having an explicit core functionality

(such as cybersecurity, data management, etc.). These services can be considered as commodities that aerOS

will research and deliver to provide flexibility and innovation across the whole ecosystem. These auxiliary

services are: (i) Auxiliary AI (AI workflows in the continuum and use cases deployments) and (ii) Embedded

Analytics.

5.6.1. aerOS auxiliary AI

The proliferation of IoT devices and the rising popularity of IoT-Edge-Cloud infrastructure deployments enables

a new approach to prepare, use, and maintain AI solutions within different use cases coming from various

domains. Specifically, model training can be done in a decentralized fashion without moving the data to a central

location (e.g., cloud) and exploiting their locality and processing ñcloser to their originò. This approach, called

Federated Learning (FL), is attractive as it allows to reduce the computational load of a single infrastructure

element and scale the system dynamically. Moreover, it helps to mitigate some privacy issues that may arise

from data owners. Furthermore, often there is a need to deploy AI-related services to perform inference closer

to the edge. In this case, the model can be wrapped as a service exposing API and deployed in the continuum.

This may require application of additional mechanisms to support frugality, i.e., techniques that allow the use

of AI models in resource-restricted conditions (limited processing power or memory, low network bandwidth).

Here, model reduction with quantization and pruning can be applied and/or a ñlightò service deployment.

Finally, to provide accountable and trustworthy AI-driven solutions explainability/interpretability of AI models

should be possible by providing a dedicated service of type function as a service. Note that explainability should

be considered only when required (e.g. for critical functions) because it adds additional computational costs and

may influence the performance of the overall solution.

The auxiliary AI to be deployed in aerOS can be divided in two main blocks, which are described in the

following subsections.

5.6.1.1. Control of AI workflows in the continuum

aerOS aux AI services cover different functionalities required to execute AI tasks using aerOS infrastructure.

AI tasks cover two main scenarios: federated learning and distributed inference. AI tasks can be decomposed

into sub-tasks that may have dedicated requirements and their execution can span over several IEs (functionality

divided between services deployed over different IEs). In the simplest case AI task may have only one sub-task,

i.e., workflow consisting of one step, e.g. deployment of a service offering predictions done by ML model. Note

that AI task is a specialization of a general task that can be executed using aerOS infrastructure.

Within aerOS dedicated services are prepared to: monitor and orchestrate specific task execution (AI Task [n]

Controller) and execute an AI sub-task (AI Local Executor). They are deployed as auxiliary services on the

aerOS infrastructure using aerOS service deployment and orchestration mechanisms. AI Task [n] Controller is

responsible for task ñnò and is collaborating with AI Task Executor services that are executing parts of this tasks

on different IEs. In federated learning, at the end of the process, AI Task [n] Controller will have a new shared

model trained in a federated way within AI Local Executor services.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 66 of 136

Frugal solutions allow deployment and execution in resource-restricted environments. Frugal applications can

be deemed as the ones most suitable to be deployed close to the edge, instead of a centralized deployment.

Consequently, frugality can be treated as an ñadd-onò to decentralized AI.

Generally, frugality requirements are very use case specific and different techniques can be used to meet

objectives of considered scenarios. Frugality support studied in aerOS covers availability of "minimizedò

service deployment (that allow to run services on a resource-restricted devices) and mechanisms for model

reduction such as quantization and pruning (that allow to reduce the model disk size and improve inference

speed). Pruning in neural networks is a technique used to reduce the size of a model by removing parts of the

network that contribute little to its output. The main goal of pruning is to improve the efficiency of neural

networks without significantly sacrificing accuracy. This technique can be essential for deploying models on

devices with limited computational resources, such as smartphones or embedded systems. Pruning reduces the

number of parameters in the model, which decreases its storage requirements. Next, with fewer calculations,

the pruned network can offer faster inference times, making it more suitable for real-time applications. Smaller

models require fewer computational resources, which can lead to lower power consumption. Quantization is a

technique used to reduce the precision of the numbers representing the weights and activations within a model.

Quantization works by mapping a large range of values to a smaller one, often through rounding operations.

This process is vital for deploying deep learning models on resource-constrained devices such as mobile phones,

embedded systems, and IoT devices, as it can significantly reduce the model's memory footprint and speed up

inference while maintaining acceptable levels of accuracy. The main challenge in quantization is maintaining

the model's accuracy with reduced numerical precision, which requires careful selection of the quantization

scheme and possibly adjustments to the model or training procedure.

5.6.1.2. Explainable AI

AI is a powerful technology that can perform complex tasks, such as image recognition, natural language

processing, and decision making, that normally require human intelligence. However, many AI systems are not

transparent or interpretable, meaning that their internal logic and reasoning are hidden or difficult to understand

by humans. This poses a challenge for trust, accountability, and ethics in AI applications, especially when they

affect human lives, rights, or well-being.

Explainable AI (XAI) is a concept in which the results of an AI solution can be understood by humans. It can

be used to describe an AI model, its expected impact, potential biases, and to help characterise model accuracy,

fairness, transparency, and outcomes in AI-powered decision. XAI is crucial for an organisation in building

trust and confidence when putting AI models into production.

There are different types and levels of explainability in AI, depending on the audience, the context, and the

purpose of the explanation. For example, a technical explanation may be suitable for developers or regulators

who need to verify the correctness or compliance of an AI system, while a layman explanation may be

appropriate for end-users or customers who need to understand the rationale or implications of an AI

recommendation or prediction.

Figure 20. AI workflow in the continuum

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 67 of 136

According to NIST, there are four principles for explainable AI systems:

¶ Explanation: AI systems should deliver accompanying evidence or reasons for all outputs.

¶ Meaningful: AI systems should provide explanations that are understandable to individual users.

¶ Explanation accuracy: AI systems should provide explanations that correctly reflect the systemôs
process for generating the output.

¶ Knowledge limits: AI systems should acknowledge the limits of their knowledge and indicate when

they reach sufficient confidence in their output.

To achieve these principles, various methods and techniques have been proposed and developed in the field of

XAI. These include:

¶ Transparent algorithms: These are algorithms that are inherently interpretable or comprehensible by

design, such as decision trees, rule-based systems, or linear models.

¶ Post-hoc explanations: These are explanations that are generated after the model has been trained or

deployed, such as feature importance scores, local approximations, or counterfactual examples.

¶ Interactive explanations: These are explanations that are elicited through user feedback or queries, such

as natural language dialogues, visualizations, or interactive interfaces.

In aerOS, AI is used internally to support intelligent decision making when managing the continuum, and

externally to enable executing of arbitrary AI tasks using aerOS infrastructure. In both cases, the need may arise

to explain and/or interpret predictions made by ML models. The objective for explainability support in aerOS

is to prepare mechanisms to optionally ñplug-inò such functionality in the AI task execution. To this aim, a

service will be prepared - AI Explainability Service - for handling predefined cases like the interpretability of

HLO allocator decisions. However, it will also provide methods that can be used for a more comprehensive

number of use cases. Various SotA methods for explainability in AI have been analyzed and the most promising

ones are based on calculating Shapley values to provide users with easy-to-understand explanations that are

mathematically provable. Note that frugality mechanisms and explainability/interpretability have influence on

AI model accuracy (and other metrics) so their inclusion in AI task workflow shall be optional.

Although explainability is not directly related to the architecture, it is likely that successful validations will lead

to a set of operational and technological recommendations.

5.6.2. Embedded analytics

As described in ñD2.6 aerOS architecture definition (1)ò, The aerOS Embedded Analytics Tool (EAT) can be

compartmentalised into three roles; these are the analytics framework, function authoring and visualisation.

This section will reiterate these primary roles to provide a final architectural view of EAT with additional

detailing of the aerOS Function Template structure. As a result, a holistic EAT architecture is presented.

grafana

pushgateway

gatewayprometheusalertmanager

Figure 21. Embedded Analytics Tool Architecture

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 68 of 136

EAT (illustrated in Figure 21) provides a framework for the design, implementation, and deployment of

specialised functions. These may be straightforward policy-based functions for validation use cases or

intelligence-based models for smart decision making. The framework supports multiple dashboards for

operations (gateway) and visualisation (Grafana). The pushgateway allows in-function metrics to be exposed to

Prometheus monitoring which is then visualised through Grafana to the user. The alertmanager component

monitors Prometheus metrics related to the health of the gateway, alerting the user if required. All these

components are hosted on the aerOS Gitlab and are installed as nodes in a Kubernetes cluster through Helm

charts. To access these features of EAT, functions must be created using the aerOS template.

