

D3.1 – Initial distributed compute

infrastructure specification and

implementation

Deliverable No. D3.1 Due Date 31-AUG-2023

Type Other Dissemination Level Public

Version 1.0 WP WP3

Description Initial software components, relationships, building blocks in relationship with the

architecture

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement No.

101069732

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 2 of 60

Copyright

Copyright © 2022 the aerOS Consortium. All rights reserved.

The aerOS consortium consists of the following 27 partners::

UNIVERSITAT POLITÈCNICA DE VALÈNCIA ES

NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" EL

ASOCIACION DE EMPRESAS TECNOLOGICAS INNOVALIA ES

TTCONTROL GMBH AT

TTTECH COMPUTERTECHNIK AG (third linked party) AT

SIEMENS AKTIENGESELLSCHAFT DE

FIWARE FOUNDATION EV DE

TELEFONICA INVESTIGACION Y DESARROLLO SA ES

COSMOTE KINITES TILEPIKOINONIES AE EL

EIGHT BELLS LTD CY

INQBIT INNOVATIONS SRL RO

FOGUS INNOVATIONS & SERVICES P.C. EL

L.M. ERICSSON LIMITED IE

SYSTEMS RESEARCH INSTITUTE OF THE POLISH ACADEMY OF SCIENCES IBS PAN PL

ICTFICIAL OY FI

INFOLYSIS P.C. EL

PRODEVELOP SL ES

EUROGATE CONTAINER TERMINAL LIMASSOL LIMITED CY

TECHNOLOGIKO PANEPISTIMIO KYPROU CY

DS TECH SRL IT

GRUPO S 21SEC GESTION SA ES

JOHN DEERE GMBH & CO. KG*JD DE

CLOUDFERRO SP ZOO PL

ELECTRUM SP ZOO PL

POLITECNICO DI MILANO IT

MADE SCARL IT

NAVARRA DE SERVICIOS Y TECNOLOGIAS SA ES

SWITZERLAND INNOVATION PARK BIEL/BIENNE AG CH

Disclaimer
This document contains material, which is the copyright of certain aerOS consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the aerOS Consortium

(including the Commission Services) and may not be disclosed except in accordance with the Consortium

Agreement. The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the Project Consortium as a whole nor a certain party of the Consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Directorate-General for Communications

Networks, Content and Technology, Resources and Support, Administration and Finance (DG-CONNECT) is

not responsible for any use that may be made of the information it contains.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 3 of 60

Authors
Name Partner e-mail

Ignacio Lacalle P01 UPV iglaub@upv.es

Raúl San Julián P01 UPV rausanga@upv.es

Dr. Harilaos Koumaras P02 NCSRD koumaras@iit.demokritos.gr

Vasilis Pitsilis P02 NCSRD vpitsilis@iit.demokritos.gr

Anastasios Gogos P02 NCSRD angogos@iit.demokritos.gr

Constantinos Vasilakis P02 NCSRD cvassilakis@iit.demokrits.gr
Giorgos Makropoulos P02 NCSRD gmakropoulos@ii.demokritos.gr

Thanos Papakyriakou P02 NCSRD thpap@iit.demokritos.gr

Anna Ryabokon, , P04 TTC, P04.1 TCAG anna.ryabokon@tttech.com

Edin Arnautovic P04 TTC, P04.1 TCAG edin.arnautovic@tttech.com

Jan Ruh P04 TTC, P04.1 TCAG jan.ruh@tttech.com

Renzo Bazan P05 Siemens renzo.bazan.ext@siemens.com

Florian Gramß P05 Siemens florian.gramss@siemens.com

Jose Eduardo Fontalvo Hernandez P05 Siemens jose-eduardo.fontalvo-

hernandez@siemens.com

Philippe Buschmann P05 Siemens philippe.buschmann@siemens.co

m

Korbinian Pfab P05 Siemens korbinian.pfab@siemens.com

Ignacio Dominguez P07 TID ignacio.dominguezmartinez@tele

fonica.com

Ioannis Makropodis P10 IQB giannis.makropodis@inqbit.io

Vasiliki Maria Sampazioti P10 IQB vasiliki.maria.sampazioti@inqbit.

io

Konstantinos Kefalas P10 IQB konstantinos.kefalas@inqbit.io

Panagiotis Bountakas P10 IQB panagiotis.bpountakas@inqbit.io

Tarik Taleb P14 ICTFI tarik.taleb@ictficial.com

Tarik Zakaria Benmerar P14 ICTFI tarik.benmerar@ictficial.com

Amine Taleb P14 ICTFI amine.taleb@ictficial.com

Nikolaos Gkatzios P15 INF ngkatzios@infolysis.gr

Vaios Koumaras P15 INF vkoumaras@infolysis.gr

Aggeliki Papaioannou P15 INF apapaioannou@infolysis.gr

Michele Mondelli P19 DST m.mondelli@dstech.it

Jon Egaña P20 S21SEC jegana@s21sec.com

mailto:rausanga@upv.es
mailto:florian.gramss@siemens.com
mailto:jose-eduardo.fontalvo-hernandez@siemens.com
mailto:jose-eduardo.fontalvo-hernandez@siemens.com
mailto:philippe.buschmann@siemens.com
mailto:philippe.buschmann@siemens.com
mailto:korbinian.pfab@siemens.com
mailto:ignacio.dominguezmartinez@telefonica.com
mailto:ignacio.dominguezmartinez@telefonica.com

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 4 of 60

History

Date Version Change

23-MAY-2023 0.1 ToC prepared for partner contributions

5-JUL-2023 0.2 Version with first content and ToC updated after Plenary Meeting

21-JUL-2023 0.4 Version with 4 sections completed – sent to IR

28-JUL-2023 0.5 Internal Review over most sections is received and tackled

7-AUG-2023 0.9 Version submitted to PC review

15-AUG-2023 1.0 Final Review by Editor

15-AUG-2023 1.0 Official final version of the document is ready

Key Data
Keywords Decentralized orchestration, smart networking, security, edge-cloud continuum,

self-*, Monitoring, Common API, and Identity and Access Managements.

Lead Editor P10 ICT-FI – Tarik Taleb

Internal Reviewer(s) P09 8BELLS – Angelos Constantinides, P17 ECTL Petros Dias

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 5 of 60

Executive Summary
The document is contextualized to the works in aerOS’ WP3: aerOS secure, scalable and decentralized compute

infrastructure. The present deliverable is the first and initial version of three WP3 deliverables planned for M12,

M18 and M30. The deliverable is based on the assumptions and boundaries defined in D2.1 (State-of-the-Art

and market analysis report) and D2.2 (Use cases manual, requirements, legal and regulatory analysis 1), and

consistent with the architectural choices in D2.6 (aerOS architecture definition 1) which result from the

following tasks:

• T2.1 state of the art.

• T2.2 use cases and requirements.

• T2.5 architecture.

This deliverable is the first materialised result of WP3 activities detailing the relevant components of the

architecture of the aerOS decentralised infrastructure composed of the following tasks:

• T3.1: Smart networking for infrastructure element connectivity.

• T3.2: Communication services and APIs.

• T3.3: aerOS service and resource orchestration.

• T3.4: Cybersecurity components.

• T3.5: Node's self-* and monitoring tools.

The document is then structured in a way to provide for each task, the methodological and technological choices

that are specified in the context of the aerOS decentralized infrastructure.

From smart-networking perspective, the aerOS project will focus on K8s-based VPN as well as intra-domain

services mesh to achieve smart inter-domain networking. Cilium and Liqo are foreseen to be the technological

focus on this part.

In the communication services and API part, multi-protocol tools based on Fiware IoT agents will be used to

provide bridging capabilities with NGSI-LD context brokers. To achieve efficient communication, DDS and

Zenoh will be the technological pillars to implement non-blocking, predictable, and timed execution of

operations.

Multi-domain smart services and resources orchestration systems are hard to implement. Multi-level

Orchestration approach will be used to achieve a scalable and solid orchestration system. From the technological

perspectives, Kopf will be the one of the key enablers for the operator development representing a relevant

instantiation of the low-level orchestrator. For inter-services communication, Kafka will be the potential open

source tool for the Events Bus. The machine-learning operations in the high-level orchestration will be based

on key open-source tools, namely: Kubeflow, MLFlow and Alibi/Seldon, respectively.

From cybersecurity perspective, KrakenD -which is an API Gateway- will allow the decoupling between the

cybersecurity-related IAM (Identity and Access Management) and backend-operations. For the IAM operations

in aerOS, Keycloak will be the base technology. To provide identity management, OpenID will be the main

technological enabler.

To enable nodes autonomous operations, the open source tool Prometheus will be used for self-awareness, json-

rules-engine for self-orchestration and KubeEdge for self-healing. Resulting tools from European projects such

as ASSIST-IoT and RAINBOW EU will be harnessed for nodes autonomy in aerOS.

With each part distilled with its own components, software implementation of aerOS was already initiated.

