

D4.2 - Software for delivering intelligence

at the edge intermediate release

Deliverable No. D4.2 Due Date 29-FEB-2024

Type Other Dissemination Level Public

Version 1.0 WP WP4

Description Intermediate release of design and implementation of building blocks and their re-

lationship with the rest of the architecture.

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement No.

101069732

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 2 of 60

Copyright
Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners:

UNIVERSITAT POLITÈCNICA DE VALÈNCIA ES

NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL

ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES

TTCONTROL GMBH AT

TTTECH COMPUTERTECHNIK AG (third linked party) AT

SIEMENS AKTIENGESELLSCHAFT DE

FIWARE FOUNDATION EV DE

TELEFONICA INVESTIGACION Y DESARROLLO SA ES

ORGANISMOS TILEPIKOINONION TIS ELLADOS OTE AE - HELLENIC TELECOMMUNICATIONS ORGANIZA-

TION SA
EL

EIGHT BELLS LTD CY

INQBIT INNOVATIONS SRL RO

FOGUS INNOVATIONS & SERVICES P.C. EL

L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL

ICTFICIAL OY FI

INFOLYSIS P.C. EL

PRODEVELOP SL ES

EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY

TECHNOLOGIKO PANEPISTIMIO KYPROU CY

DS TECH SRL IT

GRUPO S 21SEC GESTION SA ES

JOHN DEERE GMBH & CO. KG*JD DE

CLOUDFERRO S.A. PL

ELECTRUM SP ZOO PL

POLITECNICO DI MILANO IT

MADE SCARL IT

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES

SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer
This document contains material, which is the copyright of certain aerOS consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation, or both.

The information contained in this document is the proprietary confidential information of the aerOS Consortium

(including the Commission Services) and may not be disclosed except in accordance with the Consortium

Agreement. The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications Net-

works, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is not

responsible for any use that may be made of the information it contains.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 3 of 60

Authors
Name Partner e-mail

Rafael Vaño P01 UPV ravagar2@upv.es

Salvador Cuñat P01 UPV salcuane@upv.es

Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr

Ignacio Dominguez Martinez-Casanueva P07 TID ignacio.dominguezmartinez@telefonica.com

Lucía Cabanillas Rodriguez P07 TID lucia.cabanillasrodriguez@telefonica.com

Ioannis Chouchoulis P10 IQB giannis.chouchoulis@inqbit.io

Konstantinos Kefalas P10 IQB konstantinos.kefalas@inqbit.io

Ioannis Makropodis P10 IQB giannis.makropodis@inqbit.io

Vasiliki Maria Sampazioti P10 IQB vasiliki.maria.sampazioti@inqbit.io

Aris Farao P10 IQB aris.farao@inqbit.io

Panagiotis Bountakas P10 IQB panagiotis.bountakas@inqbit.io

Joseph McNamara P12 LMI joseph.mcnamara@ericsson.com

Zofia Wrona P13 SRIPAS zofia.wrona@ibspan.waw.pl

Przemysław Hołda P13 SRIPAS Przemyslaw.Holda@ibspan.waw.pl

Wiesław Pawłowski P13 SRIPAS Wieslaw.Pawlowski@ibspan.waw.pl

Paweł Szmeja P13 SRIPAS Pawel.Szmeja@ibspan.waw.pl

Katarzyna Wasielewska-Michniewska P13 SRIPAS Katarzyna.wasielewska@ibspan.waw.pl

Nikolaos Gkatzios P15 INF ngkatzios@infolysis.gr

Eugenia Vergi P15 INF evergis@infolysis.gr

Álvaro Martínez Romero P16 PRO amromero@prodevelop.es

Riccardo Leoni P19 DST r.leoni@dstech.it

Federico Corazza P19 DST f.corazza@dstech.it

History
Date Version Change

08-01-2024 0.1 Finalize D4.2 ToC

09-01-2024 0.2 Start first round of contributions

22-01-2024 0.5 Finalized first round. Merging document with first round contributions.

24-01-2024 0.6 Start second round of contributions

16-02-2024 0.9 Version ready for round of internal reviews

29-02-2024 1.0 Final submitted version

mailto:ravagar2@upv.es
mailto:salcuane@upv.es
mailto:vpitsilis@iit.demokritos.gr
mailto:koumaras@iit.demokritos.gr
mailto:ignacio.dominguezmartinez@telefonica.com
mailto:lucia.cabanillasrodriguez@telefonica.com
mailto:giannis.chouchoulis@inqbit.io
mailto:konstantinos.kefalas@inqbit.io
mailto:giannis.makropodis@inqbit.io
mailto:vasiliki.maria.sampazioti@inqbit.io
mailto:aris.farao@inqbit.io
mailto:panagiotis.bountakas@inqbit.io
mailto:joseph.mcnamara@ericsson.com
mailto:zofia.wrona@ibspan.waw.pl
mailto:Przemyslaw.Holda@ibspan.waw.pl
mailto:Wieslaw.Pawlowski@ibspan.waw.pl
mailto:Pawel.Szmeja@ibspan.waw.pl
mailto:Katarzyna.wasielewska@ibspan.waw.pl
mailto:ngkatzios@infolysis.gr
mailto:evergis@infolysis.gr
mailto:amromero@prodevelop.es
mailto:r.leoni@dstech.it
mailto:f.corazza@dstech.it

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 4 of 60

Key Data
Keywords Semantics, data fabric, data governance, AI, explainability, analytics, trustwor-

thiness, management, federation, portal

Lead Editor P07 TID – Ignacio Domínguez Martínez-Casanueva

Internal Reviewer(s) P08 COSMOTE – Fotini Setaki

P27 SIPBB – Lucie Stutz

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 5 of 60

Executive Summary
The present deliverable D4.2 “Software for delivering intelligence at the edge intermediate release” is the

second of the three deliverables outlining the outcomes of the aerOS Work Package 4 tasks and provides the

advances following the preliminary release (D4.1) that were achieved between the months M12-M18 of the

project.

The document introduces the concept of aerOS Minimum Viable Product (MVP) and addresses it from the

standpoint of WP4. The aerOS MVP brings together the technologies provided by the WP3 and WP4 activities

under the WP2 architecture design specifications, to deliver a functional, stable prototype of the aerOS stack.

Specifically, WP4 tasks contribute to the MVP by enabling the sharing of data, for a trusted and decentralized

AI-based orchestration of the resources in the aerOS continuum.

IMPORTANT: This deliverable is of type OTHER. This means that D4.2 is mostly a software deliverable.

While this document reports the advances of tasks T4.1-T4.6 in the period M12-M8, it must be understood

together with the software release that is uploaded alongside it.

D4.2 presents the final design of the building blocks involved in the WP4 tasks, along with their respective first

implementations. Building upon the outcomes summarized in D4.1, the document is structured around the WP4

tasks to report on their progress and detail their impact on the realization of the aerOS MVP. These that can be

summarised as follows:

• Data homogenization task 4.1, brings an update of the two main building blocks under development:

the Semantic Annotator and the Semantic Translator. Both components, which are essential for ensuring

the semantic interoperability of data, have been integrated into the aerOS ecosystem. In this regard, the

Linked Open Terms (LOT) methodology for ontology development has been introduced and applied

for creating an ontology that enables the orchestration of the continuum.

• Data governance task 4.2, has consolidated the definition of a (semantic) data product. Building upon

this definition, the architecture of the aerOS Data Fabric was specified, and the development of the

building blocks that compose it has started. Among these blocks, the Data Product Pipeline and the Data

Product Manager have been implemented to facilitate the creation of the data products by their owners.

• Several advances on decentralized frugal AI have been made. Management of AI workflows includes

the implementation of the AI Local Executor and AI Task Controller components, as well as the Fed-

erated Learning Training Collector and Federated Learning Repository; while explainability methods

for an aerOS use case based on reinforcement learning has been conducted.

• The embedded analytics multiplane has finalized a first implementation of an engine that includes

templates for creating user-defined functions, in addition to a set of pre-packaged functions based on

popular data science libraries.

• The trust management component has been extended to identify how each attribute affects the trust of

Infrastructure Elements to define the appropriate weight for the trust score calculation algorithm.

Additionally, the trust score calculation function has been implemented and prepared for future

deployments in aerOS IEs.

• Finally, the management services and the aerOS management portal bring several updates. A first

release of the aerOS management portal has been developed, along with the formal definition of the

entrypoint balancer and the benchmarking tool. Regarding management services, the aerOS Federator

has been designed, which combined with the developed extended capabilities of the Orion-LD Context

Broker, have enabled data sharing across aerOS domains.

The finalisation of the activities will be reported with the submission of D4.3, the conclusive deliverable of the

WP4 series, in M30.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 6 of 60

Table of contents
Table of contents ... 6

List of tables .. 7

List of figures .. 7

List of acronyms .. 9

1. About this document .. 10

1.1. Deliverable context .. 10

1.2. The rationale behind the structure .. 11

1.3. Outcomes of the deliverable... 11

1.4. Version-specific notes .. 11

2. MVP Overview .. 13

3. Intermediate proposal of software solutions .. 17

3.1. Data autonomy for homogenization ... 17

3.1.1. Semantic annotation ... 17

3.1.2. Semantic translation ... 18

3.1.3. Ontology development ... 19

3.2. Data governance, traceability, provenance, and lineage .. 23

3.2.1. Context Broker ... 25

3.2.2. Data Product Pipeline .. 25

3.2.3. Data Product Manager ... 27

3.2.4. Data catalogue.. 29

3.2.5. Data security .. 30

3.3. Decentralized frugal AI .. 31

3.3.1. AI workflows ... 31

3.3.2. Frugal AI – AI Model Reduction Service .. 34

3.3.3. Explainability support - AI Explainability Service .. 36

3.4. Embedded multiplane analytics ... 39

3.4.1. Architecture Implementation ... 39

3.4.2. Template Implementation .. 39

3.4.3. Function Implementation ... 39

3.5. Trustworthiness and decentralized trust management ... 40

3.5.1. Advances in trustworthiness of IEs in the continuum.. 40

3.5.2. Advances in trustful decentralized exchange: IOTA ... 42

3.6. Management services and aerOS management portal .. 42

3.6.1. aerOS Management Portal ... 43

3.6.2. aerOS Federator ... 49

4. Conclusions and future work ... 53

References ... 54

A. Complete workflow of LOT methodology ... 55

B. Published aerOS continuum ontology .. 56

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 7 of 60

List of tables
Table 1. Candidate technologies for Semantic Annotator ... 17
Table 2. Candidate technologies for Semantic Translator ... 18
Table 3. Components of AI Task Controller ... 32
Table 4. Components of AI Local Executor .. 33
Table 5. Candidate technologies for AI workflows ... 33
Table 6. Candidate technologies for AI Model Reduction Service ... 35
Table 7. Candidate technologies for AI Explainability Service. ... 37
Table 8. Candidate technologies and standards for aerOS Management Portal .. 48
Table 9. Candidate technologies and standards for aerOS Federator .. 52

List of figures
Figure 1. Software release of D4.2 .. 12
Figure 2. WP4 components in the aerOS stack ... 14
Figure 3. Semantic Annotator components overview.. 17
Figure 4. Semantic Translator component architecture ... 18
Figure 5. High-level workflow of the LOT methodology. Source [1] .. 19
Figure 6. Sample of catalogued SQL dataset .. 20
Figure 7. Sample "Concepts" table of ontology requirements .. 20
Figure 8. Sample "Attributes" table of ontology requirements ... 21
Figure 9. Sample "Relations" table of ontology requirements .. 21
Figure 10. Conceptual model for the aerOS continuum ontology ... 23
Figure 11. High level architecture of the aerOS Data Fabric .. 24
Figure 12: Low level architecture of data product pipeline ... 25
Figure 13. Detailed behaviour of the RDF to NGSI-LD. Depicts the libraries used by the component and the

data flows .. 26
Figure 14. Documentation of the onboard data product API for relational databases 28
Figure 15. Documentation of the onboard data product API for files ... 29
Figure 16. Data catalogue connector for LDAP .. 29
Figure 17. Authorization workflow for data consumers of the Context Broker .. 30
Figure 18. Authorization workflow for data product owners in the Data Product Manager 31
Figure 19. Update from D4.1: The concept of internal AI Local Executor called Agent was dropped. The internal

components division was updated ... 32
Figure 20. Internal components or AI Task Controller and AI Local Executor services 32
Figure 21. Example n°1 of a visualization of an explanation of a task assignment problem 37
Figure 22. Example n°2 of a visualization of an explanation of a task assignment problem 37
Figure 23. aerOS Embedded Analytics Tool Architecture .. 39
Figure 24. Updated overview of trust management structure .. 41
Figure 25. Planned IOTA prototype .. 42
Figure 26. aerOS Management Portal architecture.. 43
Figure 27. aerOS Management Portal welcome page and navigation menu ... 44
Figure 28. aerOS Management Portal domains view .. 45
Figure 29. aerOS Management Portal service deployments view ... 45
Figure 30. aerOS Management Portal new service deployment wizard .. 46
Figure 31. aerOS Management Portal continuum view... 46
Figure 32. Benchmark tools architecture ... 48
Figure 33. aerOS Federator architecture in a single domain ... 50

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 8 of 60

Figure 34. aerOS Federator NGSI-LD Context Source Registration example .. 50
Figure 35. Orion-LD Entity Map example .. 51
Figure 36. Detailed view of the complete LOT methodology. Source [1] .. 55
Figure 37. Conceptual model for the aerOS continuum ontology. .. 56
Figure 38. Published aerOS continuum ontology .. 57
Figure 39. Neural network graph of the published aerOS ontology .. 58
Figure 40. Class definition of the published aerOS continuum ontology .. 58
Figure 41. Object properties of the published aerOS continuum ontology ... 59
Figure 42. Data properties of the published aerOS continuum ontology .. 59
Figure 43. Named individuals of the published aerOS continuum ontology... 60

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 9 of 60

List of acronyms
Acronym Explanation

AAA Authentication, Authorisation & Accounting

AI Artificial Intelligence

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CQ Competency Question

CSR Context Source Registration

DevPrivSecOps Development, Privacy, Security and Operations

EAT Embedded Analytics Tool

EB Entrypoint Balancer

FaaS Function-as-a-Service

FL Federated Learning

HLO High-Level Orchestrator

IdM Identity Manager

IE Infrastructure Element

LB Load Balancing

LC Least Connection

LDAP Lightweight Directory Access Protocol

LLO Low-Level Orchestrator

LOT Linked Open Terms

LOV Linked Open Vocabularies

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MVP Minimum Viable Product

NGSI-LD Next Generation Service Interface Linked Data

OWL Web Ontology Language

Protobuf Protocol Buffers

RDF Resource Description Framework

RML RDF Mapping Language

URL Uniform Resource Locator

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 10 of 60

1. About this document
This document details the intermediate release of the WP4 building blocks to deliver applications intelligence

at the edge. Following the preliminary design provided in D4.1, this deliverable proceeds in describing the final

design of the components and provides the initial results from their implementation. Furthermore, it discusses

their integration activities towards delivering the aerOS stack, including integrations with components devel-

oped by WP3.