The aerOS template is presented in Figure 22 and details the two layers of the function template. The first layer

contains information specific to how the function interacts with EAT. This includes the image build file

(Dockerfile), what libraries Docker needs to compile the function image (requirements) and the wrapper used

to interface with the function (index). The second layer contains information specific to the function operation.

The __init__ component contains operations to carry out when the function is deployed, this includes building

the Grafana dashboard where in-function metrics will be visualised. The handler component contains operations

to carry out when the function is triggered, such as a policy or intelligence-based decision making. The

metric_reporter component contains operations for exposing in-function metrics to Prometheus. These metrics

can then be visualized through the dashboard instantiated when the function was deployed. The requirements

component contains required libraries for handler executions. The aerOS template must be used to create EAT

functions, this process is handled through the faas-cli application.

The steps involved from the creation to the deployment of EAT functions is presented in Figure 23. The faas-

cli application allows users to create EAT functions using the aerOS template. The application also enables the

build, push, and deployment of functions to EAT. Build packages the EAT function as a Docker image and

stores the image locally. Push allows the user to specify a container registry to store the image. Deploy takes an

image, either locally or from a container registry and onboards the image as a node in the Kubernetes cluster.

This allows users to dynamically deploy and update functions as versioning can be controlled at deployment.

aerOS

template

functionDockerfileindex requirements

__init__ metric_reporterrequirementshandler

faas-cli

create

build

push

deploy

aerOS

Template

gitlab

registry

gateway

Figure 22. aerOS Template for authorised function on EAT

Figure 23. Function Authoring

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 69 of 136

Interfaces between EAT and other aerOS components can be viewed on two levels. The first level is the interface

provided by EAT for the function i.e. REST, this interface is triggered through a HTTP request which provides

a body that is passed into the function handler. The second level is interfaces established inside the function,

such as queries to the Data Fabric (Section 5.5.2) or pushing metric to Prometheus. Both interfaces are available

to users however the execution of a function will always require a HTTP request to trigger and a response to

signify the execution has concluded.

The installation of EAT comes with three prepackaged functions, these functions provide generalised stratified

sampling, anomaly detection and data drift detection based on Data Fabric models. These functions may require

minor edits on an ad hoc basis, depending on the complexity of data models being used.

5.7. User services and global pilot services
From user services and pilotsô point of view, multiple features and functionalities that enable IoT devices to

communicate with cloud services and other IoT devices over a global network are required. Pilot services need

to perform reliably under the constraints of limited memory and processing power of IoT devices which will be

located at the pilotôs premises:

¶ P1- Industry -Data driven cognitive production lines: Automated workstations, Automated Guided

Vehicles (AGVs) for transportation within industrial facilities, sensors for ambient temperature and

humidity, optical sensors, and computation servers.

¶ P2- Facilities/Energy: storage drives, power supplies, radiators, interfaces and controllers.

¶ P3- Agriculture: High performance computing platforms, ECUs to provide connectivity, and vehicle

connectors.

¶ P4- Transportation and logistics: IPTV cameras for video streams

¶ P5- Smart buildings: temperature, humidity, and air quality sensors.

Taking into consideration the aforementioned devices and pilot needs, in the following lines global pilot and

user requisites have led to consider the following required services defined for aerOS:

¶ Portability service

Portability services are the features and functionalities that allow aerOS to adapt to different hardware and

software platforms, and to interoperate with other systems and devices in a global network. The rationale

behind this service is the variety of hardware and IoT devices that exist among the five pilots. This service

may include the following functionalities:

ü Abstraction: aerOS provides an abstraction layer that hides the specific details of the underlying

hardware and software, and that provides a standard interface for applications and services.

ü Adaptability: aerOS is able to adapt to the changing conditions of the environment, such as the

variability of energy demand, resource availability, quality of service, security and privacy.

ü Integration: aerOS facilitates the integration of different systems and devices, both within and

outside the specific sector of each pilot, through common protocols and formats of communication

and data.

ü Reusability: aerOS enables the reuse of existing components and services, as well as the

development of new modular and customizable components and services.

¶ Scalability service

aerOS provides the ability to increase or decrease its size, capacities, performance and functionality

according to the needs and demands of the users and applications run by the pilots. In this regard, it would

include the following functionalities from the pilotsô point of view:

ü Elastic: aerOS is able to scale elastically, that is, automatically adjust the resources allocated to

each node or device according to the conditions of the pilot´s environment, such as energy demand,

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 70 of 136

resources demand or workload. This allows to improve energy efficiency, quality of service and

resilience of the system.

ü Adaptable: aerOS is able to scale adaptably, that is, modify its configuration to incorporate new

technologies, standards and requirements. This allows to innovate and evolve with the market and

the expectations of the users.

ü Horizontal scale: aerOS is able to scale horizontally, that is, add or remove IEs or devices to the

domains and networks without affecting the operation of the system. This allows to leverage

distributed computing capacity and cloud storage.

ü Vertical scale: aerOS is able to scale vertically, that is, increase or decrease the resources allocated

to each node or device, such as memory, processor or bandwidth. This allows to optimize the use

of resources and adapt to the variations of the workload.

¶ Modularity

aerOS design departs from a series of basic services, together with other functionalities (auxiliary services) that

can be included as add-ons if so required by the application in the pilots. It may include the following

functionalities:

ü Customisation: aerOS enables the customisation of the system by allowing the users to select and

combine different modules of services and functions according to their preferences and needs.

ü Variety: aerOS enables the variety of the system by allowing the providers to offer different modules

of products and services that can be configured in multiple ways, to serve heterogeneous customer

demand.

ü Reconfiguration: aerOS enables the reconfiguration of the system by allowing the users and providers

to change or update the modules of products and services over time according to changing conditions

or requirements.

ü Standardization: aerOS enables the standardisation of the system by allowing the providers to use

common interfaces, protocols, and formats for the modules of products and services that can facilitate

integration, interoperability and compatibility.

¶ Connectivity services

This service allows to support different connectivity protocols, such as 5G, Ethernet, Wi-Fi, BLE, IEEE

802.15.4, among others. This would include the following functionalities:

ü Integration: aerOS enables the integration of data and information from different sources and smart

devices located at pilots´ premises.

ü Accessibility: aerOS enables the accessibility of data and information to different pilot users.

ü Communication: aerOS enables the communication of data and information between different

devices, systems, and pilotsô actors.

ü Interoperability: aerOS enables the interoperability of data and information across different

platforms, standards, and formats.

¶ Security services

This service will allow aerOS to include add-ons that bring security to the device by way of RBAC access,

SSL support, and components and drivers for encryption. It would include the following functionalities:

ü Update: aerOS enables the update of devices and systems in the product-service system. This can

fix vulnerabilities and bugs and improve performance and functionality.

ü Authentication: aerOS enables the authentication, authorization and access control via the

cybersecurity components described in Section57. This can prevent unauthorized access and ensure

data integrity to the pilotsô assets.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 71 of 136

ü Encryption: aerOS enables the encryption of data and information in transit and at rest. This can

protect data confidentiality and privacy coming from pilotsô premises.

ü Firewall: aerOS enables the firewall of devices and systems in the product-service system by using

rules, policies or filters. This can block malicious traffic and prevent cyberattacks, such as denial-

of-service (DoS) or ransomware that can affect pilotsô facilities operations.