Further refinements will be described in the upcoming deliverables in D3.2 planned for M18 and D3.3 planned

for M30, resulting from activities across all WP3 tasks.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 6 of 60

Table of contents

Table of contents ... 6

List of tables .. 7

List of figures .. 7

List of acronyms .. 8

1. About this document .. 10

1.1. Deliverable context .. 10

1.2. The rationale behind the structure .. 11

1.3. Outcomes of the deliverable... 11

2. Introduction ... 12

3. Preliminary proposal of software solutions ... 13

3.1. Smart networking for Infrastructure Element connectivity .. 13

3.1.1. Research lines and structure diagrams ... 14

3.1.2. Related requirements ... 23

3.1.3. Candidate technologies and standards ... 24

3.2. Communication services and APIs .. 25

3.2.1. Research lines .. 25

3.2.2. Related requirements ... 26

3.2.3. Structure diagram ... 27

3.2.4. Candidate technologies and standards ... 28

3.3. aerOS service and resource orchestration .. 29

3.3.1. Research lines and structure diagrams ... 29

3.3.2. Related requirements ... 45

3.3.3. Candidate technologies and standards ... 46

3.4. Cybersecurity components ... 47

3.4.1. Research lines .. 47

3.4.2. Related requirements ... 49

3.4.3. Structure diagram ... 50

3.4.4. Candidate technologies and standards ... 50

3.5. Node’s self and monitoring tools ... 51

3.5.1. Research lines .. 51

3.5.2. Related requirements ... 52

3.5.3. Structure diagram ... 52

3.5.4. Candidate technologies and standards ... 57

4. Conclusions and future work ... 58

References .. 60

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 7 of 60

List of tables

Table 1. Candidate technologies smart networking in aerOS .. 24
Table 2. Communication services and APIs Components description .. 27
Table 3. Candidate technologies for Communication and Service APIs ... 28
Table 4. Decentralized High-Level Orchestration components .. 35
Table 5. Low-Level Orchestration Components in the case of K8s framework ... 38
Table 6. aerOS resource orchestration components .. 45
Table 7. Candidate technologies and standards for Resource Orchestration ... 46
Table 8:. Identity and Access Management and Secure API Gateway components ... 50
Table 9: Identity and Access Management and Secure API Gateway candidate technologies 50
Table 10. Self-capabilities components, description and interactions ... 54
Table 11. Self-features and monitoring candidate technologies .. 57

List of figures

Figure 1. WP3 components in the aerOS stack ... 12
Figure 2. Flat Layer-3 Pods Networking ... 15
Figure 3. Network service mesh in K8s environment ... 16
Figure 4. Network service endpoints ... 16
Figure 5. Network service mesh .. 17
Figure 6. Control-Data plane ... 18
Figure 7: Cross domain network for service mesh in NSM .. 18
Figure 8. VPN Concentrator functioning for inter-domain communication by NSM 19
Figure 9. Cross domain network for service mesh by NSM.. 19
Figure 10. Network service mesh using Istio for layers 4 to 7. ... 20
Figure 11: SDN controller in a NSM scenario .. 21
Figure 12. Joint usage of SDN and NSM to provide QoE services in a K8s cluster ... 21
Figure 13. Cloud native solution for NFV: CNCFV ... 22
Figure 14. Example of interworking of aerOS with TSN infrastructure ... 23
Figure 15. Time aware communication ... 26
Figure 16. Communication services and APIs architecture ... 27
Figure 17. Multi-level Orchestration approach as a source of inspiration to aerOS orchestrator [1]. 31
Figure 18. aerOS Federative architecture .. 32
Figure 19. Aeros Services Orchestration ... 33
Figure 20. Decentralized High-Level Orchestration ... 34
Figure 21. Detailed AI-powered Decision-Making Process .. 36
Figure 22: aerOS services Low-Level Orchestration in the case of K8s framework .. 37
Figure 23. Operators are custom controllers watching a custom resource [2] .. 39
Figure 24. KNF VNFD Example [12] ... 41
Figure 25. NSD Example [12] ... 41
Figure 26. Primitive actions implementation in a Helm Charts-based execution environment [14] 42
Figure 27. Helm-chart based primitives inside the VNFD [13] .. 42
Figure 28. High-Level/Low-Level Orchestration Integration ... 43
Figure 29. aerOS resource orchestration architecture.. 44
Figure 30. RBAC representation ... 48
Figure 31: RBAC elements ... 49
Figure 32: API Gateway architecture .. 50
Figure 33. Interaction diagram of self-features in IEs of aerOS .. 53
Figure 34. Inner structure of self-orchestration feature in an IE ... 55
Figure 35. Inner schema of abnormal state detection in self-healing .. 56

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 8 of 60

List of acronyms

Acronym Explanation

API Application Programming Interface

BLE Bluetooth Low Energy

CBAC Context-based access control

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

CRD Custom Resource Definition

DDS Data Distribution Service

DevOps Development and Operations

DevPrivSecOps Development, Privacy, Security and Operations

ETSI European Telecommunications Standards Institute

FaaS Function-as-a-Service

FOM Federated Orchestration Module

HLO High Level Orchestrator

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IdM Identity Management

IE Infrastructure Element

IoT Internet of Things

LLO Low Level Orchestrator

K8s Kubernetes

KDU Kubernetes Deployment Unit

KNF Kubernetes-based Virtual Network Function

MANO Management and Orchestration

ML Machine Learning

MQTT MQ Telemetry Transport

NFV Network Function Virtualization

NGSI-LD Next Generation Service Interface – Lined Data

NS Network Service

NSD Network Service Descriptor

NSM Network Service Manager

OSM Open Source MANO

QoE Quality of Experience

QoS Quality of Service

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 9 of 60

RBAC Role-based access control

SDN Software Defined Network

TSN Time-Sensitive Networking

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VPN Virtual Private Network

VPP Vector Packet Processor

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 10 of 60

1. About this document

The present document describes the deliverable D3.1 which provides the initial formal methodological

specification and technological implementation of the components building up the aerOS decentralised

infrastructure, which conforms an essential part of the Meta-OS. It builds up on the architectural choices in WP2

and describes the composing components and their interactions in detail.

Two other deliverables in M18 and M30 will follow to refine the choices and adapt to other related work

packages activities, most notable WP2 and the architectural choices. This document is the initial blueprint for

building up the aerOS infrastructure and its components integrated in aerOS use cases as detailed in WP5.

1.1. Deliverable context

Item Description

Objectives O1 (Design, implementation and validation of aerOS for optimal orchestration):

Methodological specification and technological implementation of the orchestration

components.

O2 (Intelligent realisation of smart network functions for aerOS): Methodological

specification and technological implementation of the smart-networking components.

O3 (Definition and implementation of decentralised security, privacy and trust):

Methodological specification and technological implementation of the methodological

choices of the cybersecurity components.

O5 (Specification and implementation of a Data Autonomy strategy for the IoT edge-cloud

continuum): Specification and implementation of the NGSI-LD integration with

communication services and API.

Work plan D3.1 content is based on the final assumptions and boundaries defined by the tasks:

• T2.1 state of the art. Approaches and solutions defined in this deliverable are based

on the studied state of the art.

• T2.2 use cases and requirements. Solutions defined in these deliverable answers the

requirements for the different use cases.

• T2.5 architecture. Components defined in this deliverable are defined within the

defined aerOS architecture.

D3.1 content is the result of the following tasks activities:

• T3.1 Smart networking for infrastructure element connectivity.

• T3.2 Communication services and APIs.

• T3.3 aerOS service and resource orchestration.

• T3.4 Cybersecurity components.

• T3.5 Node's self-* and monitoring tools.

The integration of components defined by WP4 tasks is detailed within the decentralized

infrastructure context in this D3.1 deliverable.

D3.1 components technological choices are the basis of the WP5 integration and use case

deployments tasks.

Milestones This deliverable is not directly related to any milestone but constitutes an important basis

for the milestone MS3 – Components defined planned for M12 and more importantly for

the milestone MS7 – Final software release planned for M30.

Deliverables This deliverable content is based on the assumptions and boundaries defined in D2.1 (State-

of-the-Art and market analysis report) and D2.2 (Use cases manual, requirements, legal and

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 11 of 60

regulatory analysis 1). It is consistent with the architectural choices defined in D2.6 (aerOS

architecture definition 1).

1.2. The rationale behind the structure
The present deliverable provides the functional components for the five areas or tasks composing the WP3

activities. It consists thus of five sections. Before delving into the main outcomes, the document provides an

outline of its content followed by a brief introduction. Each of the five task-specific sections is presented in the

same formal structure. It begins with an overview of the main functionalities. It then explains the relation of

the section and the specific requirements/use case scenarios as specified in D2.2. Structure diagrams and

description of each component in these diagrams are following and finally the candidate technologies for

building the solution are quoted. The last part of the document concludes the deliverable and provides

perspectives about the future work envisioned for the next iteration D3.2.

1.3. Outcomes of the deliverable
The main goal of this deliverable is to provide the initial distilling of the aerOS infrastructure components.

Components extraction will be approached from both methodological and technological standpoints, covering

five specific areas that directly align with the various tasks outlined in WP3.

The smart-networking area provides the functional components needed to achieve networking efficiency, agility

and performance across the aerOS infrastructure elements.

The communication services and API area provides the functional components needed for effortless, efficient

and adaptable communication between aerOS services across the compute continuum.

Service and resource orchestration, on one hand, furnishes the functional elements necessary for deploying,

managing, and federating services that deliver aerOS functionality. On the other hand, it supplies the functional

components needed to appropriately allocate and utilize diverse resources in a balanced manner to fulfil the

requirements of vertical IoT services deployed on top of aerOS.

The security components provide Identity and Access Management (IAM) services which are responsible for

the process of identifying and authenticating different types of entities (individuals, groups of people or software

processes). The objective is to control access to computerized resources (applications, systems or networks) by

associating entity rights and restrictions with existing and established identities.