In coordination with D3.2 from WP3, this document introduces the concept of the aerOS Minimum Viable

Product (MVP) and details how the different tasks within WP4 have contributed to its realization. The aerOS

MVP represents an intermediate stable architecture before the final architecture is delivered by WP2 later in

M21.

1.1. Deliverable context

Item Description

Objectives O3 (Definition and implementation of decentralized security, privacy, and trust): Design

and implementation of mechanisms for data access control, trustworthiness, and

decentralized trust management.

O4 (Definition and implementation of distributed AI components with explainability):

Design and implementation of mechanisms to enable distributed AI with support for

frugality and explainability.

O5 (Specification and implementation of a Data Autonomy strategy for the IoT edge-cloud

continuum): Design, implementation, and integration of mechanisms for semantic

annotation, data integration, and data governance.

Work plan The contributions to D4.2 take input from the following tasks:

• T2.2 (Formalization of use cases and requirements elicitation): Components design

in WP4 are aligned with the requirements identified in the use cases.

• T2.4 (DevPrivSecOps methodology specification): The implementation of

components in WP4 follow the best practices defined by the DevPrivSecOps

methodology.

• T2.5 (aerOS architectural design, functional and technical specification): Design

and integration of WP4 components align with the proposed architecture for aerOS.

The outcomes of D4.2 influence the following work packages:

• WP5 (integration, use case deployment, validation, evaluation, assessment): To

later materialize solutions in pilot deployments.

The contributions of D4.2 are coordinated with:

• WP3 (infrastructure components): To define functional boundaries (e.g.,

networking, cybersecurity, orchestration) and interactions.

Milestones This deliverable does not mark any specific milestone but constitutes an important step

towards the realization of MS6 –Software structure finished: Components of aerOS system

ready, apart from final improvements and integration-related activities, that will be

achieved in M24. Although far in time (M30), this deliverable also represents a central part

of MS7 –Integrated solution: Final integrated use cases deployed and working.

Deliverables This deliverable builds upon the baseline architecture defined by D2.6 (aerOS architecture

definition). D4.2 continues from the results produced in D4.1 (Software for delivering

intelligence at the edge preliminary release), which included an initial design of the WP4

building blocks. Additionally, this deliverable is coordinated with deliverables D3.2, D5.2,

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 11 of 60

and D6.2, which are to be delivered together.

1.2. The rationale behind the structure
This deliverable is structured into three sections. Section 2 provides an overview of the aerOS MVP from the

perspective of the WP4. Section 3 includes subsections dedicated to each of the tasks within WP4 presenting

the advances made with respect to the previous D4.1. Finally, the document concludes with Section 4, drawing

conclusions and setting future lines of work to be addressed in D4.3, which represents the final deliverable

planned for WP4.

1.3. Outcomes of the deliverable
First, data homogenization has provided new releases of the Semantic Annotator and the Semantic Translator

tools. Additionally, the LOT methodology has been introduced to the consortium and was applied for the

creation of the aerOS continuum ontology, used in WP3 for the smart orchestration of continuum resources.

The architecture of the aerOS Data Fabric has been refined and implementations of the Data Product Pipeline

and the Data Product Manager are provided. Similarly, a first version of the RDF-to-NGSI-LD translator has

been delivered. Integration with OpenLDAP for collecting metadata aimed at improving data governance, and

integration with cybersecurity services from WP3 for enabling authentication and authorization in the Data

Fabric.

Decentralized frugal AI has defined the architecture and the mechanisms provide components to enable execu-

tion of AI workflows and to support AI explainability services.

Trustworthiness and decentralized trust management has delivered an initial implementation of the trust score

algorithm supported by Trust Manager and Trust Agents. Similarly, a first implementation of trustful decentral-

ized exchange based on IOAT is provided.

The Analytics Engine Tool (EAT) rolled out a new release, including templates for creating user-defined func-

tions as well as built-in functions based on popular data science libraries.

Lastly, regarding the management services and aerOS management portal, this is the first deliverable where this

task reports results. A first version of the management portal has been implemented with features for managing

aerOS continuum. This document includes snapshots depicting the frontend of the portal. On the other hand,

the aerOS federator has been designed as part of the management services, along with extension on Orion-LD

for sharing data between multiple Context Brokers.

1.4. Version-specific notes
As mentioned above, this deliverable is of type OTHER. This means that D4.2 is mostly a software deliverable.

While this document reports the advances of tasks T4.1-T4.6 in the period M12-M8, it must be understood

together with the software release that is uploaded alongside it.

In the compressed file that is downloaded when accessing this deliverable, the reader will be able to find two

main artefacts: (i) this very document, that reflect in a narrative way the progresses achieved, and (ii) a com-

pressed file that is, in turn, composed of several compressed GitLab repositories corresponding to the code

development progress by M18.

In particular, and in order to facilitate the readability of the technical delivery, here below there is an indication

of the repositories that have been included in the submission. They are structured following the task reporting

that is used in this document (D4.2). This schema is also used in the submitted file. The directories contain the

current advances, alongside an explanatory README.MD in each of them in order to describe their purpose

and content. Another, equivalent, release will be done by the end of the WP4 (in deliverable D4.3, due in M30).

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 12 of 60

Figure 1. Software release of D4.2

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 13 of 60

2. MVP Overview
The aerOS project in the first year of its realization has carefully designed an architecture which is intended to

provide to IoT developers a coherent, common execution environment enabling IoT services deployment and

reuse that leverages the distributed capabilities all along the edge-cloud continuum. With the vision to

functionally unify a multitude of diverse computing and network resources from cloud to edge even to IoT

devices, aerOS has employed and combined many state-of-the-art concepts and technologies.

In parallel (and after) the design of the preliminary aerOS architecture and until M18, beyond state-of-the-art

advancements have been achieved through the research and implementation progress in the fields of compute

and network fabric, service fabric and data fabric, that have introduced development and integration

complexities, as reflected in the great variety of technologies and tools involved. More specifically, a wide area

of technologies in the field of programmable networks for enhanced connectivity, resources and service

management and orchestration, resilient and self-adapting runtime layers need to be employed to provide the

minimum for the execution environment that aerOS requires. Additionally, cybersecurity tools and trust

management need to ensure private and secure communications and access to services over the whole aerOS

continuum. All Infrastructure Elements (IEs) and aerOS domains should seamlessly expose APIs for fully

defined communication among components and services. Respectively, data management technologies and

integrated components should support the transition from heterogeneous data silos to a unified data fabric over

the continuum, and while monitoring capabilities should extract all information produced and needed for the

self-adaptation of the ecosystem, analytics are foreseen to support events recognition and healing processes’

triggering. Finally, AI tasks are designed to run over different IEs in the continuum with optional use of frugality

techniques and inclusion of explainability and interpretability.

Above mentioned technologies represent the primary aerOS technologies and tools needed to realize the

continuum and all these are envisioned to be implemented encompassing assimilable cloud native practices to

enable stakeholders to design, deploy, and operate scalable and resilient applications over the aerOS meta

operating system. The goal is to encompass cloud-native techniques in continuum deployments, where

infrastructure (physical and virtualized) ranges from IoT devices all the way up to cloud data centres. This fact

implies that the great complexity emerging from the research, development, and integration of all components

suggests an iterative development which should consider and integrate early implementation evaluations, and

which should optimize functionalities based on feedback emerging both from development teams and from

targeted audience, i.e., IoT developers.

It is worthwhile mentioning that addressing all those complexities and successfully achieving the results cannot

be tackled in a single stage. Thus, following the agile schema of the project, the aerOS team has defined the

Minimum Viable Product (MVP) to be available by M18 and bring together all the aforementioned technologies

and tools as an integrated product. In this framework, MVP serves as a tangible aerOS prototype that can be

quickly deployed and tested, realizing all the basic functionalities of the continuum. Through the development

of the MVP, the aerOS team has gained invaluable insights into the feasibility and viability of the architectural

concepts and has appropriately refined them in the process. Additionally, MVP supports resources’ efficient

use, optimizing the light-weighted systems usage to the extent possible, without compromising the core of its

existence. Finally, the MVP guides the secure transition to aerOS of the pilot sites and reduces the risks in doing

so, and therefore enables the pilot teams to early adapt without compromising the effectiveness of the proven

key concepts.

Practically, MVP is the sandbox of validating architectural concepts and evaluating components viability and

synergy. The aerOS development team consists of many technical partners working on individual assignments

with the responsibility to deliver components that should be integrated and work seamlessly one with the other.

Although this development is based on specifications, development contracts, APIs, and data model definitions,

it could not be possible to verify the interaction and the interworking of these components as an integrated

system without a sandbox environment where all things come together.

The aerOS MVP encompasses the most essential aerOS functionalities (to be enhanced in future deliveries) and

integrates two aerOS domains, which are deployed in two different locations, both in geographic and

administrative terms, to demonstrate its functionality over the public cloud. One domain is designed to be the

entrypoint to the continuum, while the other as a “plain” aerOS domain, which could be deployed anywhere

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 14 of 60

across the continuum. The entrypoint domain is located in the common development and integration

infrastructure of the project (a space provided by the partner, cloud provider, CloudFerro), while the plain

domain resides in the premises of the Technical Coordinator - NCSRD. This diverse topology of the MVP

allows the evaluation of aerOS federation mechanisms for expanding in an agile way the aerOS continuum

domains with additional/new ones.

As part of the project’s technical activities, the aerOS team has exhaustingly worked on designing the

architecture, providing blueprints that guide the development of all components, their functionalities, and

interactions. As noted, the MVP platform has been specifically designed to showcase the aerOS architectural

concepts and functionalities, and an initial MVP demonstrator is already available as a month M18 achievement.

Furthermore, the MVP supports an iterative development phase. The feedback from the vertical stakeholders,

the partners of the aerOS project on the first demonstrator will lead development towards enhancing existing

features, fixing issues, and, perhaps, introducing new functionality guided by user demand. Additionally, the

aerOS open calls are expected to contribute components which will be validated in the MVP. At the final stage,

the MVP will act as a guide for deploying the aerOS stack for the project pilot use cases. The validation of core

functionalities stability will pave the way for replicating aerOS deployment in the five (5) use case pilot

locations. Not all of them have the exact same needs and they do not have to deploy the full aerOS stack, just

these services that make them aerOS compatible and anything more suitable for their vertical domain purposes.

The aerOS MVP builds upon outcomes from both WP3 and WP4, which deliver the implementation of the

aerOS concepts. WP4 undertakes all data management and AI activities and builds the aerOS “Data Fabric”,

which enables the seamless integration and exploitation of a variety of data from various heterogenous sources,

with the aim to support the delivery of intelligence across the aerOS continuum and over a diverse set of

infrastructure resources, by optimizing the data usage o without sacrificing control over it. WP4 encompasses

several technologies and is related to several components in the aerOS stack. As already presented in D4.1,

Figure 2 represents the building blocks which WP4 addresses.

Figure 2. WP4 components in the aerOS stack

Distributed over six tasks, many diverse technologies are addressed within WP4. Each task further breaks down

to a set of relevant technologies related to its domain of interest. To build an early MVP release, priority has

been given to components which are estimated to play a prominent role in establishing the aerOS contin-

uum with core functionalities enabled, over components that can be integrated in a second round as they will

be based on core aerOS features and are not crucial to provide a prototype capable to demonstrate overall aerOS

functionality.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 15 of 60

In the grounds of MVP deployment, an early integrated environment will be implemented to fully demonstrate

federated orchestration capabilities of a variety of services over a multitude of heterogeneous resources. WP4

focused on delivering the underlying mechanisms and required ontologies for building a federated knowledge

graph that provides a semantic-based integration of data from heterogeneous sources and exposes them through

a unified, standard interface. This provides WP3 orchestration mechanisms with the federated access to aerOS

state data that reflect the status of the continuum, at each point of time, enabling thus the most efficient decisions

regarding workloads deployment or mitigation on top of a set of diverse computing resources. Efforts have been

directed towards delivering:

• Appropriate ontologies and graphs which can reflect continuum state as required for orchestration

decisions.

• A mesh of interconnected aerOS Context Brokers, as the aerOS federated data catalogue, able to

propagate queries and data across the continuum.

• Components which can support all the chain towards ingesting and sharing interoperable data.

• Tools which can interact and proxy queries towards the data fabric and leverage the aerOS data to

provide real-time analytics.

• aerOS management portal which acts as an entrypoint to the aerOS ecosystem.

• Management service to establish federation mechanisms among the multiple aerOS domains that form

the continuum.

In the following paragraphs the summary of the WP4 tasks’ outcomes which have been prioritised for the MVP

realization and their relevant significance to the aerOS continuum establishment are presented:

• In the realm of Data autonomy for homogenization the ontologies which can model and reflect the

state of the aerOS continuum were prioritized. The research and effort include modelling of all aerOS

functional entities including aerOS domains features, Infrastructure Element (IE) capabilities, service

components, and aerOS users.

• The main consideration of Data governance, traceability, provenance, and lineage research towards

MVP, was on the mechanisms for onboarding and building data products within the aerOS Data Fabric.

The target was to develop the components to facilitate the creation of semantic, interoperable data prod-

ucts that their respective data product owners want expose to the rest of the continuum via the Data

Fabric.

• Decentralized frugal AI focus was to deliver explainability services which could provide insights on

the reasoning of HLO allocation engine as to why specific IEs were chosen to host IOT services with

declared requirements.

• Regarding the Embedded multiplane analytics, two main directives were explored; the first being to

set up all the infrastructure which can employ real-time metrics and provide insights and alerts, and the

second to provide functionless capabilities ready to host functions and algorithms which, in a second

stage, are able to support programmable reactions to alerts and events coming up at the aerOS runtime.

• When it comes to Trustworthiness and decentralized trust management, research is focusing on de-

fining the information that enables trustworthiness evaluation of the IEs and the IOTA mechanism to

handle this information, relevant for the aerOS ecosystem but not prioritised for the MVP.