6. aerOS Reference Architecture

This section presents the revised aerOS architecture, evolved based on the experience and validation input from

the MVP deployment. The deployment of aerOS components and their integration and interaction within the

MVP, while not altering the initial Reference Architecture (RA), has influenced the final different viewpoints

under which it is inspected and presented. Although the changes since the initial submission are incremental,

this document provides the comprehensive, updated RA, ensuring it is self-contained and serves as the single

point of reference for the aerOS architecture. Having introduced the key concepts and components of the aerOS

architecture in section 5 and adhering to the design guidelines outlined in section 2, now the aerOS RA is

presented through a set of viewpoints as identified within the described methodology. Firstly, it is provided an

overview of the entire architecture, from a high-level viewpoint, including a descriptive guide for an IoT service

deployment instantiation, and delve into different instantiations of aerOS Entities in subsection 6.1. Following

that, the functional viewpoint (in subsection 6.2) is introduced, which describes the role of the main components

of the aerOS systems. Moving on, subsection 6.3 focuses on the process view of the RA, outlining how

components communicate to accomplish fundamental functionalities. Moreover, some activity and sequence

diagrams that detail the runtime behavior of aerOS are provided, demonstrating interactions between different

components among aerOS components and how aerOS interfaces with external actors and components.

Subsequently, subsection 6.4 explores the data viewpoint, and how aerOS IEs, aerOS domains and IoT devices

are included as new data sources and data consumers and dynamically become part of the distributed knowledge

graph. The role of Context Brokers as interconnected Context Registries (DSNB) enabling the federation across

aerOS domains which is fundamental in aerOS ecosystem is described. Next, subsection 6.5 delves into the

deployment viewpoint of the RA, which covers runtime operations. It presents the software component topology

on the physical layer and the interconnections between these components during aerOS domains and the vertical

IoT services deployment. Finally, in subsection 6.6, it is discussed the business viewpoint of the architecture,

which serves as a guide for developing application components and supporting the decision-making process of

stakeholders involved.

6.1. High-level view
aerOS proposes an overarching approach that unifies access to, and usage of, network and computing resources

from edge to cloud, offering a transparent infrastructure layer. On top of this hosting underlay, aerOS design

offers the substrate which can seamlessly enable the deployment of IoT applications without any adaptation

regardless of the selected hosting node. Based on these inherent functionalities, aerOS establishes a common

execution environment which removes any need for adaptations to various runtimes or architectures and thus

exposes underlying resources as a continuum. Even more, and going one step further, aerOS acting as expected

from a Meta-OS, provides the management and orchestrating overlay which overviews, secures and automates

services orchestration and resources management over the established continuum. As an outcome IoT

developers and resource owners can trust aerOS Meta-OS to host their efforts and resources and can further

federate, share, and (re)use physical or virtual resources, data, and application components. All of this is

achieved with the embedding of advanced AI techniques for best results while maintaining full ownership,

governance, and security.

Thus, aerOS addresses the issue which emerges from the fact that numerous isolated processing units and private

computing islands with restricted resources, lack the services needed to implement and deploy comprehensive

IoT solutions. This is particularly relevant in both industrial and personalized contexts. Many computing units

and private networks currently function merely as data concentrators, forwarding large volumes of data to

centralized commercial cloud infrastructures operated by a limited number of service providers. This isolation

prevents the effective utilization of existing computing power at the edge, which is crucial for many IoT

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 72 of 136

solutions requiring more computational resources. This deprives vertical IoT stakeholders from having full

control of their services and governance of their data. Additionally, although a variety of already developed

services exist for most of industry verticals they cannot be reused and each time another organisation wants to

solve similar problems they have to re-develop a solution from scratch, or to fully adapt their existing operating

runtime environment, as there is no ñlingua francaò for IoT service developers to provide a common underlying

layer where existing solutions can run and address similar cases with similar requirements.

The proposed approach outlines a secure federation of individual computing resources, enhanced by privacy

and security enforcement mechanisms and technologies, to create a network and computing continuum. This

federation forms an environment comprising a combined pool of resources capable of transparently hosting

parts or the entirety of intended IoT tasks as close as possible to data sources, generally as close as possible to

their declared requirements, while maintaining complete control over data availability and governance. Industry

verticals or individual users can contribute "off the shelf" resources, even with restricted capabilities, as long as

they support virtualized containerization environments. These resources can be integrated, through a well-

documented and straightforward procedure, as aerOS IEs or domains, becoming part of a larger common

execution ecosystem where services can leverage existing resources or services across the aerOS continuum.

The fulfilment of the following core objectives is targeted by the proposed solution:

¶ To allow isolated resources to be exposed and orchestrated as a continuum within which IoT service

developers, from different verticals, may, transparently, deploy their applications, accompanied with a

set of requirements, without having to manage all the underlying complexity regarding compute, net-

work, and operating resources.

¶ To provide a unified, cloud-native execution environment built on microservices architecture which

will extensively utilise container-oriented virtualisation runtimes, taking advantage thus of cloud-native

benefits, including simplified orchestration, enhanced portability, reliable reproducibility, and seamless

scaling of applications.

¶ To take advantage of the most suitable resources, and introduce monitoring, predictive and orchestration

mechanisms to enforce adherence to user SLAs.

¶ To provide information and IoT service sharing, that benefits all users, while introducing secure control

and privacy governance mechanisms.

Figure 24. aerOS high-level View

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 73 of 136

The suggested architecture introduces a guided procedure for the deployment of an aerOS domain on top of

available computing and network resources. These resources (known as IEs) may vary in terms of capabilities,

architecture, unitsô number, and can either be ñbare metalò resources or, and possibly mixed with, virtual

machines. The deployment of aerOS basic, and selected auxiliary, services on top of these resources provides a

seamless integration with the rest of the aerOS ecosystem and a common execution environment. Figure 22

introduces a high-level view of the aerOS ecosystem where, by rendering of isolated resources into aerOS

domains and making thus use of aerOS services, a continuum of IEs is exposed as a common federated

infrastructure ready to transparently host IoT services according to usersô deployment requests and under the

orchestration of aerOS Meta-OS. Usersô IoT services deployments requests are submitted via the ñaerOS

Entrypointò which provides a guided, and based on a multitude of templates, IoT application deployment

process.

There are cases when the requested SLA of the IoT service dictates that it should be broken into more than one

component. For instance, in an AI workflow, parts of the workflow requiring direct access to data might need

to be placed in an edge aerOS domain, while other parts requiring more intensive processing could be deployed

in a public or private cloud domain that supports specific AI processing capabilities. aerOS, by meeting the

objectives set above, considers all candidates across the continuum and transparently deploys the components

on the chosen domains without the user needing to adapt any part of the application or worry about data

ownership and privacy. The submitted application, leveraging smart orchestration, can be deployed within a

user-selected domain or be set for the most efficient placement based on requirements for computing resources

or data consumption. The aerOS orchestrator manages this by utilizing all available federated information across

the continuum, doing so in a way completely transparent to the users. As a result, a pool of resources hosts the

entire application under an efficient placement strategy, allowing verticals to receive the requested services

without needing to understand the intrinsic arrangements.

Thus, from a high-level view it is obvious that aerOS stakeholders are supported to easily render their resources

as aerOS enabled IEs and register them as a domain within aerOS. Subsequently, the process of IoT service

deployment across the continuum, part of which is their registered domain, is transparent to them. aerOS AI

enabled federated orchestration takes care of hiding all the details related to the most efficient placement and

the common aerOS underlying runtime will enable their placement to any node of a plethora of underlying

hosts. aerOS federated orchestration functionality, and its success, is based on the provided capability to have a

real time perception of resources provisioning and availability across the whole continuum from edge to cloud.

Similarly, user IoT services can consume data produced in other domains in the continuum without the explicit

knowledge of where they come from, and how to parse and interpret these data. Both these features are based

on data interoperability. Data interoperability is part of the Data Fabric features that handle data as a product

and enable metrics exchange and capabilities exposure among infrastructure elements and domains. In the same

way, data interoperability is enabled within industry verticalsô applications produced data. In the figure above

it is obvious that data fabric is constituted from aerOS components deployed within each aerOS domain. Data

interoperability, a provision of aerOS data fabric, is important within aerOS architecture. Existing smart data

ontologies will enforce this interoperability for industry verticals and an aerOS knowledge graph which supports

a management information model, developed and still extended with aerOS project, will offer this homogenized

status exchange among all infrastructure elements across the continuum.