Node’s self and monitoring tools provide the functional components to augment Infrastructure Elements (IEs),

as nodes, with autonomy related features, which will provide the capability to minimize, to a large extent, human

intervention during all their operations. To achieve such an objective, health state and other functional and

runtime parameters’ monitoring is crucial.

.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 12 of 60

2. Introduction

WP3 together with WP4 constitute the two technical work packages of the aerOS project. The WP3 activities

provide the required infrastructure components, based on the aerOS architecture, needed to enable scalable and

secure IoT edge-cloud continuum. These components will support the resources and services orchestration for

autonomous system operations. To achieve this end, the main objectives are:

• To propose the architectural approach and technologies for multi-domain smart networking capabilities.

• To provide the domain communication services and API frontends for smart-data aggregations.

• To propose the required architecture and tools to ensure interoperable Identity and Access Management

(IAM) services with other aerOS components.

• To provide the methodology and solutions to orchestrate services and resources over the distributed

infrastructure.

• To propose the tools for the functional components of the node’s self-mechanisms and monitoring

operations.

WP3 will complement and build upon the outcomes of WP4 that will enable delivering intelligence at the edge

of the aerOS infrastructure, by optimizing usage of data within aerOS without sacrificing control, trust and

privacy over it.

Furthermore, the present document (D3.1) focuses on defining the initial software components, relationships

and building blocks aligned with the aerOS architecture. aerOS will be developed following a Meta-OS

approach, encompassing and addressing the project objectives. From the point of view of the aerOS architecture,

the system will be designed around several main building blocks and fundamental concepts. For that reason, the

deliverable, D2.6, offers a comprehensive overview of aerOS, consolidating the main concepts and building

blocks. Additionally, it analyses the core elements, services offered, and functionalities that will be offered.

D3.1 was prepared in parallel to D2.6 and synchronised with its content.

Figure 1. WP3 components in the aerOS stack

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 13 of 60

D2.6 outlines several principles that aerOS builds upon, such as the Infrastructure Element (IE) and the aerOS

domain. On the one hand, the IE, as the most granular computing entity, serves as the fundamental building

block. It enables the deployment and management of workloads through a flexible and adaptable physical or

virtual entity, supporting containerised workloads, providing network connectivity, storage capacity, and a well-

defined API to expose its state. On the other hand, the aerOS domain is formed by one or more IEs, creating a

complete aerOS domain that facilitates the hosting and sharing of essential aerOS basic services across all IEs.

In addition, D2.6 defines an architectural stack that provides a structured overview of runtime, basic, and

auxiliary aerOS services. Figure 1 explicitly shows the location on this aerOS stack of the WP3 proposed

solutions described in D3.1.

In particular, as it can be seen, D3.1 is crucial as it sets the ground for the development of the decentralised

orchestration and the distributed state repository (T3.3). Also, it is pivotal for the aerOS basic services, as WP3

will output the network and compute fabric (T3.1), the service fabric and common APIs for aerOS (T3.2).

Finally, it also covers (partially) the cyber-security and trust elements (T3.4) and implements the self-* and

monitoring tools (T3.5).

3. Preliminary proposal of software solutions

This section contains the specification of the preliminary proposal of solutions for WP3, along with the

identification of their respective technical components. Each subsection corresponds to a task within WP3 and

presents the identified solutions related to it. These subsections are structured in the same way i.e., it includes:

main functionalities and general description, relation to requirements and/or use case scenarios, high-level

structure diagram of its components, a table with the components description, and candidate technologies for

implementation. Some subsections are further divided into specific parts to provide more granular details.

3.1. Smart networking for Infrastructure Element connectivity

Smart networking refers to the use of intelligent technologies and strategies in networking infrastructure to

enhance efficiency, agility, and performance. It involves leveraging advanced networking technologies, such as

software-defined networking (SDN), network virtualization, automation, and analytics, to optimize network

operations and deliver reliable connectivity.

In the context of Cloud, Infrastructure and equipment deployed through different regions, smart networking

would involve deploying intelligent networking infrastructure, utilising cloud-based networking solutions, and

strategically placing equipment in various regions to create a cohesive and efficient network architecture. Key

goals of smart networking include:

• enabling seamless communication

• improving scalability

• enhancing security

• optimizing resource utilization

By leveraging smart networking principles, organisations can achieve greater control, flexibility, and visibility

over their network infrastructure, enabling them to adapt quickly to changing business needs and efficiently

manage their distributed network assets. Smart networking provides several key functionalities that enhance

network operations, performance, and management. Here are some of the main functionalities:

• Automation: Smart networking leverages automation to streamline and simplify network operations.

It involves automating repetitive tasks, such as device provisioning, configuration changes, and network

monitoring. Automation reduces human errors, speeds up deployment, and enables more efficient use

of network resources.

• Unified Management: Smart networking allows for unified management of network infrastructure.

Through a single control plane or management interface, administrators can configure, monitor, and

control network devices and services across distributed locations. Unified management improves visi-

bility, simplifies troubleshooting, and enables consistent policy enforcement.

• Intelligent Routing and Traffic Optimization: Smart networking utilises intelligent routing algo-

rithms to optimise the flow of network traffic. It dynamically selects the most efficient paths based on

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 14 of 60

real-time network conditions, application requirements, and performance metrics. Intelligent routing

improves network performance, reduces latency, and ensures optimal resource utilisation.

• Security and Threat Intelligence: Smart networking incorporates advanced security features to protect

network infrastructure and data. It includes capabilities like network segmentation, access controls, en-

cryption, and intrusion detection/prevention systems. Additionally, it leverages threat intelligence and

analytics to identify and mitigate potential security threats in real-time.

• Scalability and Flexibility: Smart networking enables scalability and flexibility to accommodate

changing business needs and network demands. It allows for easy expansion of network capacity, seam-

less integration of new devices or services, and the ability to adapt to evolving technologies and proto-

cols. Scalable and flexible networking ensures that the network can grow and evolve along with the

organization’s requirements.

• Analytics and Insights: Smart networking leverages analytics and network monitoring tools to gather

data and extract actionable insights. By analysing network performance metrics, traffic patterns, and

user behaviour, it helps optimise network resources, identify bottlenecks, predict capacity needs, and

make informed decisions for network improvements.

• Quality of Service (QoS) and Prioritisation: Smart networking implements QoS mechanisms to pri-

oritize critical applications and ensure a consistent user experience. It allows administrators to allocate

bandwidth, set latency thresholds, and prioritise specific types of traffic (e.g., voice, video, real-time

applications) to meet performance requirements and service-level agreements (SLAs).

These functionalities collectively contribute to a more efficient, resilient, and intelligent network infrastructure.

Smart networking empowers organizations to optimize their networks for performance, security, and agility,

enabling them to meet the evolving demands of modern digital environments.

This sub-section covers the research and developments done so far in Task T3.1. The challenge lies on

implementing a smart, dynamic and auto-configurable network infrastructure, in which all IEs communicate

seamlessly, ensuring low latency and resilient exchanges both intra- and inter-domain. It constitutes the basis

for delivering aerOS’ network and compute fabric.

Within this task, the efforts have been structured to advance in the following 7 research lines:

1. Smart networking within the Kubernetes1 context

2. Intra-domain network service mesh

3. Inter-domain network service mesh

4. Network Service Mesh and Service Mesh

5. Network Service Mesh and SDN

6. Networks Service Mesh and NFV

7. TSN Support for the aerOS continuum

In the next pages, the global outcome of the task is described, and the results so far, out of the 7 research lines,

are afterwards depicted. Furthermore, a list of candidate technologies that have been pre-selected is provided.

3.1.1. Research lines and structure diagrams

Before digging deep into the various research lines and diagrams, it is worthwhile to contextualise the work

conducted. It has been defined in aerOS that K8s will be the most usual environment where the workload

execution will take place in the Meta-OS. While the project does not constrain itself to only investigate K8s-

related stuff (as, logically, other orchestration environments will exist), the research in the network field in the

action is ultimately biased by the innovations in the cloud-native fields. This does not preclude that, either in

T3.1 or in other tasks, further research will be conducted outside the cloud-native assumptions.

1 Interchangeably referred to as K8s across this document.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 15 of 60

3.1.1.1. Smart Networking within the Kubernetes context

Kubernetes (K8s) has emerged as the de-facto standard for cloud-native application orchestration (that is, the

deployment, scaling, and administration of containerized apps), with practically all public and private clouds

offering managed K8s services. K8s is an open-source container orchestration platform that enables the deploy-

ment, scaling, and management of containerised applications across distributed environments. It provides fea-

tures like service discovery, load balancing, and automated container placement to ensure efficient utilisation

of resources.

As the majority of applications deployed in K8s clusters are built on microservices architecture, there is a sig-

nificant volume of east-west traffic among these services. To satisfy the network demands of these east-west

traffics, K8s employs a flat layer 3 network architecture. Within the K8s ecosystem, there are networking com-

ponents and concepts that facilitate communication between containers and enable connectivity across a cluster.

These components include:

• Pod Networking: K8s assigns a unique IP address to each pod, allowing containers within the pod to

communicate with each other over a virtual network. Various pod networking solutions, like Calico,

Flannel, or Cilium, provide network connectivity and routing capabilities.