• In the area of Management services, aerOS development has focused on the delivery of the manage-

ment portal which will be the entrypoint for accessing and managing the aerOS registered resources

and services, which integrates Authentication, Authorisation and Accounting (AAA) services from

WP3 to ensure controlled access to resources. Equally important effort has been invested on the man-

agement of the registration and federation mechanisms provided by the Orion-LD Context Broker, re-

sponsible to federate the aerOS domains.

The above-mentioned outcomes are varied and originate from distinct domains of expertise. The integration of

these diverse components, along with these provided by WP3, within the MVP reflects the project's progress

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 16 of 60

and clarifies the activities that need to be addressed next. The MVP's role within the project lifecycle is dynamic,

adjusting according to the timeline requirements, the achieved milestones, and objectives targeted at each phase.

In the initial design phase, it served as a guide to the prioritization of developments by supporting the definition

of what is the minimal set of features that will make aerOS viable to its first set of internal users and capable

for an initial demonstration of its visions and functionalities.

Accordingly, the MVP is the field of validating architectural concepts and evaluating components viability and

synergy. aerOS development team consists of many technical partners working, each one of them, on defined

assignments with the responsibility to deliver components that should be integrated and work seamlessly one

with the other. Although this development is based on specifications, development contracts, APIs, and data

model definitions, it would not be possible to verify the interaction and the interworking of these components

as an integrated system without a deployment environment where all things come together.

The MVP development and the status of its progress are used to plan the demonstrator to be showcased at the

mid-term review. aerOS team has exhaustingly worked on designing the architecture, providing blueprints that

guide the development of all components, their functionalities, and interactions. The MVP has been specifically

designed as a platform that enables timely and efficient demonstration of architectural concepts and aerOS

functionalities. Scenarios planed for the demonstrator showcase are based on a realistic environment that is

underpinned by the MVP implementation.

Accordingly, the MVP will support an iterative development phase. Vertical stakeholders, i.e. partners of the

aerOS project, will provide their feedback which will lead development towards enhancing existing features,

fixing issues, and, perhaps, introducing new functionality guided by user demand. Additionally, aerOS open

calls will provide components that will be validated in the MVP.

At the final stage, the MVP will act as a guide for deploying aerOS stack in the project’s pilot use cases. The

validation of core functionalities stability will pave the way for replicating aerOS deployment in the several

pilots. Not all of them have the exact same needs, so they do not have to deploy the full stack. But they do at

least need these core services that make them aerOS compatible. Then, they can add any other services more

suited to their vertical domain purposes. The MVP facilitates the understanding of all functionalities provided

and enables the selection of the ones that provide what is needed for each one of them.

As a last word it should be mentioned that the MVP development success is directly connected with the use of

the aerOS DevPrivSecOps platform. aerOS development lifecycle management is based on the GitLab platform

deployment1, on the UPV’s premises. aerOS Gitlab does not only foster a unified development environment

but also ensures that every iteration, enhancement, and refinement made to the MVP is systematically docu-

mented and each version is controlled. aerOS Gitlab enables workflows streamline, from coding and testing to

deployment, allowing for real-time tracking of the MVP’s evolution. Internally, the structure of aerOS GitLab

groups, subgroups and projects is in accordance with the tasks and research domains of the development work

packages (WP3 and WP4). Each group is built around a research domain concept. In WP4, the groups include

data homogenization, data fabric, decentralized AI, analytics, trust, management. Within each group, there is a

dedicated project for every component that must be developed. For example, in the data fabric group, there are

projects ranging from the Orion-LD Context Broker, which stores the knowledge graph, to the “Data Product

Manager”, which orchestrates data product creation. All projects are documented with content that can support

both development and deployment processes. This documentation supports the transfer of all aerOS develop-

ment to the MVP. Permissions to these groups and projects are configured based on the internal assignments.

Beyond the source code versioning workspace, aerOS GitLab also hosts the project container image and package

repository, where development teams push their final products that are ready to be deployed on the MVP and

the pilots, and that will be used in the future to deploy aerOS on candidate computing resources. Thus, it is

obvious that the whole development process, and accordingly the MVP setup, is robustly supported by the

DevPrivSecOps platform integration and processes enforcement. It is also important that what is deployed in

the MVP and what is versioned in GitLab (each GitLab, tagged, version), corresponds to an MVP version (tag

1.0.0-mvp). As a result, software accompanying this deliverable, exported directly from GitLab, can be demon-

strated in the aerOS MVP. More information about this process can be found in D5.2.

1 https://gitlab.aeros-project.eu

https://gitlab.aeros-project.eu/

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 17 of 60

3. Intermediate proposal of software solutions

3.1. Data autonomy for homogenization

3.1.1. Semantic annotation

The Semantic Annotator component was ported from the ASSIST-IoT project. The source code is published in

the aerOS internal repository, including example integrations with aerOS and latest bugfixes. The annotation

core and examples were adjusted to support annotation of JSON, XML or CSV directly into NGSI-LD. Figure

3 depicts an overview of the components that compose the Semantic Annotator and the interactions among

them.

Figure 3. Semantic Annotator components overview

3.1.1.1. Technologies and standards

Table 1. Candidate technologies for Semantic Annotator

Technology/

Standard
Description Component

JVM Java Virtual Machine All

Scala
A modern “multi-paradigm” programming language, tar-

geting (among others) the JVM.
All

Apache Akka
Actor-based framework for creating highly concurrent, resili-

ent, message-driven applications.
All

Apache Akka

HTTP
HTTP request handling for configuration, reporting status, etc. API server

Apache Akka con-

nectors
Apache Kafka and MQTT connectors

communication man-

ager

CARML RDF Mapping library annotation core

MongoDB Configuration & annotation files persistence Storage

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 18 of 60

3.1.2. Semantic translation

Since D4.1, the Semantic Translator component code, based on the ASSIST-IoT semantic-translation enabler,

was successfully ported to Scala 3. In addition, the reactive Apache Pekko streaming library was used, replacing

the now commercial Akka, which was used to form the backbone of the original implementation. The

component code has also undergone refactoring and updating of the dependencies used. Currently, the semantic

translator’s communication infrastructure is able to utilize two types of communication channels: Kafka-Kafka

and MQTT-MQTT, but more heterogeneous configurations are planned as an enhancement for future versions.

The component was also provided with a Kubernetes configuration. The current architecture of the Semantic

Translator component is depicted in the figure below.

Figure 4. Semantic Translator component architecture

3.1.2.1.1. Technologies and standards

Table 2. Candidate technologies for Semantic Translator

Technology/

Standard
Description Component

JVM Java Virtual Machine All

Scala 3 The newest version of the Scala programming language All

Apache Pekko
Actor-based framework for creating highly concurrent, resili-

ent, message-driven applications.
All

Apache Pekko

HTTP
HTTP protocol handling component for Apache Pekko REST manager

Apache Pekko

connectors
Apache Kafka and MQTT connectors

Communication

infrastructure

Apache Jena RDF handling library Translation engine

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 19 of 60

3.1.3. Ontology development

Data semantic interoperability in aerOS is achieved by means of ontologies. As described previously in D2.6

and D4.1, the aerOS Data Fabric is based on a knowledge graph, which in turn, relies on ontologies to integrate

linked data. To facilitate the development of ontologies by partners throughout the lifetime of the project, some

standard methodologies have been explored.

3.1.3.1. Linked Open Terms (LOT) methodology

Linked Open Terms (LOT) [1] is a lightweight methodology for developing ontologies, with special focus on

industrial use cases. The LOT methodology has been applied in several European projects such as BIMERR,

DELTA, or VICINITY. Additionally, it has been followed for the development of the standard ETSI SAREF

ontology and related domain-specific extensions like SAREF.

The LOT methodology, which evolves from the NeOn methodology [2], aligns the ontology development

process with software development agile practices such as sprints and continuous integration. The LOT

methodology iterates over a base workflow, as illustrated in Figure 5, which is composed of the following main

activities: 1) Ontology requirements specification; 2) Ontology implementation; 3) Ontology publication; 4)

Ontology maintenance.

Figure 5. High-level workflow of the LOT methodology. Source [1]

Each activity of the workflow produces an artifact that serves as input for the following activity. In addition,

the methodology identifies three different roles participating in the workflow: 1) domain experts; 2) ontology

developers; 3) users. On the one hand, in the scope of aerOS, the roles of domain experts and users are assigned

to people involved in the implementation of aerOS internal services as well as data experts in each of the pilots.

On the other hand, the role of ontology developer is performed by partners participating in T4.1.

In the following paragraphs, each LOT activity is briefly introduced, including its sub-activities and the artifacts

produced, and exhibiting its aerOS implementation and the tools used.

3.1.3.1.1. First activity: Ontology requirements specification

This activity refers to the collection of requirements to be fulfilled by the ontology. To determine the

requirements needed, the use case specification sub-activity is achieved with the collaboration from domain

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 20 of 60

experts, users, and ontology developers. This sub-activity has been supported with videos calls and documents

provided by the domain experts. In parallel runs the data exchange identification sub-activity, which focuses

on collecting technical documentation about the data of the domain to be modelled, i.e., schemas, formats,

standards, datasets. To help domain experts in cataloguing their datasets, a new template based on markdown

language has been developed. A snapshot of a sample SQL dataset catalogued with the proposed template is

shown in Figure 6. Each dataset is catalogued in a separate markdown file, which is uploaded to a GitLab

repository along with the rest of the ontology artifacts.

Figure 6. Sample of catalogued SQL dataset

Based on this information, the next sub-activities aim at defining and agreeing on functional ontological

requirements. The proposal of ontological LOT offers different ways of capturing these requirements, namely

competency questions (CQs), natural language statements and tabular information. Due to the technical

background of domain experts (data owners) and their lack of skills in ontology querying, aerOS has followed

the tabular information approach inspired by the BIMERR project [3]. Domains experts found themselves more

comfortable mapping their datasets to tables of concepts, properties, and relationships. This information has

been captured in collaborative Excel spreadsheets (see Figure 7) that enable iterations between the domain

experts and ontology developers until the list of requirements has been completed. To ensure version control

and improve readability, it is planned that future releases will migrate these Excel spreadsheets to markdown

tables and upload them to GitLab.

Figure 7. Sample "Concepts" table of ontology requirements

Concept Other names Description

Domain A set of one or more IEs, functionally connected and sharing a common

instance of aerOS basic services among them, constituting an administrative

domain able to be managed and orchestrated by aerOS Meta-OS and thus be

part of the IoT-Edge-Cloud continuum.

InfrastructureElement IE The fundamental building block within aerOS Meta-OS. A physical or virtual

computing resource providing the necessary processing power, storage

capacity, and network connectivity to support containerised workloads and

services.

Exposes aerOS runtime on top of provided capabilities being thus the

minimum execution unit within the IoT-Edge-Cloud continuum.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 21 of 60

Figure 8. Sample "Attributes" table of ontology requirements

Figure 9. Sample "Relations" table of ontology requirements

The generation and completion of these tables concludes the ontology requirement specification activity. The

LOT methodology also proposes the creation of the Ontology Requirements Specification Document (ORSD),

but this sub-activity has been skipped in aerOS. Instead, all the ontology artifacts are stored together on GitLab.

3.1.3.1.2. Second activity: Ontology implementation

The goal of this activity is to build the ontology using a formal language based on the ontology requirements

produced in the previous activity. First, the ontology conceptualization sub-activity produces a conceptual

model that captures the concepts and the relations identified in the domain of the ontology. This task typically

represents this conceptual model in a diagram. In this sense, aerOS has chosen Chowlk [4] as the standard

notation and the draw.io2 tool for representing the conceptual models. This process is conducted by the ontology

developers, with optional support from domain experts and users of the use case. The resulting diagram is

uploaded to the corresponding GitLab repository.

Based on the diagram of the conceptual model, the next step is the ontology encoding using an implementation

language like OWL. The Chowlk website offers an online service that allows for bootstrapping the ontology

code based on the provided diagram. Then the generated code is processed with the interactive tool Protegé3 to

further refine the code (e.g., fix wrong labels) and to extend the code as well (e.g., adding description, language,

metadata). Similarly, the ontology developer uploads the final code of the ontology to GitLab with the rest of

the ontology artifacts.

Lastly, in parallel to the ontology conceptualization and encoding, the ontology reuse sub-activity is conducted.

This task focuses on finding concepts already defined in existing ontologies that can be reused in the ontology

under development. To this end, aerOS leverages the recommended Linked Open Vocabularies (LOV) service,

which provides a tool that can search for concepts among all registered ontologies. However, this sub-activity

is still under exploration in aerOS because its implementation is challenging due to the wide variety of existing

ontologies. Additionally, aerOS aims to align with standard ontologies, albeit interoperability in the aerOS Data

Fabric with external data services is not a top priority.

3.1.3.1.3. Third activity: Ontology publication

This activity focuses on publishing a release candidate of the ontology by means of human-readable

documentation and machine-readable files, which can be accessed online. In aerOS, the WIDOCO4 open-source

2 https://app.diagrams.net
3 https://protege.stanford.edu
4 https://github.com/dgarijo/Widoco

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 22 of 60

tool has been chosen to generate HTML-based documentation from the ontology. This documentation includes

further descriptions, examples, and the conceptual diagram from the previous activity.

Given that all ontology artifacts are uploaded to a common GitLab repository, the GitLab CI feature was

leveraged to automatically generate the documentation every time a new release of the ontology is rolled out.

The GitLab CI script generates the HTML code and publishes the website by making use of the GitLab Pages

feature.

3.1.3.1.4. Fourth activity: Ontology maintenance

The last activity in the methodology is the maintenance of the ontology. The incorporation of new ontology

requirements or the identification and fixing of bugs found in the ontology, are discussed among partners via

the Mattermost messaging tool. Additionally, as mentioned before, all the ontology artifacts are uploaded to

GitLab and versioned with tags, thus facilitating continuous integration and version control over the ontology.

3.1.3.1. aerOS continuum ontology

The IoT-Edge-Cloud continuum, managed by the aerOS Meta-OS, represents a distributed computing

architecture where data flows seamlessly from the IoT devices at the edge of the network to a centralized cloud

infrastructure. The inherent complexity of this computing continuum needs to be modelled into a data ontology

as easily as possible, being understandable by humans and efficient for machine communications. In addition,

there is a clear lack of existing ontologies for the computing continuum, and the minimal initiatives that have

been found did not fit into the continuum conceived in aerOS. Therefore, an ontology for the IoT-Edge-Cloud

continuum has been created from scratch for aerOS, inspired by some existing ontologies (e.g., FOAF [5]) and

standardization initiatives such as OASIS TOSCA5. This ontology, as shown in Figure 10 and Figure 35 (with

a larger size), is intended to encapsulate the essential concepts, relationships, and properties relevant to data

management, processing and orchestration within this distributed computing architecture.