Thus, from a high-level perspective, aerOS stakeholders can easily render their resources as aerOS-enabled IEs

and register them as a domain within aerOS. Subsequently, the process of IoT service deployment across the

continuum, including their registered domain, becomes transparent to them. The AI-enabled federated

orchestration within aerOS manages all the details related to the most efficient placement, utilizing a common

aerOS underlying runtime to enable the deployment of services to any node within the diverse pool of underlying

hosts. The success of aerOS federated orchestration relies on its ability to maintain a real-time perception of

resource provisioning and availability across the entire continuum, from edge to cloud. Similarly, user IoT

services can consume data produced in other domains within the continuum without needing explicit knowledge

of their origin or how to parse and interpret them. This is made possible through data interoperability, a key

feature of the Data Fabric that handles data as a product and facilitates metrics exchange and capabilities

exposure among infrastructure elements and domains. Data interoperability is crucial within aerOS architecture.

It is supported by existing smart models that enforce interoperability for industry verticals and an aerOS

knowledge graph that maintains a management information model. This model, developed and continuously

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 74 of 136

extended within the aerOS project, ensures homogenized status exchange among all infrastructure elements

across the continuum. As illustrated in the figure above, the Data Fabric comprises aerOS components deployed

within each aerOS domain reinforcing its significance within the aerOS ecosystem.

The whole process, of sharing and using resources in aerOS federated environment, is framed with the

appropriate security mechanisms, which provide both data protection and services access control on the hosting

domains. Data governance mechanisms enable the control over which data are allowed to be shared with others.

Domainsô security mechanisms decide whether to provide the domainsô resources for external domains requests

for services deployment. Even more, trust scores, attributed to each aerOS domains and IE, are taken into

consideration, within the orchestration process when choosing the most appropriate and secure domains to

deploy part of the tasks.

6.2. Functional view
To implement the high-level vision and achieve its objectives, aerOS relies on facilities provided by seamlessly

interacting modules. These modules work together with various stakeholders and integrate with a diverse array

of existing devices, platforms, systems, and data sources. The main functional blocks of the aerOS ecosystem,

which are crucial for registering resources and deploying services within the aerOS continuum, are detailed in

this functional view of the reference architecture. We describe these functional components and highlight their

importance in the realisation of the vision set in the high-level view of aerOS.

aerOS IE maps to the high-level concept of rendering existing processing units, either physical or virtual, as

aerOS-enabled IEs. IE abstracts all architectural variety of underlying substrate and provides an execution layer

ready to host IoT services under a strictly secured and monitored way. Basic functionality of the IE is to report

its status continuously and periodically regarding all available and disposable resources and hosted services

status. This information becomes part of the continuum knowledge graph and is federated, and other parts of

the continuum may request access to available resources, to host services based on its capabilities. At the end is

the minimum unit within aerOS providing processing power and computational capabilities. In the case these

capabilities are match for the requirements of a service deployment request and under the condition it has the

availability it can serve requests originating from anywhere across the continuum.

aerOS domain maps to the high-level concept of exposing available resources into the continuum. It acts as a

wrapper around available computing and network resources, rendered to IEs, which integrates all the function-

alities required to transparently enrol them at the disposal of the Meta-OS. It provides all the necessary abstrac-

tion overlays to securely integrate a set of IEs as part of the continuum. Consisting of one or more IEs, aerOS

domain eventually serves as a fundamental unit within the ecosystem, acting as the primary interface for indus-

try verticals to connect with the aerOS continuum. It offers a unified execution environment equipped with

aerOS basic services, including federation, orchestration, and management capabilities. Resource owners reg-

ister their available computing and networking resources as aerOS domains and can subsequently run IoT ap-

plications on top of them taking advantage of provided orchestration and lifecycle management facilities. Nev-

ertheless, their applications are not restricted to be uniquely executed within this domain, because depending

on their requirements, they can be partially or fully hosted on other domains across the continuum. Conversely,

when resources within a registered domain are underutilized, they are made available to the Meta-OS to be used

according to overall continuum demands. Each aerOS domain is integrated with the aerOS Entrypoint domain

to incorporate security services, share resource capabilities via federators, and receive information about avail-

able resources across the continuum. This integration ensures a seamless and efficient operation within the

aerOS ecosystem.

aerOS Entrypoint domain maps to the high-level view concept of providing a guided support for all users to

interact with the continuum. It gives users the feeling of ñsittingò and operating over a continuum stripped of

all underlying distracting technical details. Users are registered with a certain rolein the aerOS continuum in the

Entrypoint Domain. Subsequently services deployment requests and resources monitoring are graphically sup-

ported via the management dashboard. Based on that roles, users are enabled with different level of permissions

regarding access and actions requests. While resembling other aerOS domains in structure, the Entrypoint do-

main distinguishes itself with additional capabilities specifically tailored for ecosystem management. Serving

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 75 of 136

as a central access point, with integrated graphical interface support, for operators and developers alike, it offers

a suite of tools and interfaces for tasks such as registration in the continuum, service deployment, and resource

management. By doing so, the Entrypoint domain ensures the seamless operation of the aerOS ecosystem. Mi-

gration of management services, if needed, is seamless ensuring that such transitions does not disrupt the eco-

system's functionality. Moreover, the Entrypoint domain takes charge of registering domains for decentralized

state information propagation, ensuring that crucial data flows efficiently from the edge to the cloud. Integral to

its operation is the integration of AAA control point. This integration provides a centralized source of truth for

security and privacy control within the aerOS ecosystem, ensuring that stringent security measures are upheld

across all interactions and operations.

As the narrative scales towards the high-level vision of aerOS, it becomes clear how resources become IEs, how

domains are built on top of IEs, and how the Entrypoint domain supports access over these domains as a con-

tinuum. However, it still remains to align with the high-level vision where resources behave and expose them-

selves within the continuum, providing a unified execution environment for IoT developers. This is where the

aerOS Federated Orchestration (see 5.4.2) and aerOS Management Framework (see 5.5.8) concepts and

constructions come into play. They represent the structured interaction of all aerOS services to build the aerOS

fabrics (as presented in Section 6). These frameworks enable the integration of diverse and scattered resources

into a homogenized hosting infrastructure, over which services are transparently deployed and orchestrated by

the aerOS Meta-OS. The aerOS Federated Orchestration provides each aerOS domain with the comprehensive

view of all resources and capabilities dispersed from the edge to the cloud and based on this holistic perspective

runs the orchestration process allocating the most efficient resources, across all the continuum, for each service

deployment request. Integrating AI algorithms in the decisions engine, this orchestration over the federated

resources across the continuum ensures optimal resource utilization and service performance across the feder-

ated environment. Meanwhile, the aerOS Management Framework focuses on the registration and discovery of

core entities (such as aerOS Users and Domains) to form a federated environment. This framework is partially

located in the Entrypoint domain and within each aerOS domain's federator component.

In Figure 23 the sequence of actions and involved concepts are illustrated. This diagram mentions the

stakeholderôs interaction with the system and highlights the entities that have immediate interaction with the

ecosystem, i.e., aerOS domains and aerOS management portal, abstracting at the same time all the layers and

mechanisms that make sharing, federation, orchestration, and deployment possible within it. Users access aerOS

provisions using the aerOS management portal. System Administrators register newly created domains to which

they can have management access and can register to the aerOS federation process. IoT Service Developers can

take advantage of a template driven process to deploy their applications, submitting desired characteristics

which will be translated to orchestration-based placements for their services.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 76 of 136

One path, ñaerOS Domains Registration & Managementò, denotes the activities flow for aerOS domain

operators and how domains are registered in the aerOS federation, and the other path ñIoT services deploymentò

is relevant to IoT Service Developers and the flow following a service deployment request.

A more focused view on the functional blocks which implement these aerOS features in a domain level is

depicted in Figure 24. As already discussed, each aerOS domain integrates three main building blocks acting as

the functional components that make possible the implementation of the Compute and Network fabric, the

Service Fabric, and the Data Fabric in a domain level and which finally support the domain integration to the

aerOS continuum. Each aerOS domain provides an API exposure layer, technically implemented by an API

gateway component, which is the single point of access to all underlying services. API exposure layer before

ñroutingò external requests to responsible components transparently enforces security and privacy control as

implemented within each domain from the AAA component.