• Service Networking: K8s abstracts individual pods with a higher-level construct called “service.” Ser-

vices provide a stable IP and DNS name, allowing other pods or external services to connect to them.

K8s implements load balancing for services, distributing traffic across multiple pods to achieve scala-

bility and high availability.

• Ingress and Load Balancing: K8s offers an Ingress resource that provides external access to services

within the cluster. It acts as a smart load balancer, routing traffic to appropriate backend services based

on rules and policies.

Different implementations of the model are possible, but all must fulfil the following fundamental requirements:

• Each pod has its own IP address.

• Each pod can connect directly with any other pod in the same cluster without the use of NAT (Network

Address Translation).

If the minor intricacies of bridging and routing settings are ignored, the K8s network may be represented in a

simplified way as follows:

Figure 2. Flat Layer-3 Pods Networking

As shown in Figure 2. Flat Layer-3 Pods Networking, all pods in a K8s cluster may communicate with one

another through a flat layer 3 network. The term "flat" refers to the fact that a pod may visit any other pod in

the same cluster using just layer 3 routing and no NAT in the middle, which means that the source and desti-

nation pods view the same IP addresses in the packages transferred between them.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 16 of 60

Of course, the layer 3 network is only "flat" from the standpoint of a pod. In practice, this L3 network might

be implemented as an overlay network with complicated encapsulation.

3.1.1.2. Intra-domain Network Service Mesh

Network Service Mesh (NSM) is a CNCF project that provides sophisticated L2 / L3 networking capabilities

for K8s-based applications. NSM does not interact with the K8s CNI; instead, it is a completely independent

mechanism comprised of a variety of components that may be deployed in or out of a K8s cluster. It is a cloud-

native network solution that operates across many clouds and hybrid clouds. When compared to the K8s service,

Network Service will be easier to grasp. A K8s service may be thought of as an abstract construct that provides

some type of application layer (L7) service to clients, such as HTTP or GRPC services. Network Service is

defined similarly in NSM, however instead of L7, a Network service offers L2 / L3 service. The following are

the distinctions between Service and Network Service (Figure 3):

• Service: It is application workload that offers services at the application layer (L7), such as web ser-

vices.

• Network Service: It is a network function that delivers services at the L2 / L3 layer, which means it

processes and sends packets but does not often terminate them. Examples of Network Services includes

Bridge, Router, Firewall, DPI, VPN Gateway, etc.

Figure 3. Network service mesh in K8s environment

To deliver service in K8s, numerous endpoints may be present behind the scenes. It is also true for NSM

Network Service, where several pods/endpoints are deployed to share client loads and may be horizontally

scaled to meet varying demands (Figure 4).

Figure 4. Network service endpoints

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 17 of 60

Figure 5. Network service mesh

As indicated in the diagram in Figure 5, Network Service Mesh is made up of various parts:

• Network Service Endpoint (NSE): a container, pod, virtual machine, or physical forwarder that imple-

ments Network Services. A network service endpoint receives connection requests from clients that

wish to use the Network Service that the endpoint provides.

• A Network Service Client (NSC) is a person who requests or uses a Network Service.

• The network service registry (MSR) is the repository for NSM components such as NS, NSE, and

NSMgr.

• Network Service Manager (NSMgr): It is the NSM's control plane. It is installed as a daemon on each

node.

To establish a distributed control plane, NSMgr connects with one another. NSMgr is principally in charge of

two tasks:

• It receives Network Service requests from the NSC and matches the requests with the appropriate NSE

before establishing a virtual connection between the NSC and NSE (the data plane component handles

the actual work).

• It registers the NSE on the NSR's node.

Network Service Mesh Forwarder: A network service's end-to-end connections, wires, mechanisms, and for-

warding components are provided by this data plane component. This can be done either directly by setting up

provisioning mechanisms and forwarding elements, or indirectly by sending requests to a middle control plane

that can supply the four components required to implement the network service. FD.io (VPP), OvS, Kernel

Networking, SRIOV, etc. are a few examples.

NSM deploys an NSMgr on each Node in the cluster. These NSMgrs talk to each other to select appropriate

NSE to meet the Network Service requests from clients, and create a virtual wire between the client and the

NSE. Accordingly, these NSMgrs form a mesh to provide L2/L3 network services for the applications, similar

to a Service Mesh (Figure 6).

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 18 of 60

Figure 6. Control-Data plane

3.1.1.3. Inter-domain Network Service Mesh

Consider connecting a pod that is located to another domain, which, in order to access it, a VPN connection

becomes required, as shown in Figure 7.

Figure 7: Cross domain network for service mesh in NSM

In order to do so, some sort of Virtual Private Network (VPN) is needed. In the conventional method, there is

the need for manually configuring some network details, such as the VPN gateway address, the subnet prefix

and IP address, the routes to the corporate intranet, etc., which should not be exposed to the user of the VPN

Gateway service at all. This VPN gateway must be installed somewhere the pod can reach, most likely in the

same cluster. In this case, the client just has to connect to the corporate intranet and performs its duties; it is not

necessary for it to be concerned with the implementation's technical specifics, such as how the VPN is set up

and configured.

NSM, on the other hand, provides a straightforward declarative approach to offer the VPN service to the clients.

The VPN network service, network service endpoint, and network service client definitions are displayed in

Figure 8.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 19 of 60

Figure 8. VPN Concentrator functioning for inter-domain communication by NSM

• Using the NetworkService CRD, the vpn-gateway Network Service can be defined. The yaml specifi-

cation states that vpn-gateway NS takes IP payload and utilises a selector to match backend pods with

the label "app: vpng" as the Network Service providers.

• To request the Network Service, the client uses the annotation "Ns.networkservicemesh.io:vpn-gate-

way".

In K8s, NSM has an admission webhook set up that injects an init container into the client pod. By communi-

cating with the NSMgr in the same node, this init container asks the required Network Service indicated in the

annotation. After the Network Service has been configured by NSM, the application container is launched in a

way that is transparent to the client.

Figure 9. Cross domain network for service mesh by NSM

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 20 of 60

Figure 9 illustrates the following steps:

1. To provide VPN gateway network service, vpng-pod has been implemented.

2. The API Server's (Service Registry) API Server registers vpng-pod as an NSE.

3. The NSM init container in the client pod contacts the NSMgr on the same node to request the vpn-

gateway network service.

4. To find accessible network service endpoints, NSMgr requests the API Server (Service Registry).

5. The selected NSE may be located on the same node or another. The NSMgr contacts its peer on

the distant node to transmit the request if it is there.

6. On behalf of the NSC, the NSMgr on the NSE node makes a connection request.

7. If the NSE still has the resources to fulfil the request, it accepts it.

8. The network interface is created and injected into the NSE's Pod by the NSMgr on the NSE

node.

9. The NSMgr on the NSE node tells the NSMgr on the NSC node that the service request has been

submitted if the NSE and NSC are on separate nodes.

10. The network interface is created and injected into the NSE's Pod by the NSMgr on the NSE

node.

11. The network interface is created and injected into the NSC's pod by the NSMgr on the NSC node,

which also configures the routes to the corporate network.

3.1.1.4. Network Service Mesh and Service Mesh

NSM uses the Service Mesh idea. However, it operates on distinct OSI model levels. Service Mesh handles

service-to-service communication (service discovery, LB, retries, circuit breakers, sophisticated routing with

application layer headers), as well as offering security and insight for microservices, at Layers 4 and 7 (mainly

Layer 7). The layer 2 and layer 3 network services offered by Network Service Mesh include virtual L2 and L3

networks, VPNs, firewalls, and DPI, among others. Service Mesh and Network Service Mesh can genuinely

cooperate if necessary. For instance, using NSM, an overlay L3 network spanning many clouds could be estab-

lished, on top of which an Istio Service Mesh could be constructed (Figure 10).

Figure 10. Network service mesh using Istio for layers 4 to 7.

3.1.1.5. Network Service Mesh and SDN

Figure 11 illustrates how SDN (Software Defined Networking) disaggregates network control and forwarding

tasks from individual switches and routers and instead places them in a centralised SDN controller:

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 21 of 60

Figure 11: SDN controller in a NSM scenario

There are OSI layer overlaps between NSM and SDN. Both SDN and NSM operate on L1/L2/L3, although in

separate regions. In contrast to SDN, which is primarily intended to make network equipment configuration and

maintenance easier, NSM aims to offer sophisticated L2 and L3 network services in a cloud-native manner for

K8s. NSM can wrap the capabilities of SDN into Network Services to be used by pods in K8s. Figure

12 shows an example of using SDN together with NSM to provide QoE (Quality of Experience) ser-

vices in a K8s cluster. Network Services that are utilized by K8s pods can be wrapped in NSM to incorporate

SDN features. An illustration of how SDN and NSM may be used to deliver QoE (Quality of Experience)

services in a K8s cluster is shown in Figure 12. In this illustration, the SDN controller configures the network

devices and implements the real QoE mechanism in the transport network while NSM offers QoE network

services and the virtual wire between the client and QoE network service endpoint in K8s.

Figure 12. Joint usage of SDN and NSM to provide QoE services in a K8s cluster

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 22 of 60

3.1.1.6. Network Service Mesh and NFV

The decoupling of network operations from proprietary hardware appliances and executing them as software is

known as network functions virtualization (NFV). Virtual machines (VMs) are typically used to bundle these

virtualized network functions (VNFs). However, containers may use far fewer resources and be far more effec-

tive than VMs. A VM may spin up in minutes as opposed to a container's few seconds. The main issue with this

method is that K8s, the container orchestrator, lacks the networking skills required for NFV. The development

of NSM filled in the puzzle piece that was lacking and offers a cloud-native NFV solution. VNFs might be

implemented as NSM Network Services, and by connecting these Network Services, service function chains

(SFC) can be created.