The entities of this ontology can be divided into three blocks: (i) aerOS AAA, (ii) resource orchestration and

(iii) service orchestration. On the one hand, the aerOS AAA block aims to represent the human side of the

continuum, which is the relationship between them and the services and resources that conform the continuum

through the definition of users, roles, and organizations. To create these classes, the FOAF ontology has been

used, so aerOS users have assigned with an identifier from LDAP, and also present additional information such

as their given and last name following the FOAF Person concept. This aerOS user is member of an organization,

which has a set of predefined roles that will map to the permissions to perform certain actions in the aerOS

Meta-OS. Therefore, each user is member of an organization and has assigned a role within this organization.

Finally, organizations are owners of the aerOS domains.

On the other hand, the physical computing resources (Infrastructure Elements) must be represented to show the

current state of the continuum by taking advantage of the defined monitoring processes. Thus, Infrastructure

Element emerges as the central piece of the ontology. This class contains attributes that describe general

information (IP address, MAC address, geographical location, Operating System), aerOS related information

(domain, linked Low-Level Orchestrator, computing tier, status), the hardware computing capabilities (number

of CPU cores, CPU architecture, RAM capacity, real time capability) and real time status for monitoring (status,

CPU usage, available RAM and current usage, average and current power consumption). The status of an IE

plays a crucial role in the aerOS orchestration process because only IEs with a ready status will be available for

running new workloads. Currently, four possible statuses have been defined for the IEs, following the TOSCA

specification: untrusted, unsecure, overload and ready.

Nevertheless, isolated IEs entities are not enough to depict the aerOS continuum, so conceptual layers must be

added on top of IE entity. The domain entity groups a set of IEs and Low-Level Orchestrators (LLO), presents

a single public URL, a boolean attribute to indicate if the domain is the entrypoint of the continuum and a

custom status as the IEs (preliminar, functional or removed). More detailed information about the domain status

can be found in section 3.2 of D5.2, where it is described the aerOS installation process indeed. Moreover, each

IE is linked to a single LLO that is mapped to a certain container orchestration technology: Docker, Kubernetes,

5 TOSCA Version 2.0 Draft 05 https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 23 of 60

containerd… For the MVP, only have been developed LLOs of Docker and K8s orchestration type, as described

in section 4.3.1.3 of D3.2.

The last block represents the deployment of services in the IEs of the continuum. These entities not only

represent the status of already deployed and running services, but also all the stages of the services through the

whole orchestration process, from service requirements specifications (SLAs, minimum computing resources,

etc) to execution parameters (network ports, container images, environment variables, etc). Thus, the complete

relationship among all the entities of the ontology and the usage of these entities by the different aerOS

orchestration components is depicted in the aerOS orchestration process, which is described in detail in section

4.3.1.1 of D3.2.

In the above section 3.1.3.1.3 it is described how it is finally published an ontology through a web page using

Gitlab CI/CD pipelines. Therefore, some screenshots of the published aerOS continuum ontology have been

added in annex B, as the resulted Gitlab page is still non-open to the public internet.

Finally, it is important to highlight that this is a live ontology that will be enhanced as the project progresses, so

some parts of the continuum may not be covered yet or may even be expanded. For instance, the networking

definition of Service Components must be improved, and persistent storage requirements must be included in

the ontology. In addition, this first consolidated version will need a proper testing process for tine-tuning.

Therefore, this testing process has started along with the development of the MVP but will be improved in the

next months, as the development of the aerOS Basic Services evolves.

Figure 10. Conceptual model for the aerOS continuum ontology

3.2. Data governance, traceability, provenance, and lineage

The architecture of the aerOS Data Fabric has been designed upon the data mesh principles, especially the

management of data as a product. In this release of the Data Fabric for the aerOS MVP, the data product

definition has been consolidated, thus determining which components are required by the architecture.

A data product in aerOS is the combination of data, metadata and software that make the data align with the

FAIR principles [6]. The data should be findable, keeping track of which data are available, who is accountable

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 24 of 60

for them, and where they can be found (i.e., which data sources expose the data). The data must be accessible

in a uniform way across the continuum, by means of a shared data fabric infrastructure, but only exposed to

authorized consumers. The data must be easily interpreted (i.e., understood) by any consumer in the continuum,

leveraging the semantic data models commonly agreed. Lastly, data must be reusable, avoiding ad-hoc

integrations, but open and interoperable across use cases.

Based on this data product definition, the architecture of the Data Fabric for the aerOS MVP has evolved from

the original architecture presented in D4.1. Figure 11 illustrates the high-level architecture of the aerOS Data

Fabric, which is composed of the following blocks:

• Data Catalogue: Maintains a registry of all the available data, their data sources, and additional

governance metadata such as ownership or domain. Can collected metadata from external sources but

also receives governance input from the data product owners.

• Data Security: Implements access control policies for new data products based on the security

requirements indicated by the respective data product owner. Coordinates with cybersecurity tools from

aerOS stack to enable authentication and authorization in the Data Fabric.

• Data Product Pipeline: Data pipeline that transforms raw datasets into interoperable, semantic data

products that become part of the knowledge graph. This pipeline is not needed for those data sources

that are considered “native”, i.e., expose datasets that already follow the NGSI-LD format and are

semantically annotated according to the ontologies agreed in the continuum.

• Data Product Manager: Main interface of the Data Fabric towards data products owners for the

onboarding and registration of data products. Orchestrates the Data Product Pipeline for the creation of

data products from raw datasets, and coordinates with the Data Catalogue and Data Security

components to govern the new data products.

• Context Broker: Core component that maintains the Knowledge Graph of the Data Fabric. In

distributed or federated scenarios where multiple Data Fabric instances are interconnected (e.g.,

multiple aerOS domains), each Context Broker will provide a fragment of the global Knowledge Graph

of the continuum.

Concerning the deployment of the Data Fabric in the aerOS MVP, only one instance of each building block will

be deployed per aerOS domain, except for the Data Product Pipeline components, which might run multiple

instances in different IEs to improve scalability. In the following subsections, the building blocks of aerOS Data

Fabric are explained in more detail.

Figure 11. High level architecture of the aerOS Data Fabric

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 25 of 60

3.2.1. Context Broker

The NGSI-LD Context Broker is the component that stores the knowledge graph of the aerOS Data Fabric.

Orion-LD has been selected as the open-source implementation of the Context Broker. Additionally, depending

on the setup of the use case, Orion-LD can be combined with the Mintaka component to enable the temporal

NGSI-LD API.

3.2.2. Data Product Pipeline

Datasets semantically annotated according to an ontology, and following the NGSI-LD structure, can be directly

sent to the Context Broker. However, in most of the use cases, the Data Fabric will integrate “raw” datasets as

new data products in the knowledge graph. For these kinds of datasets, the Data Fabric includes the Data Product

Pipeline: a framework based on generic, open-source tools based on standards from the Semantic Web, to

facilitate the creation of data products.

The Data Product Pipeline, as illustrated in Figure 11 and previously presented in deliverable D4.1, comprises

three main stages: Ingestion, Preprocessing and Serving. These stages have been implemented by combining

new developed components and existing open-source projects. In this sense, Figure 12 depicts a low-level

architecture of the Data Product Pipeline, indicating which technologies have been used for components

involved in each stage. In the following subsection, these components are described in detail.

Figure 12: Low level architecture of data product pipeline

3.2.2.1. Ingestion and Preprocessing

3.2.2.1.1. Morph-KGC

Morph-KGC [7] is an open-source project that implements an engine designed for constructing Resource

Description Framework (RDF) knowledge graphs from heterogeneous data sources. It supports ingestion of raw

datasets from batch data sources, such as remote files in JSON format or relational databases like MySQL.

Morph-KGC builds upon the RML language for declaring the mapping of raw datasets to an ontology or set of

ontologies. Based on these mappings, the tool transforms the ingested raw datasets and produces RDF triples.

As part of the development of the Data Fabric, Morph-KGC has received significant open-source contributions.

The application now boasts integration with Kafka, allowing for the materialization of the knowledge graph

into a Kafka topic.

Furthermore, an open-source enhancement has been implemented to simplify the deployment and management

of Morph-KGC using Docker. The application can now be built into a Docker image, allowing for flexibility

with optional dependencies specified during the build process.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 26 of 60

Finally, Helm Charts have been introduced to streamline the deployment of Morph-KGC in Kubernetes

environments. These Helm charts offer an efficient way to manage the application, and they incorporate the

capability to schedule recurring tasks using Cron Jobs. This feature enables users to execute specific tasks at

scheduled intervals, enhancing the automation and periodic execution of Morph-KGC processes.

3.2.2.2. Serving

3.2.2.2.1. RDF to NGSI-LD translator

This component implements a generic translator from RDF to NGSI-LD, as depicted in Figure 13. The work

takes inspiration from rdflib6 plugins that store RDF data in backends like Neo4j7. In this sense, this project

provides a rdflib plugin where an NGSI-LD Context Broker works as the storage backend for RDF data.

Additionally, the translator supports the ingestion of streams of RDF data via Kafka.

Figure 13. Detailed behaviour of the RDF to NGSI-LD. Depicts the libraries used by the component and the data

flows

For the aerOS MVP, a first version of this component has been implemented with the pyoxigraph8 Python

library. It provides high performance as the core code has been developed in Rust, while a friendly interface is

exposed through a set of Python functions that allows for reading and writing RDF. Additionally, pyoxigraph

supports an early implementation of the still ongoing RDF-star standard, which aims at providing interopera-

bility between RDF and property graphs.

In the following releases, an implementation of the translator based on the popular rdflib library wil also be

explored. This powerful library provides functions for parsing and serializing RDF. It does not support RDF-

star yet, but the community is planning to extend the library to add support, since RDF-star is about to become

a standard.

To transform the RDF data model (triples) into the NGSI-LD data model (property graph), the translator imple-

ments the following set of generic rules:

• Subject: Maps to an NGSI-LD Entity. The URI of the subject in the input RDF triple is the URI of the

output NGSI-LD Entity. It should be noted that this approach does not follow the convention recom-

mended by ETSI CIM, which goes urn:ngsi-ld:<entity-type>:<identifier>. The reason for do-

ing this is to provide interoperability between RDF and NGSI-LD.

• Predicate: The a or rdf:type predicates map to the NGSI-LD Entity Type. For example, the RDF

triple <http://example.org/people/Bob> a foaf:Person translates into an NGSI-LD Entity

of foaf:Person type, and URI http://example.org/people/Bob.

o RDF Datatype property maps to an NGSI-LD Property. A special treatment is required when

the literal of the predicate uses xsd:datetime. In this case the resulting NGSI-LD Property

must follow the special format:

 "myProperty": {

 "type": "Property", "value": {

6 https://rdflib.readthedocs.io/en/stable/index.html
7 https://github.com/neo4j-labs/rdflib-neo4j
8 https://pyoxigraph.readthedocs.io/en/stable/

http://example.org/people/Bob

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 27 of 60

 "@type": "DateTime",

 "@value": "2018-12-04T12:00:00Z"

 }

 }

o RDF Object property maps to an NGSI-LD Relationship. The target of the Relationship is the

URI of the object in the RDF triple.

• Namespaces: There is no need to create specific @context for translating to NGSI-LD. The result-

ing NGSI-LD Entity can just use expanded the URIs. This approach is easier to maintain as it avoids

maintaining @context files.

Optionally, If the ingested RDF data includes a definition of namespaces with prefixes, then this infor-

mation could be used to generate the @context for the translated NGSI-LD Entity. The result-

ing @context can be sent along the NGSI-LD payload or stored elsewhere and reference via Link

header. The selected approach will depend on the use case and the developer’s implementation.

In addition to the library that translates RDF into NGSI-LD based on the generic transformation rules, the

component sends the resulting creation or update of NGSI-LD Entities to the specified Context Broker. To this

end, the translator leverages the python-ngsi-ld-client project9, which implements a Python client generated

from the OpenAPI specification of the NGSI-LD API.

3.2.3. Data Product Manager

The Data Product Manager component takes the form of a containerized REST API server with orchestration

capabilities in the backend. The Data Product Manager has been developed in Python, leveraging the FastAPI

library10. Building upon the proposed definition of a data product, the REST API expects the following

metadata and artifacts for onboarding new data products in the Data Fabric:

• Data Product Creation

o Data source configuration: Indicates the type of data source along with connection details

such as source URL (e.g., JDBC URL in relational databases) and access credentials (e.g.,

username/password, certificate). Additionally, the following information might be provided

depending on the type of data source:

▪ Data source freshness: Only supported for data sources of batch type. Determines

how frequently Data Fabric collects raw data from the target data source.

▪ Data product serving: (A) Materialization (by default), which stores the data in the

Context Broker; (B) Virtualization, which builds and serves the data product on-

demand by means of a Context Source.

o Mapping: The following two methods for data mapping are under exploration:

▪ Declarative: File with declarative mapping rules (e.g., RML). Artifact that describes

the mappings to transform the ingested raw data into a graph structure and semantically

annotate the data based on referenced ontologies.

▪ Programmatic: Custom application that implements the data mapping step in the

programming language selected by the data product developer.

• Data Governance

o Governance metadata: Identifiers to entities required for governing the new data product from

the data catalogue. These identifiers are used by the respective entities in the knowledge graph:

9 https://github.com/giros-dit/python-ngsi-ld-client/tree/1.6.1
10 https://fastapi.tiangolo.com

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 28 of 60

▪ Data domain

▪ Data product owner

▪ Data product developer

▪ Business glossary terms

▪ Tags/keywords

o Access control policies: A typical scenario is that of a data product made available in the

catalogue, but to which no-one has access. Consumers need to search for the data product and

to send a request to the data owner to access it (establishing a kind of data contract with the

purpose, data consumer identification and grant access for limited time). Furthermore, the data

owner could also include access to policies upon data product onboarding. Both alternatives

should be supported:

▪ Data owner specifies security policies upon registration, which is useful when

authorized consumers are known beforehand.

▪ Data owner registers the data product without any policy associated. In this scenario,

access to the policy is configured later on, when a data user requests access to the data

product and the data owner grants him access to it.

In this release of the aerOS MVP, the Data Product Manager only supports onboarding data products from batch

data sources of two types: relational database and file. Figure 14 and Figure 15 include snapshots of the docu-

mentation of the data product onboard API for relational database and file data sources respectively.

Support for streaming data sources is expected for the next release of the Data Fabric. Similarly, support for

data governance features (i.e., governance metadata, access control policies) will be delivered in the future

releases.