Figure 25. aerOS entities and actors overview

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 77 of 136

Figure 24 makes a clear positioning and interaction of aerOS domain functional blocks. At the bottom layer

compute and network component provides the underlay for aerOS services to run. These services are aerOS

management and orchestration services regarding both aerOS federated environment execution and verticals

enforced IoT services. Data Fabric component spans across both of them and extracts, transforms and exposes

data that subsequently feed aerOS management and orchestration services.

Data Fabric integrates data related to computing capabilities and deployed services in the domain. Initially it is

responsible, building on Context Broker component capabilities, to establish context exchange with other

domains and thus enable aerOS federation. It encompasses a domain registry and a domain discovery service

which in fact implement aerOS federation services. These, register and keep receiving notifications from other

aerOS domains regarding changes and updates done there and, the other way round, notify registered domains

as to what is changing locally regarding resourcesô availability and services deployed modifications. All this

communication is going through security and privacy component and exposed by domain API gateway.

Additionally, Data Fabricôs context broker component internally provides information of domain componentsô

status and of other domains availability too, to components that need to support orchestration decisions. This

means that exposed information flows directly towards High-Level Orchestratorôs AI and trust management

components. Thus, domain HLO can make the most efficient decisions, considering all aerOS continuum status,

and either provide forward decisions to lower-level orchestrator or otherwise forward request to other aerOS

domains HLO. LLO is, further, able to access underlying domainsô compute and network resources and

commission the actual placements. Thus, a closed loop that extends domain local restrictions is formulated. This

closed loop entails a knowledge-based AI support which leads IoT services orchestration decisions across a

pool of resources federated as a common execution environment.

6.3. Process view
The process view provides an overview of how the most relevant aerOS processes interact, communicate, and

collaborate to achieve the desired functionality. Specifically, this view offers insights into the runtime behavior

of aerOS, demonstrating how its processes seamlessly work together to accomplish their intended objectives.

Figure 26. aerOS domain functional blocks

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 78 of 136

Additionally, this view showcases the tasks and processes within the system, highlighting the interfaces with

external elements and the interactions between different components. Moreover, it emphasizes the exchange of

messages among these processes, facilitating effective communication and coordination.

The Process View of aerOS architecture has been drilled down into 8 processes, that respond to the most

prominent and frequent activities/exchanges occurring over the Meta-OS:

¶ Installation and aggregation of computing resources to the continuum.

¶ Optimal deployment of a service by leveraging the aerOS continuum orchestration processes.

¶ Detailed interaction among the aerOS orchestration components.

¶ Service re-orchestration triggered by the self-orchestrator module.

¶ Secure access to data within the continuum through the Management Portal, regardless of its location.

¶ IoT Service (sensor monitoring and actuation) materialization.

¶ Trustworthy exchange of immutable and irreputable messages across the continuum.

¶ Decentralized AI task coordination and execution

All these processes provide a final and complete overview aimed at facilitating the understanding of the aerOS

Reference Architecture.

Installation and aggregation of computing resources to the continuum

Figure 25 depicts the sequence diagram illustrating the installation and aggregation of computing resources to

the continuum. This process begins with the SysAdmin, who possesses the necessary permissions to manage

the computing resources available, initiating the aerOS installation on each computing resource.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 79 of 136

Figure 27. Installation and aggregation of computing resources to the continuum.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 80 of 136

Optimal deployment of a service by leveraging the aerOS continuum orchestration process.

The next main process that has been detailed, represented as a sequence diagram Figure 26, illustrates the

process of optimally deploying a service by leveraging the aerOS continuum orchestration processes. The

process begins when a user, acting as IoT service deployer, declares their Intention Blueprint to deploy a service

through the aerOS Management Portal. Then, the Management Portal interacts with the aerOS Orchestration to

effectively coordinate the deployment process. The aerOS Orchestration determines the optimal location to

initiate the service deployment within the continuum (HLO). Once an appropriate IE of the continuum is

selected, the service is deployed (LLO). Upon successful deployment, the IoT service deployer receives a

notification confirming the service's deployment.

Detailed interaction among the aerOS orchestration components.

This process, which can be seen as an extension of the former process, aims to provide a more detailed view of

the aerOS service orchestration process by focusing on the specific components involved in the aerOS

orchestration, particularly the HLO. Therefore, interactions between the internal components of the HLO

(Storage Engine, Data Aggregation, é), along with some key internal processes that occur in these components,

are presented.

Figure 28. Optimally deploy a service by leveraging the aerOS continuum orchestration processes.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 81 of 136

Service re-orchestration triggered by the self-orchestrator module.

The last two diagrams were related to the aerOS orchestration process. Nevertheless, it is important to remind

that not only is the orchestration in charge of the deployment of services, but also of service reallocation. In this

regard, this diagram illustrates the process of re-orchestrating a service within an aerOS node. The process starts

when the system administrator adds a rule in the node's Self-orchestrator module through its API. Every second,

the node's self-awareness module updates the IE status data, sending a copy to the self-orchestrator module.

When the self-orchestrator receives the information update, it converts it into facts to then run an internal rules

engine, which compares the received facts with the previously entered rules by the administrator. If any rule

matches any fact, the self-orchestrator module sends a reorchestration request to the HLO.

Figure 29. Detailed interaction among aerOS orchestration components.

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 82 of 136

Secure access to data within the continuum through the Management Portal, regardless its location.

Regarding the fifth main process mentioned for the Process View, it describes a sequence diagram that

exemplifies how to access data available within the continuum through the Management Portal (e.g. the UI that

displays the IEs of a domain with their current status), regardless of its location. This process begins with the

login process in the Management Portal, which redirects the user to the Keycloak login page to let him introduce

his credentials. These credentials are verified by the IAM, and if are correct, the user is authenticated, the portal

stores the access token, and finally he is redirected to the welcome page of the portal. Then, the user accesses

to a UI that needs to obtain data from the data fabric to build the page, so a request is sent to KrakenD with the

previously obtained access token, which is checked by Keycloak to verify the user's permissions and, if

authorised, KrakenD grants access to the requested information. Finally, the requested data is sent to the portal,

which displays the requested page to the user.

Figure 30. Service reorchestration triggered by the self-orchestrator module

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 83 of 136

IoT Service (sensor monitoring and actuation) materialization.

In the next process, an IoT service that includes monitoring and actuation wishes to be deployed via aerOS. This

is a flow that was already demonstrated in the mid-term review in Brussels in April 2024 (see Section 0). Here,

assumed situation (pre-requisites) are that: (i) aerOS has been installed successfully in (at least) two domains

and those are functional, (ii) an IoT sensor exists, and is directly connected to a functional IE (see section 5.4.1

ï IoT sensors), (iii) the portal is functional, and a user can execute the orchestration procedure (see above). In

the process, a developer delivers an IoT Service code, which has been built considering the selection and usage

of a Smart Data Model fitting the IoT data source. Once this component is properly packaged and made available

to the user in the portal (DevPrivSecOps methodology), the user -via the portal- manipulates the form to

commission the deployment. Here, the manual mode is selected, due to the necessity of direct connection IoT

Service <-> Data element (sensor). Once the service is deployed (as it contains the proper software), the data

updates are made via context update in the Context Broker (Orion-LD) that lives in the IE acting as head of

Figure 31. Secure access to data within the continuum through the Management Portal

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 84 of 136

domain in the same domain of the selected IE (the one connected to the sensor). This process keeps alive as

long as the IoT Service stands. As the intention of the whole scenario is to perform certain actuation whenever

necessary, an Actuation Service is developed, packaged, and made available to the user in the portal. Then, the

user -via the portal- decides to deploy the service. This time, as it is not compulsory for the service to live in a

specific IE, the semi-automatic (or automatic) orchestration mode is selected. At this point, the Actuation service

ends up running in an IE that can either belong to the same domain as the former, or not. For the sake of

functionality illustration, the diagram in Figure 30. IoT Service (monitoring and actuation) deployment and

functioning assumes that it runs in a different domain. This service is subscribed to the corresponding entities

in its local Context Broker, which sits on Head of Domain 2 (this is a relevant point). For this to properly

function, the Data Fabric mechanisms should have previously guaranteed that the federation (in subscription to

specific entities) has already been achieved. Whenever the actuation target/threshold is reached, the logic of the

service will perform certain operations, and will initiate the actuation via updating a selected field in the

corresponding entity (details will depend on the specific service and data model design). Once this occurs, the

remote Head of Domain 1 (which is subscribed to changes thanks to the aerOS Federation) is notified and

proceeds to forward the notification to the exposed endpoint in the IE connected to the sensor. Here, the logic

embedded in the IoT Service will interpret the actuation and will directly act upon the sensor, completing the

lifecycle of the scenario.