Figure 13. Cloud native solution for NFV: CNCFV

Currently, telecommunications standards (such the ETSI NFV family) are driving NFV. Telecommunication

standards are important for ensuring interoperability across many manufacturers or operators, however the

lengthy procedure required to create a standard makes it extremely inefficient. In the near future, NFV may

experience dramatic developments because of open-source initiatives like NSM.

3.1.1.7. TSN support for the aerOS continuum

Time-Sensitive Networking (TSN) is a set of IEEE standards (e.g., IEEE 802.1Qbv, 802.1Qci, 802.1Qcc) that

aim to introduce deterministic, low-latency communication over Ethernet networks. TSN is mainly used in

critical real-time applications where precise timing and low latency are essential. The primary goal of TSN is

to enable time synchronization and traffic scheduling mechanisms to ensure that time-critical data is delivered

promptly and reliably. This is achieved through techniques such as time-aware shaper (TAS) and time synchro-

nization protocols like IEEE 1588 (PTP).

The aerOS continuum will have the possibility to manage applications and services that require TSN function-

ality. However, despite being both networking technologies, there are no standard integration mechanisms or

direct interworking between Network Service Mesh and Time-Sensitive Networking. NSM primarily focuses

on container orchestration platforms like K8s, while TSN targets real-time communication over Ethernet net-

works. This calls for a novel design for an application architecture that can leverage the two technologies in

parallel, intelligently using several network interfaces according to the needs of the incoming or outgoing traffic

flows.

Developing an application architecture capable of harnessing the advantages of both Network Service Mesh

(NSM) and Time-Sensitive Networking (TSN) is crucial in addressing the user plane connectivity challenge

between aerOS and TSN. By integrating NSM and TSN, the application can achieve seamless communication

and interoperability between the continuum and the devices connected to the TSN network, effectively extend-

ing the reach of that continuum. However, ensuring efficient control plane operation also becomes a pressing

concern. To tackle this, a new mechanism must be devised, empowering aerOS with the capability to gain deep

insights into the TSN infrastructure and effectively control and manage the network. This mechanism will em-

power aerOS to orchestrate its own TSN-capable services efficiently, optimizing performance, and delivering a

seamless user experience across diverse interconnected environments. In this early stage of design, that mech-

anism is referred to as the aerOS TSN Auxiliary Service.

Figure 14 shows the potential interactions of the TSN-capable aerOS applications and the TSN Auxiliary Ser-

vice in the context of an example of integrated network. In that example, the user application exchanges infor-

mation via TSN with a robot arm and a camera. The information of the capabilities of the TSN network and the

ways to establish TSN flows are provided by the Centralized Network Controller (CNC) to aerOS via its TSN

auxiliary service.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 23 of 60

Figure 14. Example of interworking of aerOS with TSN infrastructure

3.1.2. Related requirements

Smart networking capabilities, described in this section, hold a prominent role regarding the Meta-OS

deployment and operation. They address networking requirements and programmability as expressed in D2.2

and are relative to the core functionality of aerOS. Networking implementation will be supporting all pilots and

scenarios and some features will be evaluated in specific cases. The list of related technical requirements related

to smart networking are quoted below.

• TR-9 Network programmability in the IoT edge-cloud continuum

• TR-20 Resource availability

• TR-26 aerOS Infrastructure Monitoring

• TR-27 Infrastructure management automation

• TR-29 Services visibility across virtual network links

• TR-32 aerOS network monitoring

• TR-54 Cybersecurity tools

• R-P1-3 Low latency communication between edge devices and with cloud

• R-P1-4 Secure communications between edge devices and with the cloud

• R-P3-2 Low latency communication between system components

• R-P4-1 Develops aerOS IE that integrates data telemetry from cranes into aerOS Data continuum

• R-P4-4 Integration of IPTV camera streams in aerOS

• R-P5-4 Automatic service recovery upon system or network loss

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 24 of 60

• R-P5-8 Scalability to Support Mass Deployments

3.1.3. Candidate technologies and standards

Table 1. Candidate technologies smart networking in aerOS

Technology/

Standard

Description Justification

Cilium

Cilium,

developed by

Isovalent, is a

technology

that plays a

significant

role in

enabling

smart

networking,

particularly

in the context

of

containerized

environments

. Cilium

focuses on

providing

efficient and

secure

networking

for

microservice

s, containers,

and K8s

clusters.

• Cilium as a Data Plane Technology: Cilium acts as a powerful

data plane technology that enhances network connectivity, security,

and observability within containerized environments. It leverages

eBPF (extended Berkeley Packet Filter) to provide high-perfor-

mance networking and security capabilities at the kernel level, al-

lowing for efficient packet processing and enforcement of fine-

grained policies.

• Network Security and Encryption: Cilium incorporates advanced

security features, such as network-layer encryption and mi-

crosegmentation, to ensure secure communication between micro-

services and containers. It enables encryption at the network level,

adding an additional layer of protection to data in transit. Mi-

crosegmentation allows for granular access controls and isolation of

network traffic, enhancing security and mitigating lateral movement

risks.

• Service Mesh Integration: Cilium can seamlessly integrate with

service mesh frameworks like Istio, enabling advanced traffic man-

agement, load balancing, and observability capabilities. It enhances

service mesh functionality by providing efficient and scalable net-

working components, reducing latency and improving performance

within the service mesh environment.

• Observability and Network Analytics: Cilium offers comprehen-

sive observability features, including network flow visibility, ser-

vice-level observability, and distributed tracing. It collects rich net-

work-level data and exposes it to monitoring and analytics tools,

allowing for deep insights into network performance, troubleshoot-

ing, and security analysis.

• Integration with K8s: Cilium is designed to work seamlessly with

K8s, providing enhanced networking capabilities for containerized

workloads. It integrates directly into the K8s cluster and leverages

K8s APIs for efficient configuration and control. Cilium integrates

with K8s network policies to enforce fine-grained network access

controls.

Liqo Liqo is an

open-source

project that

facilitates the

establishmen

t of a

decentralized

cloud

infrastructure

by enabling

the

interconnecti

on and

• Dynamic Network Interconnection: Liqo allows K8s clusters to

establish secure, dynamic, and seamless network connectivity be-

tween different clusters. It enables the creation of virtual network

overlays that span across clusters, enabling pods and services to

communicate with each other as if they were within the same clus-

ter. This dynamic interconnection enhances the flexibility and scala-

bility of network resources and supports efficient workload migra-

tion and resource sharing across clusters.

• Intelligent Traffic Routing and Load Balancing: Liqo incorpo-

rates intelligent traffic routing and load balancing mechanisms to

optimize network traffic between interconnected clusters. It can in-

telligently route traffic based on factors such as latency, bandwidth

availability, and cluster resource utilization. This capability ensures

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 25 of 60

resource

sharing

between

different K8s

clusters. In

AerOS, there

is no

consensus

yet on its

adoption.

The intention

is to explore

the

capabilities

of LIQO and

investigate

its suitability

to meet the

requirements

of AerOS in

terms of

smart

networking.

efficient utilization of network resources and enhances the perfor-

mance and responsiveness of distributed applications running

across federated clusters.

• Cross-Cluster Service Discovery and Access: Liqo provides

mechanisms for cross-cluster service discovery and access. It allows

services deployed in one cluster to be discovered and accessed by

applications running in other clusters. This capability simplifies

multi-cluster application deployments and enables seamless com-

munication between services across different clusters, contributing

to smart networking in distributed environments.

• Network Security and Policy Enforcement: Liqo incorporates se-

curity mechanisms to ensure secure communication and policy en-

forcement between interconnected clusters. It supports network seg-

mentation and access controls, allowing administrators to define

and enforce fine-grained network policies across federated clusters.

This enhances security and compliance within the interconnected

infrastructure.

• Scalability and Resilience: Liqo enables the federated infrastruc-

ture to scale horizontally by integrating resources from different

clusters. It supports automated workload placement and scheduling

across clusters based on resource availability and application re-

quirements. This scalability ensures efficient resource utilisation

and enhances overall system resilience.

3.2. Communication services and APIs
This sub-section covers the research and developments done so far in Task T3.2. The challenge lies on

implementing the functionalities of seamlessly registering, communicating (APIs) and conveying the interaction

between services in the continuum.

The primary objective of this task is to investigate the communication environment that facilitates the

communication between services across the entire compute continuum, spanning from edge to cloud. This

exploration is centred on communication services designed to enhance the connectivity of aerOS services,

ensuring both efficiency and adaptability. Our solutions are structured to empower users to establish services

with protocol choices tailored to their unique needs and requirements, while maintaining compatibility and

performance with essential aerOS services or aerOS verticals. Furthermore, this task necessitates an

examination of standardized API specifications, which serve a dual purpose: providing a technical description

of the interface for developers and functioning as a foundation for code generators.

3.2.1. Research lines

In the context of communication services and APIs in aerOS, the research lines are: (i) integration services for

protocol translation, (ii) service-oriented communication with timing guarantees and (iii) API specifications for

documentation and starting point for code generators.