Figure 14. Documentation of the onboard data product API for relational databases

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 29 of 60

Figure 15. Documentation of the onboard data product API for files

Taking the information provided by data product owners through the REST API, the Data Product Manager

deploys and configures a new data pipeline for the onboarded data product. In this regard, all components of

the Data Product Pipeline are containerized and can be deployed as Helm Charts on Kubernetes. To orchestrate

the construction of the pipeline in IEs that belong to K8s clusters, the Data Product Manager leverages the Helm

Controller component from the FluxCD project11. The Helm Controller implements a Kubernetes operator that

defines Helm charts and Helm releases as new custom resources in Kubernetes. This allows to manage the life

cycle of Helm releases through the K8s API.

3.2.4. Data catalogue

This release of the aerOS Data Catalogue brings a new component named LDAP Connector. Figure 16 shows

how the component collects data from LDAP-compliant databases, like the open-source project OpenLDAP,

and transforms the LDAP data into NGSI-LD data that are eventually persisted in the Orion-LD Context Broker.

The LDAP Connector has been implemented as a containerized Python application that leverages the ldap312

library to interact with OpenLDAP, and the python-ngsi-ld-client to interact with the Orion-LD Context Broker.

Figure 16. Data catalogue connector for LDAP

11 https://fluxcd.io
12 https://ldap3.readthedocs.io/en/latest/

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 30 of 60

During the workflow, the LDAP Connector periodically syncs with the LDAP database and maps the data to

concepts of standard ontologies PROV [8] and ORG [9], such as Person (User), Role, and Organization. These

mappings are currently under exploration and further details will be provided in the next release of the aerOS

Data Fabric.

3.2.5. Data security

When it comes to security in the Data Fabric, the integration with Keycloak13 and KrakenD14 (T3.4) has enabled

authentication and authorization in multiple components of the Data Fabric.

The first integration refers to the Orion-LD Context Broker, as depicted in Figure 17. Data consumption from

the Context Broker is now only allowed to authorized consuming application (on behalf of aerOS users) that

have a “data consumer” role. To this end, Keycloak is configured with a policy that only allows consumers with

“data consumer” role to make GET requests to the /ngsi-ld/v2/entities endpoint. Before this integration,

any consumer with access to a Context Broker endpoint had free access to interact with it. This policy configu-

ration only allows to make NGSI-LD queries to the Context Broker, but next releases is expected to extend this

policy to also cover the creation of NGSI-LD subscriptions to the Context Broker.

Figure 17. Authorization workflow for data consumers of the Context Broker

In future releases, this workflow will be extended to enable data product owners to define their custom access

policies. For example, consuming a particular data product can be allowed only during an indicated period or

for specific aerOS users, roles, or groups within an organization.

The other integration, as shown in Figure 18, involves the Data Product Manager component. In this setup, only

owners of data products are authorized to onboard new data products through the REST API of the Data Product

Manager. For this, Keycloak is configured with a role-based policy that only allows aerOS users with “data

product owner” role to make POST requests to the /onboard endpoint.

13 https://www.keycloak.org
14 https://www.krakend.io

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 31 of 60

Figure 18. Authorization workflow for data product owners in the Data Product Manager

3.3. Decentralized frugal AI
The aerOS stack should enable the execution of distributed AI tasks over the continuum considering also limited

resource availability that is possible close to the edge. Decentralized frugal AI mechanisms can be used for

internal AI (internal aerOS mechanisms) and for external AI (the deployment of specific AI services for

stakeholders over the continuum). Moreover, in T4.3 the applicability of methods for providing explainability

of AI-based functionalities are investigated. This section summarizes current work status in T4.3 and

refinements that have been made since D4.1.

3.3.1. AI workflows

Decentralized AI in aerOS covers two main use cases: federated training of ML model (Federated Learning,

FL) using continuum resources and deployment of a trained model for prediction in the continuum.

The training of models is represented by AI workflows where FL tasks can be divided into sub-tasks and dele-

gated for execution to IEs (see Figure 19). Besides supporting FL, aerOS will allow to deploy services with

already trained models in the continuum. Such deployment will also be guided by requirements that will allow

to choose the best place for deployment using general aerOS orchestration mechanisms.

The AI workflow is a combination of workloads, put together in a way to achieve a specific functionality of AI.

It has been designed that the orchestration of AI workflows will make use of the aerOS orchestration. Here, the

specific relations among the workloads that form the workflow will be the aspect that will be managed by the

AI Service Controller. The AI task/workflow will be deployed as a set of interacting services - AI Task [n]

Controller and AI Local Executors.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 32 of 60

Figure 19. Update from D4.1: The concept of internal AI Local Executor called Agent was dropped. The internal

components division was updated

AI Task Controller is a service deployed on aerOS infrastructure to control the execution of an AI task with

respect to synchronization of partial results. AI task can be decomposed into sub-tasks that e.g., produce results

that need to be aggregated or prepare data to be consumed by the model. For each AI task a dedicated AI Task

Controller is deployed.

AI Local Executor is a service deployed on aerOS infrastructure to execute workload for an AI sub-task i.e.,

to execute a granular “step in the workflow”.

3.3.1.1. Structure

Figure 20. Internal components or AI Task Controller and AI Local Executor services

Table 3. Components of AI Task Controller

Component Description

FL Controller
Responsible for accepting a task description, initializing execution of workload using

deployed services, managing, and monitoring task lifecycle.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 33 of 60

FL Training Collec-

tor

The FL training process involves several independent parties that collaborate to pro-

vide an enhanced ML model. In this process, the different local updates suggestions

should be aggregated. This is tackled by the FL Training Collector, which is also in

charge of sending the results of the training along with the updated model weights to

FL Repository for storage.

FL Repository

One of the key application aspects of FL is making it persistent and configurable. The

FL repository stores (and delivers upon request/need) the ML aggregation algorithms,

ML models and the results of ML training.

Table 4. Components of AI Local Executor

Component Description

Model Inferencer
Designed for fast and lightweight communication, Local Model Inferencer provides

predictions of a selected model.

Model Trainer
Offers the functionalities of an FL client, including the local training and evaluation

of models from two popular ML libraries.

Data Transformer
Supports data preprocessing, data loading and training methods using serializable

modules.

3.3.1.2. Technologies and standards

Table 5. Candidate technologies for AI workflows

Technology/

Standard
Description Component

Python

Python is an interpreted high-level general-purpose pro-

gramming language with a set of libraries. Very popular

for data analysis and ML applications.

All

FastAPI
A web micro framework written in Python, known for be-

ing both robust and high performing.
Communication

Flower

A FL framework designed to work with many clients. It is

both compatible with a variety of ML frameworks and

supports a wide range of devices.

Model Trainer,

FL Training Collector

FedML
Research library and benchmark for Federated ML con-

taining federated algorithms and optimizers.
FL Training Collector

Tensorflow.

Tensorflow Lite

A free and open-source software library for machine learn-

ing and artificial intelligence. It can be used across a range

of tasks but has a particular focus on training and inference

of deep neural networks.

Model Inferencer,

Model Trainer

pyTorch

An open-source machine learning framework based on the

Torch library, used for applications such as computer vi-

sion and natural language processing, primarily developed

by Facebook's AI Research lab (FAIR).

Model Trainer

MongoDB
MongoDB is a source-available cross-platform document-

oriented database program.
FL Repository

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software_framework

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 34 of 60

3.3.1.3. Implementation status

The AI Local Executor and AI Task Controller components -FL Training Collector and FL Repository - are

available. They are used to run a decentralized FL task.

Work is in progress for FL Controller (part of AI Task Controller service) component that shall accept task

parameters and control task execution status. The AI Service Controller is in its design phase.

3.3.2. Frugal AI – AI Model Reduction Service

Frugal solutions allow deployment and execution in a resource-restricted environment in terms of memory,

processing power, network bandwidth, but also availability of data for model training. Frugal applications can

be deemed as the ones most suitable to be deployed close to the edge, instead of a centralized deployment.

Consequently, frugality can be treated as an “add-on” to decentralized AI.

AI Model Reduction Service is an auxiliary service exposing functionalities related to model compression. So

far, various SotA frugal techniques have been explored, focusing mainly on the aspect of reducing the size of

AI models and increasing their inference speed. These include pruning and quantization.

Pruning in neural networks is a technique used to reduce the size of a model by removing parts of the network

that contribute little to its output. The main goal of pruning is to improve the efficiency of neural networks

without significantly sacrificing accuracy. This technique can be essential for deploying models on devices with

limited computational resources, such as smartphones or embedded systems.

There are various benefits of using the pruning technique. It reduces the number of parameters in the model,

which decreases its storage requirements. Next, with fewer calculations, the pruned network can offer faster

inference times, making it more suitable for real-time applications. Smaller models require fewer computational

resources, which can lead to lower power consumption. Lastly, pruning can help reduce overfitting by removing

unnecessary parameters, leading to models that generalize better on unseen data.

There are two main approaches to pruning. The first one is unstructured pruning, which focuses on removing

individual weights or connections within the network based on specific criteria, typically their magnitude. In

this approach, weights deemed less important (e.g., those with values close to zero) are set to zero, eliminating

their influence in the network. The second approach is structured pruning, which involves removing entire units

or sets of connections, such as neurons, channels, or even layers. This type of pruning is guided by the structure

of the neural network itself, aiming to simplify the architecture in a way that maintains its integrity while re-

ducing complexity.

One must note that unstructured pruning's effectiveness in accelerating inference is highly dependent on the

availability of specialized hardware or software that can exploit the sparsity of the model. Structured pruning,

however, typically results in models that can be more readily accelerated by standard hardware because the

pruned model retains a dense structure. Both methods aim to preserve the model's accuracy as much as possible.

However, structured pruning may sometimes lead to a more significant drop in performance than unstructured

pruning due to its coarse-grained nature.

Thus far, both structured and unstructured pruning have been implemented. The methods have been tested on

neural networks involving recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The

results for structured pruning are very promising as they lead to a significant increase in inference speed and

model size reduction. Nonetheless, more work must be done to explore the aspects of generalizability of the

implemented methods and ways of applying them in aerOS as a service for users.

The following method that has been deeply explored is quantization, a technique used to reduce the precision

of the numbers representing the weights and activations within a model. Quantization works by mapping a large

range of values to a smaller one, often through rounding operations. This process is vital for deploying deep

learning models on resource-constrained devices such as mobile phones, embedded systems, and IoT devices,

as it can significantly reduce the model's memory footprint and speed up inference while maintaining acceptable

levels of accuracy. The main challenge in quantization is maintaining the model's accuracy with reduced nu-

merical precision, which requires careful selection of the quantization scheme and possibly adjustments to the

model or training procedure.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 35 of 60

So far, quantization techniques have been applied in a practical setting. These include static quantization, dy-

namic quantization, and their combination. The tests were performed using various runtimes for inference on

different hardware. The test results are reassuring, proving that this method can be applied to different neural

network architectures, speeding up the inference and reducing the model size. However, the research on the

general applicability of the method in aerOS is still ongoing.

Therefore, the service features are in constant development. The current goal is to transfer the implemented

methods into the aerOS ecosystem and to verify their practical usability on models coming from different ser-

vices.

3.3.2.1. Technologies and standards

Table 6. Candidate technologies for AI Model Reduction Service

Technology/

Standard
Description Component

Python

Python is a high-level, interpreted programming language known

for its clear syntax, readability, and versatility. The programming

language was used to implement the experiments.

Pruner, Quantizer

PyTorch

PyTorch is an open-source machine learning library based on the

Torch library, widely used for applications such as computer vi-

sion and natural language processing. Initially, it was developed

by Facebook's AI Research lab. The library was used to define the

model architectures and create the training environments. It was

used both for implementing pruning and quantization methods.

Pruner, Quantizer

Neural Com-

pressor

The Neural Compressor is a tool provided by Intel that focuses on

compressing and optimizing deep learning models to improve

their performance and efficiency, especially on Intel hardware. It

was used for quantization purposes.

Quantizer

ONNX

ONNX, which stands for Open Neural Network Exchange, is an

open-source format for AI models. It provides a platform-agnostic

way of representing deep learning models, enabling them to be

used across different frameworks, tools, and hardware without be-

ing tied to one ecosystem. In addition to its core functionality, the

ONNX ecosystem includes tools for optimizing models and

ONNX Runtime, a performance-focused engine for running

ONNX models. ONNX was used to quantize models and to run

them.

Pruner, Quantizer

NNI

NNI, which stands for Neural Network Intelligence, is an open-

source AutoML toolkit developed by Microsoft. It aims to help

users automate the machine learning lifecycle, including feature

engineering, neural architecture search, model compression, and

hyper-parameter tuning. It was used for pruning techniques.

Pruner

3.3.2.2. Implementation status

The work conducted includes:

• Implementation of algorithms for structured and unstructured pruning; experimentation with RNNs and

CNNs.

• Implementation of quantization algorithms; experimentation with different runtimes and hardware.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 36 of 60

Progress is made regarding how the proposed methods can be generalized and supported by proper instructions

to be easily applicable to new applications. Moreover, other frugal techniques are still to be researched.

3.3.3. Explainability support - AI Explainability Service

In aerOS, AI is used internally to support intelligent decision making when managing the continuum, and

externally to enable running of arbitrary AI workflows using aerOS infrastructure. In both cases, the need may

arise to explain and/or interpret predictions made by ML models. To this aim, a service will be prepared to

enable “plug-in” of explainability/interpretability step. The AI Explainability Service handles predefined cases

like the interpretability of HLO allocator decisions. However, it will also provide methods that can be used for

a more comprehensive number of use cases.

An AI-related service must meet some requirements to use the AI Explainability Service.

The first requirement is to prepare a small representative dataset (the ground dataset). The bigger it is, the more

reliable the output of the AI Explainability Service. A rule of thumb is to prepare something a size of 100 data

samples. These could be the training data. However, the exact size may depend on the service's data availability,

the algorithm's (i.e., AI model) complexity, and other aspects.

Regarding the representative aspect of the data, one can understand it as being typical or average data

encountered by the model. The exact way of preparation of the dataset is something to be discovered by a service

maintainer to verify that the explanations returned by the AI Explainability Service “make sense” in the specific

domain. The Explainability would reuse the dataset for different explanations until a maintainer observes a

degradation of the results. For instance, external factors like a data drift phenomenon on the service side could

cause that.

Next, the AI Explainability Service, to explain a prediction, requires the input and the output. The explainer's

internal algorithm requires the original input to perform calculations, which are needed to provide the

mathematical explanations of the prediction. The explainer uses the original output of the prediction for

visualization purposes.