Trustworthy exchange of immutable and irrepudiable messages across the continuum.

In the next process, a pilot user wishes to upload a new block into the Tangle with a message that needs to be

immutable. It starts by making a petition to the IEs Hornet Node with the payload it wishes to upload, the block

is built and sent to the node's neighbours, eventually making its way into the Coordinator. The Coordinator now

validates and verifies the received block, if invalid it is discarded, otherwise it is stored and a reference to the

block is attached to the most recent milestone. This milestone will confirm to all nodes the inclusion of all

blocks attached to it into the Tangle itself. After this the Pilot can verify the inclusion of the uploaded block by

retrieving the metadata of it, which will confirm it being referenced by a milestone.

Figure 32. IoT Service (monitoring and actuation) deployment and functioning

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 85 of 136

Decentralized AI task coordination and execution.

Figure 32 presents a sequence of steps required to run a decentralized AI task, specifically federated learning.

First, aux AI services need to be deployed on the aerOS infrastructure. This is done with an Intention Blueprint

that is declared and after processing, it is used by aerOS Orchestrator to select IEs on which services should be

deployed. To run a decentralized AI task, one AI Task Controller service (with three components) and at least

one AI Local Executor service need to be run. AI Local Executor services are responsible for running local sub-

tasks of an AI task thatôs overall execution is controlled by AI Task Controller.

A specific task execution is triggered by providing configuration to the AI Task Controller (using service API).

The required configuration is passed to AI Local Executors and task is initiated. AI Local Executors run rounds

of training locally and send parameters update to AI Task Controller for aggregation. AI Task Controller checks

if training is finished and if yes then a final model is stored and can be retrieved.

Figure 33. Trustworthy exchange of immutable and irrepudiable messages across the continuum

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 86 of 136

6.4. Data view
An aerOS domain may include multiple IEs, resulting in new data sources and data consumers dynamically

becoming part of the continuum. To cope with this changing data landscape, while ensuring data governance

policies are properly met, the aerOS Data Fabric of the aerOS domain provides data owners with a set of tools

as introduced in Section 5.5.2.

The incorporation of new data sources and, therefore, the registration of new data products available within an

aerOS domain is the responsibility the owners of the data. To this end, data owners must interact with the Data

Product Manager of aerOS Data Fabric to onboard new data products, triggering the workflow depicted in

¡Error! No se encuentra el origen de la referencia.. The following steps take place during the workflow:

¶ Step 1: The data product owner onboards the new data product via the REST interface exposed by the

Data Product Manager. In this process, the data owner provides the metadata and artifacts that comprise

a data product.

¶ Step 2-3: Based on the metadata and artifacts provided in the previous step, the Data Product Manager

orchestration the Computing Resources of the IE (e.g., Kubernetes) to deploy a data product pipeline.

¶ Steps 4-7: Once the pipeline has been deployed, the data product is built and stored in NGSI-LD

Context Broker, becoming part of the knowledge graph. The URL from which the data product can be

accessed, in addition to the governance metadata provided by the data owner, are sent to the Data

Catalogue component. The Data Catalogue process these metadata and integrates them into the

knowledge graph.

Figure 34. Decentralized AI task coordination and execution process

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 87 of 136

¶ Steps 8-11: If the data product included a predefined access control policy, the policy information is

sent to the Data Security component, which accordingly configures the Access Control component (e.g.,

Keycloak).

¶ Step 12: The data product owner is notified that the data product is now available in the aerOS Data

Fabric.

¶ After Step 12: At this point, data consumers can interact with the NGSI-LD Context Broker to

discover in the knowledge graph the data product that has been created and access the containing

data.

Figure 35. Workflow during onboarding and creation of data products in the aerOS Data Fabric.

However, as noted before, the IoT-Edge-Cloud continuum presents a highly dynamic data landscape, where

new aerOS domains with one or several IEs might join or leave the continuum at any time. To enable the

exchange of data flows among different IEs and different aerOS domains, aerOS implements a federated

architecture comprising multiple Data Fabric instances, as depicted in ¡Error! No se encuentra el origen de la

referencia..

In this architecture, the Context Brokers existing in an aerOS domain store data about the state of the IEs and

what kind of data is available in them. They are also aware of the rest of Context Brokers in their domain and

elsewhere as well (federation). IEs either implement Context Broker or Context Providers, depending on their

computational resources and the spot in the continuum. Every time a data owner builds a new data product

from a data providing domain, the local Context Broker registers the data product and informs the Context

Brokers from other aerOS domains to update their Context Registries with this new data product.

As a result, when a data consuming domain from aerOS domain A requests a data product served by aerOS

domain B, the local Context Broker knows the neighbour Context Broker from which the data product can be

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 88 of 136

retrieved. Based on this, the local Context Broker A interacts with the neighbour Context Broker and obtains

the data product on behalf of the consumer.

Figure 36. Federated architecture of the aerOS Data Fabric.

6.5. Deployment view

Deployment view refers to the process of positioning containerised software components on top of the physical

layer and establishing the necessary topology needed to make aerOS systems and applications available and

operational in industry verticals use cases. It presents the system from an engineerôs point of view while de-

ploying, positioning, configuring, and interconnecting all needed software components, on the physical layer,

needed to ensure that aerOS capabilities are accessible and ready to operationally serve stakeholders according

to their specified and designed intentions.

Although the goal and overall deployment process remains in line with what was described in first version, two

activities that were initiated after the first version release, provided valuable input based on which the

deployment view has been defined in more detail. The first activity was the deployment of the MVP, described

in section 7.1.1, and the other source of feedback was the discussions curried out with WP5 regarding the scoped

instantiation of aerOS reference architecture within project pilots.

The goal of aerOS deployment is to enable resource owners to register their assets as part of the aerOS

continuum. On one hand this means to deploy aerOS stack, over available hardware, and render them to IEs

collectively hosting, and supported by a common set of aerOS services and thus exposed and orchestrated as an

aerOS domain. On the other hand, this means to automate the integration of any new registered domains with

already enrolled resources and thus set them able to discover resources, services and data which could support

their purposes. The overall process is fully documented and supported by both a deployment toolset and

management portal registration activities.

Initially the process requires that stakeholders, resource owners, register themselves within the aerOS

continuum. This provides the required identity for them to be able to expose and supervise their resources. Then

the design provides a one stop process towards rendering available computing and network resources to an

aerOS domain. This process is automated with the use of, aerOS provided, tools which undertake the

deployment of all that is needed to expose enrolled computing resources as IEs and on top of them to deploy all

aerOS services which unify them under the umbrella of an aerOS domain. This includes the deployment of self-

* packages and LLOs to target the variety of integrated computing resources as IEs and then all the servicesô

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 89 of 136

suite (section 5.5) which will unify, and transparently manage and orchestrate integrated resources as one

administrative entity, i.e. an aerOS domain. Once this process is completed, the new domain will host all aerOS

basic -and selected auxiliary- services and this means that it will be able to securely provide selected resources

and consume resources hosted in other domains. Having transformed all legacy hardware into aerOS IEs, the

aerOS runtime (section 5.4), acts as an abstraction layer on top of them and seamlessly provides the basis for

aerOS services execution which in turn provide connectivity, orchestration, Data Fabric integration and

interface to all other integrated domains. Figure 1Figure 35 provides an example of aerOS deployment over

stakeholder resources on top of, most probably, heterogeneous hardware and operating systems. Guided, and

tools-supported, aerOS runtime deployment will abstract underlying diversity and will provide a common

runtime, on top of which aerOS basic and auxiliary services are running and transparently taking care of all

underlying resources -like a legacy OS would do- providing a common and federated execution environment

for IoT developers to deploy their applications. These applications will now receive, from aerOS service fabric,

all Life Cycle Management (LCM) support needed to run smoothly over a secure environment and take

advantage of federated capabilities.