3.2.1.1. Integration services for protocol translation

A key aspect of aerOS proposal is the provision for users to select from a variety of protocols, aligning with the

specific needs of their submitted services. To facilitate communication across these diverse protocols, the use

of integration services capable of translating one protocol into another is proposed. Notably, both eProsima

Integration Service and FIWARE IoT agents can act as a bridge between protocols such as HTTPS, DDS,

MQTT, OPC UA, and other widely used industrial protocols. Specifically, FIWARE IoT agents enable

communication with NGSI-LD context brokers, a well-established mechanism across the aerOS continuum.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 26 of 60

It is important to note that integration services may not deliver optimum efficiency for real-time applications.

In such instances, users might require native communication without the interference of integration services.

Integration services would then provide an opportunity to intercept this native communication, thereby enabling

the use of other services in different protocols for data gathering and analysis. This results in a seamless edge-

cloud continuum, irrespective of the protocols to be utilised.

3.2.1.2. Example for service-oriented communication with timing

guarantees

As mentioned earlier, users may require native communications for efficient communication between

applications. In such instances, the working team in T3.2 has identified DDS and Zenoh as viable options for

implementing non-blocking, predictable, and timed execution of operations. Zenoh and DDS are two of such

protocols that support data-centric communications, have support for heterogeneous networking technologies

(TCP/IP, BLE, 3G, 6LowPan), and facilitate pushing data to subscribers and storage. This communication

approach allows for the efficient offloading of computationally-intensive tasks to the cloud during runtime,

optimizing system performance without compromising execution speed or system responsiveness. In addition,

these communication protocols would also support time-aware communication, implying that applications can

operate within a precisely timed environment, even when performing compute-intensive tasks in the cloud

during runtime (Figure 15).

Figure 15. Time aware communication

Should the cloud-based application or component be unresponsive or unavailable, the communication platform

and protocol are designed to seamlessly invoke the local component (with potential degraded functionality)

operating on the embedded aerOS node (for example, an ECU). It is crucial to establish a platform that mirrors

the same environment on both embedded systems and the cloud.

3.2.1.3. API specifications for documentation and starting point for code

generators

A critical aspect of API development is the creation of an API specification, which serves as a comprehensive

technical description of the interface and primarily acts as a reference for developers. This description must

include all interface endpoints (i.e., URLs, ports, channels, topics), accessible operations and their data formats.

OpenAPI already establishes a uniform, standardized format for the NGSI-LD API, which is a RESTful API.

In parallel to OpenAPI, AsyncAPI provides another standardized API specification for asynchronous

communication. Already in use for MQTT, this standard could be extended to other protocols, thereby fostering

a transparent and well-documented overview of the aerOS systems and providing developers with a convenient

starting point for creating APIs. Finally, the employment of standardized API protocols, in combination with

code generators, paves the way for low-code environments, such as Behavior Trees, to effortlessly define the

logical flow between services. More research will be performed in this matter during the next months.

3.2.2. Related requirements

• TR-11 Data autonomy

• TR-13 Distributed data management

• TR-31 (semi) real-time data analysis

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 27 of 60

• TR-46 Data cataloguing

• TR-47 Data collection

• TR-51 Distributed data management

• TR-52 Data integration

• TR-53 Data-as-a-product

3.2.3. Structure diagram

Figure 16 illustrates the structure diagram of the Communication and Service APIs, including the relevant

components that will be considered.

Figure 16. Communication services and APIs architecture

Such components are identified and further described in Table 2.

Table 2. Communication services and APIs Components description

Component Description Interactions

aerOS

Service

A self-contained unit of software designed to perform

a specific functionality within the aerOS domain.

Can interact with integration

services, brokers, or other services,

contingent on the protocol utilized.

External

Service

A self-contained unit of software designed to perform

a specific functionality by a third-party provider.

Can interact with aerOS services

through an API Gateway.

Integration

Service

An integration service is a specialised type of service

that facilitates communication and data exchange

between different systems or components that might

use diverse data formats or communication protocols.

Functioning as a bridge for

services, brokers, and gateways,

translating messages between

protocols.

NGSI-LD

Broker

An NGSI-LD Broker is a context broker that manages

context information according to the NGSI-LD

standard, facilitating interoperability and the

integration of various services.

Can interact with components that

utilise the NGSI-LD data format

API Gateway A server that acts as an intermediary for requests from

external users who are seeking resources from aerOS

services.

Can interact with external services

and brokers.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 28 of 60

3.2.4. Candidate technologies and standards

Table 3. Candidate technologies for Communication and Service APIs

Tech/Standard Description Justification

FIWARE IoT

Agents

FIWARE IoT Agents are components

enabling the integration of IoT

devices with a FIWARE-based

system. They provide a bridge

between IoT protocols and the NGSI-

LD context data interfaces.

Given their ability to translate between

numerous protocols, FIWARE IoT Agents are

ideal for ensuring smooth and seamless

communication within the aerOS ecosystem.

They effectively interface with NGSI-LD

context brokers, a significant component within

the aerOS continuum.

eProsima

Integration

Service

eProsima Integration Service is a tool

designed to interconnect different

systems using different

communication protocols.

eProsima Integration Service can serve as a

bridge between protocols like HTTPS, DDS,

MQTT, OPC UA, and others. This makes it an

excellent choice for facilitating communication

between diverse systems, especially in the

aerOS environment, which likely incorporates

various protocols.

Zenoh Zenoh is a data/content centric

communication protocol, i.e.

pub/sub/query protocol that unifies

data in motion, data at rest and

computations.

Ideal for large-scale distributed systems, Zenoh

uses Named Data Networking and Content-

Centric Networking paradigms, enabling data to

be associated with one or more resources

identified by a URL. It supports routing and is

implemented in Rust, making it suitable for

extensive, diverse systems.

DDS Data Distribution Service (DDS™) is

a middleware protocol and API

standard for data-centric connectivity

from the Object Management Group®

(OMG®).

Suited for mid-scale distributed systems that

require fault tolerance and QoS, DDS shares

similar traits with Zenoh. The crucial difference

lies in DDS's emphasis on quality of service and

fault tolerance, making it appropriate for

systems where reliability and continuity are

paramount.

OpenAPI OpenAPI is a specification for

machine-readable interface files for

describing, producing, consuming,

and visualizing RESTful web

services.

OpenAPI's ability to provide a standardized,

uniform format for RESTful API specifications

is invaluable in the aerOS context, as it ensures

consistency across different interfaces. It also

helps in the creation of detailed API

documentation, which is crucial for developers.

AsyncAPI AsyncAPI is a standard that allows

you to define and describe

asynchronous APIs in a machine-

readable format.

Similar to OpenAPI, AsyncAPI can be used for

standardized API specification, but specifically

for asynchronous communication.

Behavior Tree Behavior Trees are a graphical

modeling language for the creation of

complex, hierarchical behaviors.

Behavior Trees provide a straightforward way of

defining complex logic in a visual format. When

integrated with code generators, they can

simplify the process of defining logical flow

between services in the aerOS environment,

thereby reducing the coding burden and

potential for errors.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 29 of 60

3.3. aerOS service and resource orchestration
This sub-section covers the research and developments done so far in Task T3.3. The challenge lies on providing

an efficient end-to-end orchestration of resources and services in the IoT-Edge-Cloud continuum, leveraging

zero-touch concept and AI techniques. There is also a great challenge for a continuous analysis of the state of

the continuum so that a series of services KPIs and user requirements are enforced at any moment.

Within this task, the efforts have been structured to advance in the following two primary lines of action:

• Service orchestration (focused on allocating workloads that implement business logic across the

available resources in the continuum – IEs). Here, this line addresses the global structure of the

orchestration within aerOS (multi-level orchestration), the mechanisms and templates to communicate

the orchestration orders and events, the AI algorithms to apply such advanced orchestration, the global

interaction flow (pipeline) and how to deploy all the previous.

• Resource orchestration. This line focuses on the deployment of new resources across the continuum via

the tools provided by the Meta-OS. While for the previous line, it is assumed that the resources are

available (must be added to the continuum), this research line does not make such assumption, and

prepares a methodology and tools to settle new infrastructure to be ready for aerOS. Although this

research line is extremely interesting, it is now being demoted in favour of the first research line, that

constitutes the main novelty of aerOS and that will be used during the first half of the project and by

the pilots to orbit aerOS validations around. At later stages of the project, this line will be reinforced.

In the next pages, the advances and decisions so far in each of those two lines are described.

3.3.1. Research lines and structure diagrams

3.3.1.1. Services orchestration

Objectives

A key goal of this research line is to describe and inspect how the services of the aerOS continuum should be

deployed and managed. Service orchestration is a key enabler for the aerOS project: it should ensure that all

components work together seamlessly to provide aerOS functionality. Another main goal is to address the

challenge of service federation across domains. A collaborative effort is needed for the establishment of a robust

framework to ensure a successful and sustainable federation among domains so that the true realisation of a

“continuum”, and not separated silos, is possible. Interoperability is a crucial requirement for service federation.

A relevant description of the global strategy of aerOS orchestration can be found in Deliverable D2.6.

Functionalities provided

There will be two different layers of service orchestration. In aerOS, instead of the classic approach of relying

on a single element for the allocation decision and the actual deployment of the services, a two layered structure

has been envisioned. A first layer will be in charge of analysing the status of the continuum (starting with the

same domain) to take an allocation decision (place service in another domain if needed), and the second layer

will be enforcing the actual deployment of the service.