The following requirement is access to the explained model. This element is a crucial aspect of the AI

Explainability Service. A service maintainer decides what part of the model one wants to explain. Let us take,

for example, a simple logistic regression. Then, the AI Explainability Service needs access to the whole model

to run experiments on it internally. However, suppose that a service uses a more sophisticated algorithm, for

instance, some reinforcement learning approach. Suppose a maintainer wants to explain the behavior of some

part of it (i.e., the policy network). In that case, the maintainer must be able to extract this part of it and make it

usable by the AI Explainability Service.

The explainer assumes that a model behaves as a function that, for an input, returns an output. Although this

may sound simple and obvious, the practical aspect of this realization is much more difficult. Users may want

to use various frameworks and programming languages to create their AI models. Furthermore, the AI

Explainability Service should focus on providing explanations and not handling various inference runtimes for

different users. To this end, the Explainability Service would use a specific interface to which users must adhere

while exporting their models. This can be realized by, for instance, aerOS Embedded Analytics ToolHowever,

one must note that different approaches with advantages and drawbacks exist. This aspect is still to be verified

in the aerOS ecosystem.

So far, various SoTA methods for explainability in AI have been analyzed. The most promising ones are based

on calculating Shapley values to provide users with easy-to-understand explanations that are mathematically

provable. In this area, algorithms like Kernel SHAP and Deep SHAP (an enhanced version of DeepLIFT) were

tested in practical settings. The explanations were generated for a reinforcement learning algorithm that

allocates a set of interconnected tasks to a set of computing nodes to reduce parameters like overall energy

consumption. Apart from connecting the reinforcement learning algorithm with an explainer, the visualization

of the results was prepared. So far, the results are auspicious, especially in giving a user a way to interpret the

decisions made while allocating the tasks. Some examples of visualizations of explainability results are shown

in the figures below.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 37 of 60

Figure 21. Example n°1 of a visualization of an explanation of a task assignment problem

Figure 22. Example n°2 of a visualization of an explanation of a task assignment problem

3.3.3.1. Technologies and standards

Table 7. Candidate technologies for AI Explainability Service.

Technology/

Standard
Description Component

SHAP

SHAP (SHapley Additive exPlanations) is a game theoretic approach

to explain the output of any machine learning model. It connects op-

timal credit allocation with local explanations using the classic Shap-

ley values from game theory and their related extensions. The library

would be used as a base for providing the mathematical explanations

of predictions.

Explainer

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 38 of 60

Python

Python is a high-level, interpreted programming language known for

its clear syntax, readability, and versatility. The programming lan-

guage would be used to implement the solution.

Explainer, API

FastAPI

FastAPI is a modern, high-performance, web framework for building

APIs with Python. The framework would be used to create a HTTP

interface to the service.

API

Kafka

Apache Kafka is an open-source stream-processing software plat-

form developed by the Apache Software Foundation, written in Scala

and Java. Designed to provide a unified, high-throughput, low-la-

tency platform for handling real-time data feeds, Kafka is fundamen-

tally a distributed event streaming platform capable of publishing,

subscribing to, storing, and processing streams of records in real

time. The message queue would be used for internal communication

inside the service, as well as the external communication to store the

results.

Message Queue

Celery

Celery is an asynchronous task queue/job queue based on distributed

message passing. It is focused on real-time operation but supports

scheduling as well. The execution units, called tasks, are executed

concurrently on one or more worker servers. Celery is used for exe-

cuting and managing tasks in a distributed fashion, allowing devel-

opers to scale their applications easily and process vast amounts of

tasks quickly and efficiently. It would be used to schedule the internal

computations of the explainer.

Explainer

MongoDB

MongoDB is an open-source, document-oriented NoSQL database

designed for ease of development and scaling. It is one of the most

popular databases for modern apps, particularly known for its flexi-

ble schema, scalability, and performance. The database would store

the configuration of the service, as well as some intermediate results.

Database

3.3.3.2. Implementation status

The work conducted so far includes research on explainability/interpretability methods that can be used for

aerOS internal use case that is based on reinforcement learning. This scientific area is still being researched so

unfortunately there are no “ready and easily applicable” solutions. An approach on how to proceed was designed

and implemented in aerOS. Requirements for input data for the AI Explainability Service were formulated and

visualization of the results was proposed.

Work in progress is for wrapping the algorithms as an aerOS service and designing final presentation of the

results so that they are easily understandable to the user (note: interpretability/explainability require knowledge

of the domain and problem).

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 39 of 60

3.4. Embedded multiplane analytics
Embedded Analytics Tool (EAT) is a platform which supports the creation and deployment of functions de-

signed for the aerOS Meta-OS. These functions provide both generalised operations for aerOS users and spe-

cialised operations for specific pilot use cases. EAT also supports visualisation capabilities allowing users to

investigate in-function metrics through a variety of charts and graphs appropriate to the metric.

3.4.1. Schema Implementation

Figure 23. aerOS Embedded Analytics Tool schema

The development of the Embedded Analytics Tool is compartmentalised into subcomponents for development.

The architecture shown in Figure 23 is detailed in D4.1 along with each subcomponent and interface required

for communication. These subcomponents are pulled from the open-source community as independent container

images and are packaged into Helm charts or Docker compose files. In addition, these images have been adapted

to be deployed in the Infrastructure Elements of the continuum. Therefore, in the scope of the heterogeneous

IEs that form the aerOS continuum, faasd stands as a promising solution for enabling the aerOS EAT capabilities

in IEs with constrained resources, or in IEs that their container orchestration technology is not K8s.

While interfaces between the subcomponents are predefined and static allowing them to be configured as part

of the installation, functions behave in a dynamic manner. Functions can be deployed, removed, or adapted in

real-time with the capability to establish new interfaces inside the function. These interfaces are necessary for

processes such as data retrieval from the Data Fabric or triggering actions from the High-Level Orchestrator.

3.4.2. Template Implementation

The flexibility of Function-as-a-Service approaches also introduces complexity regarding resource manage-

ment, function design and communication. The resource management challenge can be offset through the con-

figuration of the domains and monitoring provided through aerOS. The Function design and communication

challenge can be addressed through templating. Functions designed for the aerOS Meta-OS are created using

the custom aerOS template, specifically developed to map with the computing continuum features. This tem-

plate provides a structure for the functions developers allowing common functionality to be abstracted and

simplified. The function is divided into three distinct parts: 1) data retrieval 2) processing and 3) response. Data

retrieval provides generalised code for requesting information from data sources namely the Data Fabric. Pro-

cessing represents the core operation of the function where specific logic is defined. Response provides aerOS

approved interfaces enabling functions to trigger additional processes such as an additional function or another

aerOS component.

3.4.3. Function Implementation

The Embedded Analytics Tool is pre-packaged with three distinct functions. These are: 1) Stratified Sampling

2) Anomaly Detection and 3) Data Drift. All functions are implemented through Python using a collection of

data science libraries. Stratified Sampling is a flexible function which generates a sample of data according to

the parameters requested by the user. These parameters include filters for data retrieval and if the response

should produce a proportional or disproportional sample. Anomaly Detection utilises a similar data retrieval

process with a different logic to process the data. This function highlights outliers in the data sample which can

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 40 of 60

be improved through training for use case specific scenarios. Data drift has a more complicated data retrieval

process as the function is designed to test current data against historical data and identify variance over time.

Based on the type of drift some algorithms are better optimised to identify this variance, our approach utilises a

distribution-based algorithm to highlight data drift between historic and current data.

3.5. Trustworthiness and decentralized trust management

This section elaborates on the advances that took place in Task T4.5, since the previous deliverable D4.1. In

D4.1, the concepts of trustworthiness and decentralized trust management in aerOS was thoroughly explained.

However, for D4.2 to be self-sustained some repetitions might occur.

As described in D3.1, Cybersecurity and Trust are registered in the aerOS stack as Basic Services. This basic

service will be covered in two tasks, namely T3.4 and T4.5. The activities of T3.4 are focused on the cyberse-

curity part of this basic aerOS service and are described in D3.1 and D3.2 deliverables, while T4.5 focuses

mostly on the trust part; however, it also implements relevant cybersecurity actions that are in line with trust

actions, such as secure information exchange using the IOTA distributed ledger technology.

3.5.1. Advances in trustworthiness of IEs in the continuum

To determine the trustworthiness of the IE (Infrastructure Element) and aerOS domain, an approximating risk

assessment will be conducted for each IE. This process involves relying on reputation of neighbouring IEs to

extract their trustworthiness. The summarizing scores of these IEs will the contribute to the overall trust score

of the aerOS domain. The primary goal of the trustworthiness in aerOS is to provide a clear view of the level of

trust for every IE and aerOS domains in the continuum. This clarity is essential to facilitate the decision-making

process of aerOS components. For example, the Higher-Level Operator (HLO) depends on this trustworthiness

assessment to determine which IE in the continuum are trusted for allocating services. To achieve this level of

trustworthiness in aerOS, the Trust Management component has been developed, comprising the Trust Agent

and the Trust Manager. These elements work together to ensure a reliable and secure aerOS environment.

On the one hand, the Trust Agent, which acts as a tracer, is responsible for collecting the necessary attributes

from the IEs. These attributes are collected from the Data Fabric or the IEs using the NGSI-LD or the MQTT

protocols. The list of the attributes that are collected and deployed to calculate the trust score are:

• Security events obtained from the aerOS self-security,

• Health score obtained from the health diagnose of self-*,

• Number of services that run in the IE,

• IE behaviour, namely communication with other IEs (number and trust score of these IEs), commands

send/receive,

• IE updates (whether the firmware/software run in the IE is updated),

• IE reputation from other IEs or human users,

• IE system information (CPU, RAM, etc.).

On the other hand, the Trust Manager is the backbone of the Trust Management component because it contains

the trust score calculation algorithm that is responsible for identifying the level of IEs’ trust. This is accom-

plished by employing the attributes that are collected by the Trust Agent and sent to the Trust Manager. The

trust score will be calculated using a weighted algorithm. The concept of calculating a trust score using a

weighted algorithm is based on the understanding that not all attributes contributing to the trustworthiness of an

Information Entity (IE) are equally significant. In this context, the weighted algorithm plays a crucial role in

assigning appropriate importance to various attributes based on their relevance and impact.

For example, a security event occurring in an IE is considered to have a higher level of significance compared

to the number of services running in an IE. This difference in significance is crucial because a security event

directly impacts the trustworthiness and reliability of the IE. It could indicate potential vulnerabilities or risks

associated with the IE, which are critical factors when assessing trust. On the contrary, the number of services

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 41 of 60

running in an IE, while still relevant, does not necessarily have the same direct impact on the entity's trustwor-

thiness. It might provide insights into the IE's operational capacity or utilization but does not inherently indicate

how secure or reliable the IE is.

Therefore, in the weighted algorithm, greater weight or importance would be assigned to attributes like security

events. This ensures that when the trust score is calculated, factors that are more critical to the trustworthiness

of the IE have a proportionately greater influence on the outcome. This method allows for a more nuanced and

accurate representation of an IE's trust level, ensuring that the trust score reflects the true reliability and security

of the IE in its operational environment.

Figure 24. Updated overview of trust management structure

In the depicted overview of the trust management structure, each Infrastructure Element (IE) is equipped with

a Trust Agent, who is responsible for gathering necessary information. The aerOS domain is composed of a

collection of these IEs, and each domain is managed by a Trust Manager who calculates the domain's trust score.

Both the Trust Agent and the Trust Manager operate using MQTT and NGSI-LD. This integration aims to

facilitate communication with Orion-LD, a component within the data fabric, using the JSON-LD format, which

is Orion-LD's standard communication protocol. However, the format for the trust profile, which the Trust

Manager will store on the IOTA distributed ledger, has not yet been finalized.

Overall, the Trust management component interacts with several elements within the aerOS ecosystem, includ-

ing the IOTA (manager), selected Self-* modules to minimize resource consumption, the data fabric/Context

Broker (CB), and the IEs themselves.

From then on, the High-Level Orchestrator (HLO) in the aerOS system will use the trust score generated by the

aerOS domain as a crucial input for decision-making in orchestration processes. This setup ensures that deci-

sions regarding service allocation and system management are based on reliable and up-to-date trustworthiness

assessments, enhancing the overall security and efficiency of the aerOS continuum.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 42 of 60

3.5.2. Advances in trustful decentralized exchange: IOTA

IOTA provides a shared network between all nodes called the Tangle, which allows for secure and trustworthy

feeless data transactions between different nodes. This is the root of the IOTA deployment in aerOS, where the

Hornet Nodes are the multiple IEs found in the shared continuum and the Tangle is the data structure that

contains all the information necessary to track messages and ensure traceability of the payloads distributed

across the network. When one program issues a message to a node, said node verifies the message and sends it

via the gossip protocol through the network to its ‘neighbours’, other nodes in the Tangle network connected to

the first one. All other nodes in the network see the message and retrieve the same status of the network. The

data shared here is only meant to be the most important of data regarding the state of the network. This data

could be, for example, the IP address of elements in the continuum, the domain addresses, etc. With this in

mind, the deployment of IOTA’s nodes will be done accordingly with both the domain and continuum require-

ments.

A deployment of a private IOTA Tangle network has been done in the internal UPV infrastructure, with multiple

nodes, sharing information between one another. Successful tests with data transfer between the nodes have

been successful, with the results being shown in the DLT status and the capability of data to support multiple

formats. The tests also include the integration of the Hornet nodes with an MQTT plugin, allowing the node

itself to react to receiving relevant data from the network. Afterwards the deployment was done spreading the

nodes across multiple test domains that would emulate a real use case situation, with all the parts of the network

involved. A diagram of the prototype can be seen below, with all icons taken from IOTA.

Figure 25. Planned IOTA prototype

With this done, the next steps involve further testing of the information that will be sent and the processes and

pilots involved. In addition, a custom Helm chart has been created from scratch to be able to deploy IOTA in

Kubernetes clusters, as packaging for K8s is not available yet in the official IOTA repository. After this the

deployment will be moved into the computing resources provided by the partners, where it will be accessible

for further integration.

3.6. Management services and aerOS management portal
The main aim of this task is the development of the aerOS Management Framework, which is composed by two

independent components: the aerOS Management Portal and the aerOS Federator. These components are de-

scribed separately in their respective subsections. In addition, the task T4.6 has started in M10 of the project,

six months after the rest of WP3 and WP4 technical tasks. Thus, this task presents a strong dependence on them

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 43 of 60

and some parts of it, for instance, Benchmarking tool and Entrypoint balancer, are in a more preliminary devel-

opment stage.