This whole process, as explained, is designed to be supported and automated by artifacts publicly available to

interested parties. These artifacts are packages tackling all the above activities, and container images, built for

a variety of architectures, needed for the deployments. In fact, these packages are modular components,

requiring minimal configuration, which address a) IE rendering for each integrated computing element, b) basic

services deployment for domains setup and c) domainôs automated registration in the continuum. Then the

aerOS stack deployment and registration is complete and stakeholders can further control and modify access to

resources and proceed to services deployment on top of these resources or on top of a federated computing

underlay partly composed of their resources and partly from other resources which aerOS Meta-OS might

transparently provide as more suitable candidates.

It is obvious that aerOS stack deployment on top of existing resources and subsequent registration in the aerOS

continuum is a smooth and straightforward process. What is yet important to explain is that aerOS, as an open

system which does not enforce any kind of hierarchy or dependencies, with the same flexibility offers the

possibility, and the means to initiate and set up the whole Meta-OS from scratch. If a collaboration or federation

or any other kind of interested party would like to build their stand-alone ecosystem, they should be able to do

so. The only additional thing they should address is the Entrypoint domain set-up, as a first step and before

anything else. Entrypoint domain requires some more components to be deployed additionally to what is already

described for an aerOS domain. These include the AAA subsystem and the management framework, which

mainly integrates the previously mentioned portal. But this should not be any difficult as the modular design

foresees the ñEntrypoint domain packageò which will take care of this. From there on, for the subsequent

resourcesô integration in the continuum under aerOS Meta-OS, the procedure is the same as described above.

Figure 37. Deploying an aerOS domain and rendering resources as part of the continuum

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 90 of 136

The following table depicts the basic components expected to be deployed within an aerOS continuum, which

consists of N domains and X IEs. This list is not exhaustive but aims to provide a comprehensive picture of the

continuum's components and their distribution. The overall concept is to correlate the multitude of components

across the continuum, within each domain, and on top of each IE. Moreover, this helps to understand what is

required for each unit to operate as an aerOS entity.

Table 2. Deployment Level of components in aerOS continuum

Component/service In the whole continuum In each domain In each IE

aerOS Management

Portal
Single Instance (1) - -

aerOS Federator N (as many as domains) 1 -

HLO N (as many as domains) 1 -

LLO Ὀ

Total number of

LLOs in the

continuum (N

domains)

D (the multitude of IE container

management framework types in-

tegrated in the domain)

1 associated

LLO

Keycloak Single Instance (1) - -

OpenLDAP Single Instance (1) - -

KrakenD N (as many as domains) 1 -

Data Fabric enabler

(Orion-LD)
N (as many as domains) 1

Self-* X (one per IE) X (one per IEs) 1

The table highlights the essential components that make up the aerOS continuum, illustrating how they are

distributed across it within domains and IEs. Some of them have a single instance in the continuum, some need

to have presence within each domain and some need to be hosted in each IE. Notice that for LLOs there might

be small number of distinct types, but each of them should be replicated in each domain which integrates this

type of IE.

Although the whole deployment view is quite close to what was already presented in first version, there are

some updates that are related to careful decisions and feedback received during this period both from technical

partners but from pilot engaged people too. The integration of LDAP which provides a more granular and

efficient access control and the wish to make the whole procedure less divided among on-site deployments and

via dashboard metadata and information provisions, instructed the creation of packages, as mentioned above,

which only require the existence of an associated and registered aerOS user and then take over the rest that are

needed for both deploying and registering. On the other hand, the decision that deployment process for aerOS

does not include machines setup, e.g. OS or VMs provisioning, set a clear borderline as to what is a prerequisite

and what is an aerOS deployment view. This moved away the initially declared possibility, in version 1, to

integrate into the management dashboard tools and processes to perform this. Such an approach would introduce

complexity and raise security concerns, potentially making the system more susceptible to vulnerabilities and

functional instability. Consequently, this could lead to increased reluctance among users to adopt the system.

6.6. Business view
The business view describes the functionality of the aerOS Meta-OS from the perspective of external actors

(e.g., end-users not directly involved on aerOS related administrative actions). Furthermore, this view

contributes to the development of a suitable business model for the aerOS exploitation context and helps on

understanding the main activities and interconnections among the aerOS services. Consequently, this view

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 91 of 136

strongly relies on the previously introduced ones, as it relates the concepts described in them. Figure 32 presents

the type of this relationship:

According to the first design of this view (available in ñD2.6 aerOS architecture definition (1)ò) External actors

in the aerOS context mainly include (i) end-users which may develop services built on top of the aerOS

infrastructure and (ii) end users which consume aerOS services. The main difference between them is that

while the developer has control over some physical components of aerOS (i.e., aerOS is seen as a Platform-as-

a-Service (PaaS)), the consumers only make use of aerOS services and produced data (i.e., aerOS is seen as a

Software-as-a-Service - SaaS).

In "D2.1 State-of-the-Art and market analysis report", a comprehensive survey among several stakeholders that

form part of these potential end-users was conducted and published. The top-ten challenges envisioned for a

platform such as aerOS shall be addressed were in that priority order: (i) Integration complexity, (ii) Data

collection & Analytics processes, (iii) Privacy, (iv) Securing network, devices or data, (v) Scalability, (vi) Cost

of maintenance and management, (vii) Connectivity of devices edge-to-cloud, (viii) End-to-end IoT solution

monitoring, (ix) Vendor Lock-In, and (x) Regulatory and safety certification.

However, in this document, reflections from the reality of aerOS architecture design and adoption have driven

the team to include the relevant perspective of exploitation route.

aerOS has been conceived as a modular system where several components (basic and auxiliary services) can be

selected, always running on top of the aerOS runtime (see 5.4). The decisions to be taken about which

components to select, or where to deploy them upon will differ based on the exploitation viewpoint of the

adopter entity.

Therefore, a specific flow can be envisioned as follows:

Figure 38.Business view interactions

Figure 39.Exploitation perspective intertwining aerOS architecture views and decisions

https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 92 of 136

As it is illustrated above, different exploitation routes directly affect the decisions taken across all aerOS

architecture views. While the functional, process, data and deployment view follow the principles explained in

6.2, 6.3 and 6.4 sections correspondingly, the way they will be approached/focused may vary.

This way, the exploitation perspective acquires a relevant dimension Meta-OS-wise.

If a company aims at exploiting aerOS for increasing their internal IoT services capacity (more sensing,

actuation, real-time monitoring of real life enterprise ñthingsòé), they might select auxiliary services such as

self-configuration, self-healing, advanced networking component, or other rather than powerful serverless cloud

capacity, semantic annotation and translation, or , among others.

Similarly, cloud providers would opt for cloud-native container management frameworks (i.e., K8s-based), thus

aligning their deployment options to those such as self-scaling, unified low-level orchestration, higher

centralization of services, etc., while still keeping aerOS continuum traits.

Other exploitation cases might pivot around data sharing, either for internal interoperability or for potential

commercialization of the information. There, Data Fabric additional tools (LOT-based results, semantics

expressioné) and relevant annotation and translation tools will come handy. Also, trustworthiness components

provided by aerOS might be given preference, and might be installed in more computationally powerful nodes,

etc.

Many examples could be found, and will need to be analysed carefully by the adopting entity how to approach

the fine-tuning of aerOS uptaking based on their own exploitation path.

Once the exploitation viewpoint has been settled to drive the decisions on how to follow aerOS architecture

adoption and materialisation, in the following sections, a short explanation on how aerOS and its corresponding

services map the business perspective of the adopting entity is presented:

Scalability: Scalability is one of the main design drivers in aerOS. The core service providing this feature is the

Network & Compute Fabric (see section 5.5.1), which allows expanding aerOS infrastructure seamlessly,

without sacrificing performance, as new servers, devices or workloads are introduced in the aerOS ecosystem.