The traditional concept of orchestration within aerOS applies when functioning within a single domain, where

both orchestration layers could be implemented by the same entity or element within the domain itself.

Conversely, when it comes to connecting and aligning services across distinct aerOS domains, the concept of

federated orchestration is introduced, which represents a significant advancement compared to the existing state-

of-the-art approaches.

For service orchestration in aerOS, an AI Support System is used to implement optimised deployment decisions

and make certain tasks in a more efficient way. Service orchestration often involves automating repetitive or

complex tasks, reducing manual effort, and improving operational efficiency. By automating the coordination

and execution of services, and especially by doing this smartly and consciously over all the available

infrastructure, organizations can achieve faster and more reliable outcomes, while freeing up human resources

for higher-value activities. aerOS takes this automation to an upper level by envisioning an AI based service

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 30 of 60

orchestration and configuration.

For federated orchestration, it is needed that each aerOS domain High Level Orchestration (HLO) is aware, any

time, of all aerOS domains and IEs availability and capabilities across the whole continuum. This requires that

all these capabilities are registered and can be discovered and shared. This way, HLO can address service

deployment requests by considering both submitted IoT services deployment request requirements and

resources availability across all aerOS domains. The registry and sharing mechanisms provided for resources

makes them discoverable and thus available when needed and this can lead to a best match, of services and IEs

or domains, regarding IoT services placement.

When federating services across domains, establishing trust and ensuring security are paramount. Trust

frameworks, authentication mechanisms, and encryption techniques are essential to enable secure

communication and protect sensitive data. Identity and access management protocols, such as OAuth, can be

used to control access to federated services and will be provided by the aerOS AAA (see Section 3.4).

Specific characteristics of the solution

AI-powered decision support offers several advantages that can leverage and empower aerOS service

orchestration. AI systems can analyse vast amounts of data quickly and extract valuable insights. By using

machine learning algorithms, AI can uncover patterns, trends, and correlations that may not be apparent to

humans. This data-driven approach enables more informed and accurate decision making, a process that is way

much faster than manual decision-making processes. AI algorithms can process and analyse data in real-time or

at high speeds, enabling swift decision making in critical scenarios. This speed and efficiency can lead to

improved operational efficiency and responsiveness. AI can handle complex decision-making scenarios that

involve numerous variables, dependencies, and constraints. It can evaluate multiple factors simultaneously and

make decisions based on a holistic view of the situation. This capability is particularly beneficial in aerOS due

to the complexity of its ecosystem and the needed of taking interdependent decisions based on the whole system

status.

Service orchestration in aerOS is one (if not the) more relevant for achieving the goals of the project. Therefore,

the required research and activities are deep and many. During the first year of the project, the following aspects

have been the focus on the execution of this task. They conform a heterogeneous set of topics ranging from

literature analysis, novel diagram design, decisions across the task and the project, etc.

• Multi-level orchestration (as mentioned, a characteristic of aerOS service orchestration approach).

• Definition of the elements of the aerOS orchestration (High Level Orchestration – HLO and Low Level

Orchestration – LLO).

• Details, potential implementation and interactions of the High Level Orchestrator – HLO.

• Encapsulation of the services to be orchestrated.

• Details, potential implementation and interactions of the Low Level Orchestrator – LLO.

• Integration of HLO and LLO in aerOS.

Before digging deep into the research so far and the diagrams, it is worthwhile to contextualise the work

conducted. Effectively, it has been defined in aerOS that K8s will be the most usual environment where the

workload execution will take place in the Meta-OS. While the project does not constrain itself to only investigate

K8s-related stuff (as, logically, other environments will exist), the research in the orchestration field in the action

during the first year has been biased by K8s perspective. It is expected that, while this flavour will predominate,

further research will be conducted outside the charts. For instance, specific LLOs will be developed that will

tackle the deployment of workloads in non-K8s environments (e.g., just Docker as container management

framework).

3.3.1.1.1. Multi-level Orchestration

The aerOS services orchestration system is inspired from the multi-layer orchestration approach proposed in

[1]2. In this approach, a scalable service orchestration architecture is proposed whereby services are defined in

2 Co-authored by several aerOS researchers.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 31 of 60

the format of blueprints and different cloud domains are considered. The high level concept beneath the

approach is depicted in Figure 17. Multi-level Orchestration approach as a source of inspiration to aerOS

orchestrator .

Figure 17. Multi-level Orchestration approach as a source of inspiration to aerOS orchestrator [1].

To better fit the approach with the aerOS framework, a thorough review of the designs adopted in [1] is provided

below.

Application Management Framework

At this layer of the architecture, a user defines and expresses the application composition using an intuitive User

Interface, independently of the infrastructure details. The visual language is then transformed to a formal

Intention Blueprint using the TOSCA industry standard. It provides a high-level specification of the application

while providing an opportunity for the smart layer (i.e., HLO) to tweak the infrastructure details to achieve the

optimal performances. In the formal format, the modular services composing the application are defined, as well

as the requirements in terms of resources constraints such as RAM and number of cores, number of replicas,

and the expected Quality of Services such as bandwidth, latency or jitter.

AI-driven provisioning and lifecycle manager (High Level Orchestrator)

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 32 of 60

At this layer of the architecture, the best scheduling plans associated with the application Intention Blueprint

are devised using native AI mechanisms. The plans are based on both the infrastructure capabilities (e.g., support

or not for GPU) and optimization criteria such as security constraints, energy, efficiency or user-proximity. The

scheduling results in a subsequent Execution Blueprint which provides the infrastructure details concerning the

clusters and services provisioning. This layer harnesses monitoring metrics for predicting the resources usage

to achieve a proactive scheduling, as well as for aggregating real-time feedback of the scheduling performances.

Infrastructure & Application Monitoring

At this layer of the architecture, a set of monitoring agents are put in place to gather different types of metrics

to provide HLO with the required metrics to predict resource and network usage as well as performance

feedbacks. The component provides three types of metrics: application, cluster, and infrastructure metrics,

respectively. Each type of metrics differs in the layer at which they are aggregated. Here, in the context of

aerOS, the Data Fabric (see deliverables D2.6 and D4.1) will play a fundamental role.

Orchestrator and Resource Manager (Low Level Orchestrator)

At this layer of the architecture, the orchestration decision abstracted in the Orchestration Blueprint is

transformed and enforced through an actual execution plan represented by the execution Blueprint. This latter

is consumed by the virtualized infrastructure. This allows building the edge-cloud continuum infrastructure in

a uniform and abstracted manner. The component ensures not only that the decisions are translated into the right

low-level blueprints, but also enforces that no failure resulted in the process. A remediation action is put in place

in case of crashes or noticeable bugs.

3.3.1.1.2. aerOS Service Orchestration Approach

Considering the robustness and scalability of the presented orchestration approach, the aerOS Service

Orchestration architecture proposes an innovated (inspired from the previous) federative multi-domain

architecture (as shown in Figure 18, detailed in D2.6).

Figure 18. aerOS Federative architecture

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 33 of 60

Here, several administrative domains will exist in a continuum. Each of these domains will contain a Data

Fabric, a Services Fabric and a network and compute fabric. On top of those, aerOS verticals (applications from

external users, e.g., pilots) will run. In order to allow the proper functioning of the fabrics among domains, an

element called aerOS Federator comes in play. The aerOS Service Orchestration system must acknowledge this

structure in order to properly define its architecture and the implementation of its components. As illustrated in

Figure 19 (introduced in D6.2), it consists of two main parts:

• High Level Orchestration (HLO): It is composed of an AI-powered Decision-Making Engine for the

service orchestration. The aerOS vertical submits the services requirements blueprints for execution in

the continuum.

• Low Level Orchestration (LLO): It enforces the decision made by the high-level orchestration. It also

ensures the proper execution of the services inside the selected domain.

Figure 19. Aeros Services Orchestration

The remainder of this subsection provides further details about the aerOS architecture as well as the motivation

behind the two types of orchestrations.

3.3.1.1.3. Decentralized High-Level Orchestration

In aerOS, there is the initial differentiation between three aerOS users for the orchestration: system

administrator, IoT service developer, and IoT service provider. This is aligned with the users and narrative

proposed in the global architecture of aerOS (see deliverable D2.6). Each of these users concentrates on different

aspects of aerOS and, thus, has requirements that can, but not necessarily, overlap. For example, possible

requirements based on the user can be:

- guarantee the execution of the service even on hardware failure (IoT service provider)

- connect to the Data Fabric and use sensor data provided by the continuum (IoT service developer)

- optimize orchestration so that the least amount of energy consumption is necessary for the execution

of the service (system administrator)

To adhere to all the multi-stakeholder requirements for placement, a decision has been made to split the

orchestration into high-level and low-level orchestration. While the low-level orchestration allocates resources

to the services based on technologies like K8s or docker, the high-level orchestration uses machine learning to

select the best IEs for running a services. Although a K8s cluster is already capable of allocating computational

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 34 of 60

resources to a service, it might not consider additional requirements such as energy consumption, and for sure

it does not consider the whole continuum status in a timely and predictive manner.