3.6.1. aerOS Management Portal

The block schema of the aerOS Management Portal has been slightly modified when it comes to the interactions

between the Backend and the aerOS Basic Services. In the first version described in D4.2, these interactions

were described in a general way without going to the details and having the Entrypoint balancer as a mandatory

pass-through component. Nevertheless, after performing some fine-tuning now it is clearer that currently the

entrypoint balancer it is only needed for distributing the aerOS orchestration requests among all the available

domains, but because of its stateless nature it can be used to distribute more requests as the project advances.

Following this explanation, Data Fabric and aerOS Federation are distributed by definition, hence it is not nec-

essary to add another distribution layer. When it comes to the users and roles management, the aerOS AAA

tools to manage them (LDAP and Keycloak) will always be deployed in the entrypoint domain so distribution

is not needed.

Figure 26. aerOS Management Portal architecture

T4.6 started in M10 of the project, so in D4.1 (M12) it was no possible to go through the technological details

of the Management Portal components, apart from providing the list of candidate technologies to use in the

development. Thus, the idea is to go component through component to provide more concise updates.

3.6.1.1. Frontend

Before developing the code for the Frontend part of the Management Portal, an analysis phase has been con-

ducted to define the requirements needed for the management portal. Once the requirements were discussed and

finally set, these requirements have been used by the UX/UI team as the starting point for drawing the first

mock-up designs of the Management Portal using Figma, which is an online collaborative tool for designing

user interfaces. Once the mock-ups were approved by the partners and internal team, frontend development

began. The management portal is structured as a single-page component-based application built with the popular

Vue.js framework (version 3), an industry standard with a comprehensive set of tools for creating web user

interfaces. The Vue components has been built with full Typescript support and the application uses Pinia as a

store manager, to allow the sharing of states between all the web application components. It is important to

highlight that the portal will only show information and allow to perform actions in accordance with the role

that has been assigned to the user in the aerOS AAA framework (see section 4.4.1.1 of D3.2 for more infor-

mation about the defined roles in aerOS). For instance, only users with the proper rights will be able to initiate

an orchestration request (e.g., a IoT service deployer) or check the status of the IEs that belong to his linked

domains (e.g., Domain Administrator). Therefore, the aspect of the portal will change according to the user

roles and permissions.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 44 of 60

The IoT-Edge-Cloud continuum presents a heterogeneous range of computing resources, so aerOS as a Meta-

OS must provide some supporting tools for depicting this computing resources adapted to the aerOS architecture

concepts (Domains, IEs, LLOs, etc). For that reason, after some technical analysis, an interactive network graph

has been selected to try to overcome the challenge of drawing the computing continuum. Specifically, the v-

network-graph, a lightweight Vue.js fully compatible library, has been used.

Finally, this is the list of the developed user interfaces along with some description:

• Welcome page and navigation menu

aerOS Meta-OS users land to the welcome page after performing the logging process interacting with Oauth2.0

protocol of Keycloak Identity Manager (IdM). This introductory page consists of a central descriptive part and

the side navigation menu. When it comes to the navigation menu, the user can choose from several options, the

current list follows below:

o Home: by clicking this item the user will be redirect to the home page of the Portal.

o Domains: clicking on the Domains option will direct the user to the section related to his/her domains

within the aerOS continuum. In this section the user can go into the details of a selected domain such

as the list of the IE that build the domain, along with their metrics collected in real-time.

o Deployments: by clicking on the Deployments option the user will be redirected to the wizard that list

the deployed services and allows to request a service orchestration in the aerOS continuum.

o Continuum: in this page, users will be able to see, in a simple and intuitive way, their own relative

Infrastructure Elements that comprise their domains: the aerOS continuum indeed.

o Notifications: this section has been created to inform users that some events have been triggered (the

list of events and the development will be performed in the next phase).

• Domains

Figure 27. aerOS Management Portal welcome page and navigation menu

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 45 of 60

Figure 28. aerOS Management Portal domains view

In the Domains section, the aerOS user accesses a table with a list of federated domains along with a first glance

of their characteristics. By clicking on the view call-to-action, the user will land on the detail page of the selected

domain, where they can browse a complete list of domain information, including the underlying IEs.

• Deployments

Figure 29. aerOS Management Portal service deployments view

In the Deployments section, a table with a list of configured and performed deployments is shown, containing

a list of the main attributes, such as description, status, and public URL. In the table there are two call-to-actions:

o View, by clicking the eye icon the user accesses to all the data related to the selected deployed service,

including its service components.

o Remove, by clicking the trash can icon the user will be able to remove the selected deployed service.

Moreover, this view includes a button to request the orchestration of a IoT service in the continuum. By clicking

on the top-right call-to-action, a wizard will appear to guide the user in the creation of the Intention Blueprint,

which will be sent to an HLO to start the aerOS orchestration process. For this MVP release, a simple wizard

has been developed, with the number of steps depending on the number of underlying service components (or

containers) that compose the IoT service that the user wishes to deploy in the continuum.

The wizard is comprised of the steps depicted below:

1. The user can select among the offered orchestration flavours: (i) Manual, for selecting a specific IE; (ii)

Semi-automatic, for selecting some open requirements (e.g., a set of IEs) to be taken into consideration

by the orchestrator; and (iii) Automatic, to let the orchestrator decide the best fitting. At this point, only

it is enabled the Automatic option to be aligned with the status of the aerOS orchestration.

2. In this step the user can add the main attributes of the deployment (Service in the aerOS continuum

ontology, see section 3.1.3.1), such as name, description and number of underlying services that form

the deployment (ServiceComponent in the ontology).

3. In this step the user completes the configuration of the service components: container image,

orchestration requirements, etc. This stage is constantly being improved to be aligned with the

orchestration process and the continuum ontology.

4. This last step shows a summary overview of the filled data, and, after a final check, the user can trigger

the orchestration of the service.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 46 of 60

• Continuum view

Figure 31. aerOS Management Portal continuum view

3.6.1.2. Backend

Developing a backend component for a web application depends on the specific requirements and functionalities

of this application. In the scope of aerOS, that considers the aerOS Basic Services as a suite of lightweight

microservices (including the potential workloads to be deployed in the computing continuum), heavier compu-

ting processes (e.g., data processing) must be removed from the web application. Removing this logic from the

web application allows to develop the frontend to just react to user actions and obtain the needed data in the

expected format to be then efficiently interpreted, as well as avoiding some security issues like the well-known

Figure 30. aerOS Management Portal new service deployment wizard

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 47 of 60

CORS. Therefore, the backend component acts as a middleware between the web page and third-party APIs.

This component has been developed as a Spring Framework application, starting the project with Spring Boot

and using some complementary libraries such as Spring Security or Spring Cloud.

It is important to highlight that this backend doesn’t interact with a database to store configuration or state,

which is a common practice in web applications dashboards, as the Management Portal can be moved to other

aerOS domains in a flexible way if the Entrypoint domain changes. All the needed data by the portal can be

obtained from the aerOS Basic Services in a decentralized and federated way, for instance, users’ data is stored

in Keycloak Identity Manager, and continuum and services data can be obtained through Orion-LD taking ad-

vantage of the Data Fabric mechanisms.

When it comes to cybersecurity, the backend protects the incoming requests by checking authorization JWT

tokens with Keycloak. This way, the backend first ensures that these requests are sent by the Frontend to then

check if the requested action can be performed by the role granted to the user that initiates actions in the web

application. In addition, this token can be reused in case of the backend must send some requests to endpoints

protected by KrakenD API Gateway.

3.6.1.3. Entrypoint balancer

Before proceeding to the analysis of existing load balancing (LB) approaches, it is necessary to outline the

requirements that must accomplish the aerOS entrypoint balancer. First, in terms of decision-making, the LB

algorithm should rely on the balancing rules and not operational requirements. It should forward the first re-

ceived Intention Blueprint request and focus strictly on workload distribution since task re-transferring is part

of the HLOs’ responsibilities. Finally, the chosen algorithm should have a low level of overhead and possibly

be simple to implement.

These conditions were considered in the selection of quality metrics used to evaluate existing LB algorithms.

Among the metrics proposed in [10], [11], the ones that are the most relevant include scalability, degree of

imbalance, and performance. In terms of areas of application, the focus has been placed on algorithms that aim

to maximize the throughput and avoid bottlenecks. The resource-utilization-tailored ones were of less im-

portance since the entrypoint balancer does not process Intention Blueprints.

The literature proposes many taxonomies used to categorize LB algorithms. The most common one, introduced

among others in [12], [13] divides them into static, dynamic, meta-heuristic, and ML-centric ones. Here, it

should be pointed out that meta-heuristic and ML-centric algorithms (e.g., Genetic Programming based Load

Balancing (GPLB) [14]) have a high level of complexity and are considered mostly in case of large solution

spaces. Therefore, regarding the specifications for the entrypoint balancer, they are architecturally overcompli-

cated, and, as such, they were not considered in further analysis.

Static LB algorithms use predetermined knowledge and assumptions about resources. The most widely used

algorithms within this group include different versions of Round Robin (RR) [15], [16], which assigns tasks

according to a circular list, or Opportunistic Load Balancing (OLB) [17], which focuses strictly on keeping

components busy while assigning workloads in arbitrary order. Since these algorithms do not adjust to the cur-

rent state of the system, they have minimal overhead, however, at the same time, they are of low flexibility. As

such, they may not be able to properly handle dynamic changes in the aerOS infrastructure such as re-transfer-

ring tasks between HLOs.

The better suited are the dynamic LB algorithms, which consider the current system state, by, for example, re-

evaluating the load of its components. Consequently, algorithms from this group are more difficult to imple-

ment, but they also are a better fit for heterogeneous systems. The scope of dynamic LB comprises a variety of

different algorithms. The simpler ones, in the majority, are the modifications of the Least Connections (LC)

which redirects the requests to the infrastructure component that has the least number of active connections

(e.g., Weighted Least Connections Round Robin -WLC RR [18]). The more complex ones are, for example,

Resource-based Load Balanced Min-Min (RBLMM) or LBMM, which take into account also task re-distribu-

tion and resource utilization. However, considering the restricted amount of information to be processed by the

entry point balancer implementation of these more complex algorithms would not be possible without re-ad-

justments of current architectural concepts.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 48 of 60

Therefore, based on the conducted research, it has been determined that the most suitable LB algorithm in the

case of the entrypoint balancer would be the LC (or one of its modifications). The proposed algorithm meets all

established criteria and yet is simple enough that it would not require major changes in existing architecture.

After the selection of LC algorithms, the next action points will be to develop and test a set of variations of LC

algorithms, in a more mature state of aerOS composed of the components ready for the MVP, to select the one

with best performance and a better fit in the aerOS continuum.

3.6.1.4. Benchmarking tool

The benchmarking tools are conceived to complement the aerOS Management Portal. These tools provide two

main functionalities:

1) Benchmarking and comparison of IE/domains performance against known standards and methodolo-

gies such as TPCx-IOT [19] and RFC 2544 [20].

2) Internal Technical KPIs dashboard, which provides a snapshot of these KPIs defined for aerOS tech-

nical components in deliverable D5.2 and which are directly measurable from the aerOS stack.

In both cases, these tools will ingest data from the Data Fabric, meaning that at least integration with the Orion-

LD broker is necessary, as well as support for semantics defining all the data to be used. The following diagram

sketches the relationship between these tools and other services deployed with the aerOS stack.

Management Portal

Data Fabric Self-*

Benchmark
Worker

KPI manager

KPI Visualizer
Benchmark
Visualizer

Figure 32. Benchmark tools architecture

Using as data source the data of the Data Fabric already inserted by Self-* modules and additional queries to

the Self-API to gather additional information, the Management Portal will be extended with two components to

visualize both technical KPIs (KPI visualizer) and benchmark results (Benchmark visualizer).

Since data needs to be prepared before the visualization, two backend workers, “KPI Manager” and “Benchmark

Worker”, will periodically gather source data from the different IEs and insert in the Data Fabric the information

to be displayed by the Management Portal. Finally, it will be explored if these workers will be included as part

of the backend component of the portal.

3.6.1.5. Candidate technologies and standards

Table 8. Candidate technologies and standards for aerOS Management Portal

Technology/

Standard

Description Justification

Vue.js Vue.js is an open-source

JavaScript framework for

Vue.js is currently one of the most popular frameworks to

build web applications along with React, so it was decided

to take advantage of previous experience in the technology

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 49 of 60

building web user inter-

faces.

by the partners involved in the task.

Pinia Pinia is a state store library

for Vue.js

State management plays an important role in web applica-

tions because allows to store the current state of the applica-

tion, which depends on the actions previously performed by

users.

v-network-

graph

Vue3 library for creating

interactive network

graphs.

The Management Portal is intended to show the current state

of the computing continuum in a visual friendly way, so this

library is a strong candidate to show this information fol-

lowing a network graph visualization.

Spring Frame-

work

One of the most popular

Java frameworks to de-

velop microservices, com-

pletely oriented to build

cloud-native micro-

services.

Partners involved in the task have expertise in the technol-

ogy and it has resulted a good option to develop backends

of dashboard built as web applications.

Spring Security Spring Security is the de-

facto standard for securing

Spring applications.

Requests sent by the frontend must be authenticated with

Keycloak tokens, so the backend must check the validity and

scope of these tokens through the interaction with Keycloak.

It can be achieved by using the built-in Oauth2.0, OIDC and

Keycloak support.

Spring Cloud Spring Cloud provides

tools for building applica-

tions in the scope of dis-

tributed systems.

The Backend will forward some requests to aerOS Basic

Services that will not need any modifications, so it must be

able to act as a reverse proxy (Spring Cloud Gateway). In

addition, the Backend can leverage more capabilities pro-

vided by Spring Cloud libraries.

Least connection

load balancing

algorithm

Dynamic load Balancing

algorithms take into ac-

count the current state of

the system by re-evaluat-

ing the load of its compo-

nents.

Service orchestration requests from the portal’s backend

must be forwarded to HLO instances of different domains

following a distributed approach. After a research, dynamic

least connection algorithms (or its modifications) are the

best fitting into the aerOS distributed architecture.