Cost of maintenance and management: This challenge has not yet been prioritised, although continuously

borne in mind, considering the initial stages of the project, without a clear business model identified yet. aerOS

will tackle this challenge more thoroughly in future activities related to exploitation. In the next architecture

definition deliverable further details will be provided.

Connectivity of devices edge-to-cloud: aerOS envisions the connectivity of devices as set of services running

on specific IEs, which provide physical access/connectivity to the device (e.g., a device connected using a

Bluetooth connection). aerOS will facilitate the establishment and maintainability of such connectivity through

the self-* features (described in deliverable ñD3.1 Initial distributed compute infrastructure specification and

implementationò) and the network & compute fabric (Section 5.5.1), potentially integrating technologies such

as Liqo and Netmaker to allow resource sharing (i.e., access to a physical device) between IEs and domains.

End-to-end IoT solution monitoring: aerOS will provide and end-to-end monitoring. To do so, multiple

metrics from the different aerOS core and auxiliary services will be gathered and available to either just

visualisation purposes, or for platform malfunctioning alerts, through the embedded analytics service (Section

5.6.2). Furthermore, tools and guidelines for also allowing user to publish customized metrics from their own

user applications will be provided. These monitoring metrics will be as well propagated to the rest of IEs in the

domain.

Vendor Lock-in: aerOS is a MetaïOS, which provides a set of open-source based core services. Therefore,

aerOS does not impose any vendor lock-in on the deployment infrastructure, meaning that the running host

system (either a hardware device or a virtualized one) can be selected by the final user. This does not preclude

that any service/application designed on top of aerOS can impose some ñvendor lock-inò in the future.

Regulatory and safety certification: Following the preliminary analysis carried out in deliverable "D2.1 State-

of-the-Art and market analysis report", all aerOS components are GDPR compliant by default. Furthermore,

they will also address specific European and national regulations regarding data privacy.

https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/10/aerOS_D3.1_Initial-distributed-compute-infrastructure-specification-and-implementation-1.0.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf
https://aeros-project.eu/wp-content/uploads/2023/05/aerOS_D2.1_State-of-the-Art-and-market-analysis-report_v1.1.pdf

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 93 of 136

7. aerOS Reference Architecture instantiations and

evaluation

Within this section the practical applicability and partial validation of the aerOS architecture design is

demonstrated. The deployment of the architecture in real-world scenarios, ensuring that the theoretical concepts

are translated into tangible implementations is highlighted. , The foundational capabilities and functionalities

of the aerOS architecture in a controlled environment are showcased by detailing the development of a

Minimum Viable Product (MVP) based demonstrator. Further, it is illustrated how the aerOS Reference

Architecture maps to various project pilots, providing concrete references of pilotsô functionalities and

concerned aerOS concepts. Finally, it is described how the aerOS Reference Architecture is aligned with the

EUCEI continuum (see 7.3, highlighting the commitment in aerOS to meet European standards and contribute

to wider technological frameworks). These activities collectively underscore the robustness, versatility, and

relevance of the aerOS architecture, reinforcing its potential to drive innovation and efficiency over multiple

domains related to European Meta-OS vision.

7.1. aerOS demonstrator development
With a focus on the instantiation and validation of the aerOS reference architecture, a demonstrator was designed

and executed to serve as a practical proof of concept, showcasing the entire deployment flow of an IoT

application supported by the aerOS Meta-OS. This demonstrator is a simulated real use case that was run on the

aerOS instantiation that offers the MVP., which indeed is a continuously running deployment and validation

space for aerOS concepts and design. The demonstrator, making use of many aerOS components, illustrates the

continuum setup and orchestration capabilities of aerOS. Not only validates it the core functionalities of the

aerOS architecture, but also highlights its potential in real-world IoT applications, demonstrating seamless

integration and effective orchestration of diverse components within the IoT-Edge-Cloud continuum.

7.1.1. aerOS MVP

aerOS architecture integrated and performed research and implementation beyond current state of the art in the

fields of compute and network fabric, service fabric and data fabric. These activities introduced development

and integration complexities, which are reflected in the great variety of technologies and tools that must coexist,

cooperate, and seamlessly provide Meta-OS functionalities for the IoT-Edge-Cloud continuum (see 7.3). aerOS

MVP was deployed to serve as a practical paradigm where all complexities could be addressed, and concepts

validated.

The aerOS MVP that hosted the demonstrator, an IoT application detailed in the next section, integrated a

topology that initially included two registered aerOS domains. Later, during the demonstrator's runtime, an

additional plug-and-play mobile domain was registered to showcase the flexible extendibility of the aerOS

continuum and service migration. The first two domains were constantly acting as the MVP baseline, providing

a permanent integration and validation environment for the aerOS architecture.

The goal was an initial implementation of all the capabilities that aerOS can offer. Thus, all basic aerOS services

and some auxiliaries too were integrated in the two domains which permanently support MVP purposes, and

later these were also deployed in the, ad-hoc integrated, mobile domain. The Entrypoint domain (see

section5.3.2) is deployed in CloudFerro, a commercial cloud provider and project partner, premises and the

ñplainò domain resides in the premises of the Technical Coordinator - NCSRD. In addition, the mobile domain

consisted of a legacy laptop and a Raspberry Pi that was brought physically to the review room in Brussels to

support the heterogeneity of computing resources and execution environments that can hanlde the aerOS Meta-

OS. All domains were exposing their access endpoints in the public internet and each of them owned a FQDN

registry under the domain aeros-project.eu.

The Entrypoint domain, located in a public cloud K8s cluster, integrated all management aerOS services. These

services, which have a singleton presence in the continuum, include the aerOS federator, management portal,

and AAA components such as IdM and LDAP. These components provide a single point of GUI-supported

entry for visualized management of the aerOS continuum and based on the implemented user and role-based

D2.7 ï aerOS architecture definition (2)

Version 1.0 ï 31-MAY -2024- aerOS© - Page 94 of 136

access control registry, serve as a single point of truth for authentication and authorization permissions for all

resource access.

Beyond these Entrypoint-specific services, which are just deployed in one domain, all other services, described

in section 5.5, were deployed in all domains, thereby exposing APIs for resources federation and orchestration

on top of the underlying integrated IEs. Local agents for security enforcement were also deployed. Without

going into detail, it can be stated that all networking capabilities, resourcesô monitoring, federation, and

orchestration capabilities were integrated in this demo. As a result, the domains could interact among them and

were accordingly represented in detail within aerOS dashboard. A short visual representation of the MVP as

shaped for the demonstrator use case is presented in Figure 36Figure 37.

Three domains were part of the aerOS orchestrated continuum, one in Poland which acted as the Entrypoint,

one in Greece and one mobile coming from Spain and functionally integrated in Belgium. While the domain

hosted in CloudFerro has an essence of cloud, the domain in NCSRD is used as a far-edge IoT domain hosting

the ñthingsò and the mobile domain is another domain interested to host applications which can interact with

the IoT devices in the IoT domain. All integrated IEs in each domain hosted self-* package to report their state,

a federated Orion-LD CB were hosted in each domain to share IEs statues in real time, networking components

(in the form of CNFs) enforced secure and private exposure are deployed in each domain, HLO and LLO to

support decisions and enforce onto the IEs are deployed as well and all resources and functionalities are exposed

based on aerOS (Open)API . More aerOS components were deployed but it should be clear that the overall

topology is based on the aerOS architecture blueprint.

The kind of computational resources integrated in the MVP for the demonstrator use case, as well as the

connectivity networks expose some variations. This supports the validation of a Meta-OS requirement to be

able to run on top of and orchestrate diverse resources. Entrypoint domain integrated a K8s cluster managed by

a cloud provider (K8s as a Service), , while NCSRD based domain integrated both VMs and an RPi, which is

translated into different underlying processor architectures. Additionally, beyond wired and virtual overlayed

networking used for the VMs, the RPi based IE is connected over 5G network connectivity. This is enabled with

the integration of a Waveshare 5G-HAT and under the control of SA (standalone) NCSRD hosted 5G core on

Figure 40. MVP topology

https://www.waveshare.com/sim8200ea-m2-5g-hat.htm