3.6.2. aerOS Federator

The aerOS Federator serves as a management service responsible for controlling the establishment and mainte-

nance of federation mechanisms among the multiple aerOS domains that form the continuum. According to its

block architecture, it is composed by two main components: (I) custom aerOS Federator component and (ii)

Orion-LD context broker. The core federation functionalities are provided by the context broker through the

establishment of Context Source Registrations (CSR), which allows an Orion-LD instance to retrieve infor-

mation (in NGSI-LD entities format) from another Orion-LD instances, which in the aerOS continuum means

that data from one domain can be obtained just by calling the context broker of another domain once a proper

registration has been performed. This capability is directly linked with the aerOS Data Fabric described in sec-

tion 3.2, but the aerOS Federator component has been designed to act as the starting point of this mechanism

(domain discovery) and is only focused on the data related with the management of the continuum, which fol-

lows the ontology introduced in section 3.1.3.1. It also acts as the building block for the aerOS distributed

domain repository. Therefore, the main efforts for the MVP have been put in testing Orion-LD federation to

deliver a methodology to create the needed Context Source Registrations to achieve domains federation, always

having into consideration the aerOS ontology for the IoT-Edge-Cloud computing continuum. Without this work,

it will not be possible to federate aerOS domains in a secure and resilient way.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 50 of 60

Figure 33. aerOS Federator architecture in a single domain

3.6.2.1. Enhanced capabilities of Orion-LD context broker

It is important to highlight that Orion-LD is not only an open-source implementation of an NGSI-LD context

broker that has been taken from its repository, deployed, and used in the aerOS project, but also is constantly

being improved within the scope of aerOS. In addition, the main development team of Orion-LD, which is the

FIWARE Foundation, is an active partner of the aerOS project, so functionalities needed for the aerOS Federa-

tion are directly added to the context broker. These improvements and solved challenges will be described below

with more details. Furthermore, other teams working on the task are responsible for testing (through the creation

and execution of ad-hoc functional tests) these enhancements along with previously developed functionalities

to improve the quality of the broker as it is a core component in the aerOS architecture.

Figure 34. aerOS Federator NGSI-LD Context Source Registration example

Regarding the code development of Orion-LD in the scope of aerOS, queries for retrieving contextual data as

NGSI-LD entities actually stored in different context brokers play a main role in the aerOS federation. Thus, in

the domain of distributed systems, particularly within the context of entity federation, the pagination of entity

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 51 of 60

query results stands as a significant technical challenge. This challenge escalates when the queries involve dy-

namic attribute values, at which point the task transitions from merely difficult to seemingly unfeasible. For

effective pagination, it is imperative to establish a consistent set of resulting NGSI-LD entities across different

paginated queries. Otherwise, without this consistency, the realization of pagination is not viable. These chal-

lenges have been extensively deliberated within the ETSI ISG CIM, in the course of standardizing the NGSI-

LD API. Consequently, two distinct solutions have been formulated:

• Entity Maps: this solution involves freezing the set of resulting entities as a list that only includes their

IDs.

• Snapshots: this approach goes a step further by freezing the entities themselves, storing them within a

local database.

After some technical discussions, the Entity Maps strategy has been adopted for the aerOS project in order to

reduce the amount of exchanged data among the brokers, aligning with its implementation in Orion-LD for the

MVP. This approach is slated for inclusion in the forthcoming v1.8.1 of the NGSI-LD API specification, ex-

pected in March 2024, and is already being incorporated into Orion-LD version 1.5.1. The Snapshots method

remains under discussion in ETSI ISG CIM and is anticipated to be part of NGSI-LD API version 1.9.1, targeted

for release in September 2024.

Going into more technical details, the process begins with an initial query to Orion-LD API to obtain a set of

NGSI-LD entities (GET /ngsi-ld/v1/entities?<queryParameters>) during which the Entity Map is generated

and stored in the broker. The response includes the Entity Map's ID in an HTTP header (NGSILD-EntityMap),

along with the first batch of entities in the payload body. Subsequent paginated requests must provide this Entity

Map ID, along with offset/limit URL parameters for pagination.

An Entity Map is structured as an array mapping entity IDs to arrays of Context Source Registration IDs, indi-

cating the registrations associated with each entity. In the aerOS project, where attributes of entities are not

distributed across multiple brokers, the registration ID arrays typically contain a single entry. Furthermore, for

entities hosted locally in the broker, a special identifier (@none) is used. Finally, armed with the information of

the Entity Map, the broker is fully informed to dispatch distributed requests and compile the responses into an

array of entities. Upon processing all responses, the broker then furnishes this array to the original requester.

Figure 35. Orion-LD Entity Map example

3.6.2.2. aerOS Federator custom component

aerOS Federator custom component depends on the work described above. This component is intended to pro-

vide another layer of automatization above Orion-LD to avoid direct interaction with the context brokers of the

continuum when it comes to federation management, as well as federated backup mechanisms for federation

critical data (e.g. domains registry). aerOS Federator instances are expected to exchange a huge number of

messages and react to some key events in near real-time due to changes in the continuum (e.g., the failure of the

entrypoint domain), so it must be built on top of modern and agile communication protocols and technologies.

For that reason, gRPC stands as the most promising option compared to traditional REST APIs. gRPC is an

open-source implementation of remote procedure calls (RPC) developed by Google, which uses a binary pro-

tocol for data exchange over HTTP/2 and implements bi-directional communications. Moreover, messages are

defined following Protocol Buffers (Protobuf) that will also be used for asynchronous exchange of messages

among aerOS orchestrator microservices (see section 4.3.2 of D3.2). The design of this component follows the

microservices pattern, which allows to split traditional monolithic applications into different small pieces of

software with a particular and dedicated functionality. Finally, as explained before, the main efforts for the MVP

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 52 of 60

have been put in the Orion-LD component, so more detailed description of the custom aerOS Federator compo-

nent will be provided in next deliverables.

3.6.2.3. Candidate technologies and standards

Table 9. Candidate technologies and standards for aerOS Federator

Technology/

Standard

Description Justification

Orion-LD Open-source implementation

of the NGSI-LD context bro-

ker.

The main developer team of Orion-LD is partner of

aerOS (FIWARE Foundation), so custom functional-

ities have been developed to improve its fitting in the

aerOS domain federation. In addition, some partners

have previous expertise on the usage of this context

broker, so the testing of these new functionalities will

be performed in a more agile way.

Microservices ar-

chitecture

A microservices based archi-

tecture is a software develop-

ment and deployment approach

where an application is built as

a collection of small, loosely

coupled and independently de-

ployable services.

The aerOS Federator will provide a layer of automa-

tization and fault tolerance mechanisms on top of

Orion-LD. By using a microservices architecture, the

development of this component will be more agile, by

allowing each development team to develop a specific

feature in the most appropriate programming lan-

guage. In addition, some capabilities would not be re-

quired in each domain or at every point in time.

gRPC Open-source implementation

of remote procedure calls

(RPC) developed by Google,

which uses the HTTP/2 proto-

col for communications and

Protocol Buffers as its mes-

sages format.

aerOS Federator instances are expected to exchange

a huge number of messages and react to some key

events in near real-time due to changes in the contin-

uum (e.g., the failure of the entrypoint domain), so it

must be built on top of modern and agile communica-

tion protocols and technologies such as HTTP/2 and

gRPC.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 26-FEB-2024 - aerOS© - Page 53 of 60

4. Conclusions and future work
This deliverable has presented the intermediate release of the WP4 software components for delivering intelli-

gence at the edge. The document has provided an overview of the aerOS MVP from the standpoint of WP4,

detailing how each of the building blocks has contributed to the realization of core features of the aerOS MVP

such as the intelligent orchestration of the continuum.

Regarding data homogenization, on the one hand, the Semantic Annotator components have been integrated

into the aerOS ecosystem, extended with capabilities to accommodate NGSI-LD. Additionally, the Semantic

Translator has been ported Scala 3, and undergone several improvements. Lastly, the LOT methodology for

ontology development has been introduced in the project and applied during the creation of the aerOS continuum

ontology. This methodology will be further explored and followed for developing ontologies in the use cases

identified within aerOS.

Research activities around data governance have consolidated the definition of a data product in aerOS. This

definition has derived into a stable architecture of the aerOS Data Fabric, introducing Data Product Pipeline as

a framework to facilitate the creation of data products, along with the Data Product Manager to interface with

data product owners and orchestrate these pipelines. The future release of the Data Fabric will focus on the data

security and data catalogue features.

When it comes to decentralized frugal AI, the AI Local Executor and AI Task Controller components, including

the FL Training Collector and FL Repository, have been implemented for AI workflow management. In addi-

tion, research on explainability methods for an aerOS use case based on reinforcement learning has been con-

ducted, with an approach designed and implemented. Requirements for AI Explainability Service input data

were collected and analysed.

A first release of the Embedded Analytics Engine has been implemented, including template capabilities to help

in the creation of user-defined functions, as well as a set of pre-packaged functions based on popular data science

libraries. In future releases, the Embedded Analytics Engine will be integrated with the aerOS Data Fabric and

other components of the aerOS stack.

The future actions for finalizing the development of the aerOS Trust Management component include the iden-

tification of how each attribute affects the trust of IEs to define the appropriate weight for the trust score calcu-

lation algorithm. Afterwards, the implementation of the trust score calculation function will take place in the

IEs of the continuum while the final version of the Trust Management is expected to be presented in D4.3.

Finally, the management services of aerOS have made notable progress, including a first release of the aerOS

management for registration of new aerOS domains, as well as with the implementation of the domain federation

mechanism and the extended capabilities of the Orion-LD for sharing data across aerOS domains.

The final release of the WP4 components, incorporating extensions delivered in months M19-M30 will be doc-

umented in D4.3, targeted for month M30 of the project.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 26-FEB-2024 - aerOS© - Page 54 of 60

References
[1] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-López, and R. García-Castro, ‘LOT: An in-

dustrial oriented ontology engineering framework’, Eng. Appl. Artif. Intell., vol. 111, p. 104755, May 2022,

doi: 10.1016/j.engappai.2022.104755.

[2] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, ‘The NeOn Methodology for Ontology

Engineering’, in Ontology Engineering in a Networked World, M. C. Suárez-Figueroa, A. Gómez-Pérez,

E. Motta, and A. Gangemi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–34. doi:

10.1007/978-3-642-24794-1_2.

[3] ‘BIMERR Ontologies’. Accessed: Feb. 18, 2024. [Online]. Available: https://bimerr.iot.linkeddata.es/

[4] D. Garijo and M. Poveda-Villalón, ‘Best Practices for Implementing FAIR Vocabularies and Ontologies

on the Web’, 2020, doi: 10.48550/ARXIV.2003.13084.

[5] ‘FOAF Vocabulary Specification’. Accessed: Feb. 18, 2024. [Online]. Available:

http://xmlns.com/foaf/spec/

[6] M. D. Wilkinson et al., ‘The FAIR Guiding Principles for scientific data management and stewardship’,

Sci. Data, vol. 3, no. 1, p. 160018, Mar. 2016, doi: 10.1038/sdata.2016.18.

[7] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, and O. Corcho, ‘Morph-KGC: Scalable

knowledge graph materialization with mapping partitions’, Semantic Web, pp. 1–20, Aug. 2022, doi:

10.3233/SW-223135.

[8] ‘PROV-O: The PROV Ontology’. Accessed: Feb. 02, 2024. [Online]. Available:

https://www.w3.org/TR/prov-o/

[9] ‘The Organization Ontology’. Accessed: Feb. 18, 2024. [Online]. Available: https://www.w3.org/TR/vo-

cab-org/

[10] E. Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih Qader, ‘Load-balancing algorithms in cloud com-

puting: A survey’, J. Netw. Comput. Appl., vol. 88, pp. 50–71, Jun. 2017, doi: 10.1016/j.jnca.2017.04.007.

[11] S. S. Tripathy et al., ‘State-of-the-Art Load Balancing Algorithms for Mist-Fog-Cloud Assisted Paradigm:

A Review and Future Directions’, Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2725–2760, May 2023,

doi: 10.1007/s11831-023-09885-1.

[12] M. Hamdan et al., ‘A comprehensive survey of load balancing techniques in software-defined network’, J.

Netw. Comput. Appl., vol. 174, p. 102856, Jan. 2021, doi: 10.1016/j.jnca.2020.102856.

[13] I. N. Ivanisenko and T. A. Radivilova, ‘Survey of major load balancing algorithms in distributed system’,

in 2015 Information Technologies in Innovation Business Conference (ITIB), Kharkiv, Ukraine: IEEE, Oct.

2015, pp. 89–92. doi: 10.1109/ITIB.2015.7355061.

[14] S. Jamali, A. Badirzadeh, and M. S. Siapoush, ‘On the use of the genetic programming for balanced load

distribution in software-defined networks’, Digit. Commun. Netw., vol. 5, no. 4, pp. 288–296, Nov. 2019,

doi: 10.1016/j.dcan.2019.10.002.

[15] T. Hidayat, Y. Azzery, and R. Mahardiko, ‘Load Balancing Network by using Round Robin Algorithm: A

Systematic Literature Review’, J. Online Inform., vol. 4, no. 2, p. 85, Feb. 2020, doi:

10.15575/join.v4i2.446.

[16] S. B. Vyakaranal and J. G. Naragund, ‘Weighted Round-Robin Load Balancing Algorithm for Software-

Defined Network’, in Emerging Research in Electronics, Computer Science and Technology, vol. 545, V.

Sridhar, M. C. Padma, and K. A. R. Rao, Eds., in Lecture Notes in Electrical Engineering, vol. 545. , Sin-

gapore: Springer Singapore, 2019, pp. 375–387. doi: 10.1007/978-981-13-5802-9_35.

[17] T. D. Braun et al., ‘A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems’, J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–

837, Jun. 2001, doi: 10.1006/jpdc.2000.1714.

[18] G. Singh and K. Kaur, ‘An Improved Weighted Least Connection Scheduling Algorithm for Load Balanc-

ing in Web Cluster Systems’, vol. 05, no. 03.

[19] ‘TPCx-IoT Homepage’. Accessed: Feb. 18, 2024. [Online]. Available: https://www.tpc.org/tpcx-iot/

[20] ‘Benchmarking Methodology for Network Interconnect Devices’, Internet Engineering Task Force, Re-

quest for Comments RFC 2544, Mar. 1999. doi: 10.17487/RFC2544.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 55 of 60

A. Complete workflow of LOT methodology

Figure 36. Detailed view of the complete LOT methodology. Source [1]

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 56 of 60

B. Published aerOS continuum methodology

Figure 37. Conceptual model for the aerOS continuum ontology.

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 57 of 60

Figure 38. Published aerOS continuum ontology

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 58 of 60

Figure 39. Neural network graph of the published aerOS ontology

Figure 40. Class definition of the published aerOS continuum ontology

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 59 of 60

Figure 41. Object properties of the published aerOS continuum ontology

Figure 42. Data properties of the published aerOS continuum ontology

 D4.2 - Software for delivering intelligence at the edge intermediate release

Version 1.0 – 29-FEB-2024 - aerOS© - Page 60 of 60

Figure 43. Named individuals of the published aerOS continuum ontology