Right now, some solutions have been identified that address similar problems. One has been developed in the

IntellIoT project with Mixed Integer Programming (MIP). Solving the MIP problem returns one of the most

optimal placements (if multiple exist) regarding energy consumption while adhering to the available

computational resources, latency, and bandwidth constraints. In addition, the solution considers the capability

requirements of the service, e.g., hardware to display a Graphical User Interface (GUI). As mentioned, the

current, complete solution is based on a MIP algorithm. Even though this returns the most optimal solution, the

approach only scales for small networks as input. Finding a solution takes a long time, mainly if including

constraints based on the network between devices, like latency and bandwidth. Furthermore, the approach needs

to find an optimal solution for every network change again.

As a result, the current approach does not fit the aerOS continuum. The devices in the aerOS continuum differ

depending on the aerOS vertical, and the available IEs will vary from case to case and also among them,

statically and during the time. Only to mention an example, in pilot 1, the aerOS continuum can be very dynamic

with moving IEs on Autonomous Guided Vehicles (AGVs).

aerOS proposes a decentralised orchestration solution as depicted in Figure 20. It shows the main concept of

this decentralised orchestration process limited to one domain. A rationale (more contextualized to the global

aerOS view) can be found in Section 4.2.2 of deliverable D2.6.

To keep it simple, the focus is on the connectivity between IEs and the responsibilities (blue borders) of the

high-level orchestration component, which is represented in yellow. The blue squared boxes represent a set of

IEs within a domain that share the same LLO (or O in the diagram). This would be extended to other domains

as the HLO communicates with other orchestrators of other domains with a publish-subscribe protocol (powered

by NGSI-LD mechanisms) to synchronize the orchestration. It is assumed that the aerOS Management Portal

has at least one user/basic/auxiliary service with requirements that can be placed on an IE.

Figure 20. Decentralized High-Level Orchestration

The elements in the previous diagram can be described as follows:

HLO

https://aeros-project.eu/use-cases/

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 35 of 60

Table 4. Decentralized High-Level Orchestration components

Component Description Interactions

aerOS Management

Portal

The aerOS Management Portal is

the user interface for different

roles of users.

The aerOS Management Portal provides

the user interface to orchestrate services in

the continuum.

Service Service is an aerOS service. This

can be a user, a basic or an

auxiliary service.

The high-level orchestrator should

orchestrate each provided service on the

continuum.

Service Placement

Request

The user can request an

orchestration via the aerOS

Management Portal. This request

is handed over to the high-level

orchestration first.

The aerOS Management Portal request an

orchestration from one of the distributed

high-level orchestration services.

High-level

orchestrator (HLO)

The high-level orchestrator is a

service that returns a resource

allocation and placement given

specific data from the data fabric

and the aerOS Management

Portal as input (see Figure 21). It

may use Deep Reinforcement

Learning (with a deep neural

network) to return the resource

allocation and placement.

The high-level orchestrator interacts with

the aerOS data fabric as input to return a

decision on the placement of services.

Low-level orchestrator

(LLO)

The low-level orchestrator is in

charge of interpreting the

execution order into actual

workload deployment

Receives orders from the HLO (via

Decision Blueprint) and interacts with IEs’

container management frameworks

Inter-Orchestration

Communication

High-level orchestrator can

communicate with each other

(other domains) to share

information about orchestration

requests and their possible

placements.

High-level orchestrators can interact with

each other (from other domains). In the

future, data from a high-level orchestrator

could be shared over the data fabric as well.

aerOS Domain The decentralized high-level

orchestrator concept is currently

limited to one domain.

Depending on the Federation

Manager between domains, this

concept can be expanded in the

future.

The high-level orchestration focuses on

one aerOS Domain.

Service Requirements Each service has at least

computational resource

requirements, e.g., processing

power, memory, and storage. In

addition, a service can rely on

latency or bandwidth

requirements if it is dependent on

other services.

Service requirements can be either

included in the service description or

gathered by data from the data fabric.

Data Fabric The aerOS Data Fabric is The data fabric provides necessary data for

the orchestration decision of the high-level

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 36 of 60

described in D2.6 and in D4.1. orchestration.

Placement A placement is a mapping

between services and IEs. It is

the output of the high-level

orchestrator.

The placement could be used by the low-

level orchestration service.

Thus, the orchestration process can be primarily described in three steps:

1. An authenticated user selects one or more services to be orchestrated in aerOS via the aerOS Manage-

ment Portal. The aerOS Management Portal forwards this request to a high-level orchestrator (HLO).

2. The HLO analyses the status of the services and resources (IE) of its own, therefore trying to orchestrate

the request on their area of responsibility. All possible placements are, then, evaluated by the orches-

trator based also on the incoming request.

a. If the most optimal placement in terms of QoS requirements is within its scope, the service will

be deployed in the domain, making use of the proper LLO (or “O” in the diagram) to have the

workload executed on the corresponding IE.

b. If not possible, it analyses the state of the whole continuum through information gathered by

the Data Fabric as shown in Figure 21 and then the Federation mechanism and the inter-domain

connection will act and the request will be properly forwarded.

3. The process would repeat in the associated HLO of the forwarded domain.

Figure 21. Detailed AI-powered Decision-Making Process

Figure 21 shows the process of the high-level orchestration component, also known as AI-powered Decision-

Making Engine, in more detail. To receive a placement, data from the Data Fabric and the QoS requirements of

the service(s) are used. The data needed from the aerOS Data Fabric can be split into:

- Network data e.g., available bandwidth, maximum latency

- IE data e.g., available processing power, memory, storage, the availability of a GPU or display

- Self-* capabilities data e.g., health and monitoring data

- Other requirements e.g., thresholds that are defined by the system administrator.

Requirements and data are used as input for a Deep Neural Network. The Deep Neural Network returns a

mapping between IEs and services that is, then, used as the source for generating Decision Blueprints for the

low-level orchestration. As a technology, some research has already been conducted about Deep Reinforcement

Learning with the stable-baselines3 Python library.

As it can be seen, the novel approach proposed by aerOS overcomes the issue observed about the scalability

problem of MIP in Intelliot, creating a much more reliable architecture due to the redundancy of multiple high-

level orchestrators (one per domain).

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 37 of 60

3.3.1.1.4. Low-Level Orchestration (and target case for Kubernetes

environment)

The Low-Level part of the aerOS services orchestration receives formal services specification blueprints from

the high-level orchestration and translates these blueprints into running services. Hereunder, the assumption that

aerOS is working with K8s environments (and domains where only K8s exist) is made. This will not be the

generic case for all domains nor IEs of aerOS. This has been only the first exercise to define, implement and

deploy a LLO in aerOS. It is expected that more than one type of LLOs will be developed in the project. aerOS,

as a platform-agnostic Meta-OS will need to support diverse container management frameworks underlying in

the infrastructure, therefore, the efforts specified below will be replicated for other types of deployment cases.

Effectively, assuming that the underlying framework would be K8s, the implementation diagram of a LLO

would look as depicted in Figure 22.

Figure 22: aerOS services Low-Level Orchestration in the case of K8s framework

As detailed in the illustrated example, the low-level orchestration in the case of K8s implementation is

decomposed into two layers: services and dependencies. Table 5 explains each low-level orchestration

components.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 38 of 60

Table 5. Low-Level Orchestration Components in the case of K8s framework

Component Description Interactions

Low-level

Orchestrator

(Operator)

The operator, being the low-level

orchestrator, keeps in sync with the running

services and the corresponding blueprints.

The operator propagates the configuration

from the specification to the running service.

On the other hand, the running service status

is replicated in the blueprint.

It interacts with both the

running service and the service

blueprint to keep the service

configuration and status

information in sync.

It also interacts with the events

bus to relay initial and updated

configurations during the

lifecycle of the running

services.

Service Blueprint During the lifecycle of the running services,

the associated blueprints are created and

updated.

It is composed of two sections: the spec

section containing the service specification of

the running service, and the status section

replicating the current running service status.

N/A

Running Service It represents a running instance of an aerOS

service. Its lifecycle is managed by the low-

level orchestrator (Operator).

It interacts with other services

and the low-level orchestrator

through events data using the

Events Bus as the medium.

Events Bus The Events Bus plays a central role for the

interaction of services with the low-level

orchestrator and other domain services.

A set of standard events for the requests and

configurations lifecycles are exchanged

between a service and other entities (low-

level orchestrator or domain service) through

the Events Bus.

It interacts with the low-level

orchestrator and the running

service to relay the events data.

.

Third-party packages

dependencies

Different services may depend on third-party

packages for their internal operations.

A smart-network service for example

depends on Liqo which provides inter-

clusters VPN tunnelling, or an IoT interface

service depends on Musquitto for providing

MQTT protocol interface.

Helm is used as the packaging system for

these dependencies.

N/A

NGSI-LD service The NGSI-LD service which provides a

smart data aggregation of the orchestration

system keeps track of services specifications

and statuses in its internal database. It will

interact with the Data Fabric of the domain.

N/A

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 39 of 60

In order to develop the LLO in the case of K8s, certain knowledge about the functioning of it is needed. In the

following, a reflection on the expression of the replicas and the concept of “operators” is provided in order to

contextualize how such LLO could be implemented.

K8s provides an automated lifecycle management system of any stateless application or unit of work. All

instances of this unit of work are by definition interchangeable. They are called replicas by the terminology of

K8s [2]. At the infrastructure level, K8s manages a cluster. It represents a set of computerized hardware called

nodes. Basic units of works are run inside those nodes called pods. Commonly, a set of Linux containers using

common resources (networking, storage, shared memory) constitute a pod [2]. K8s is decomposed of two

building blocks [2]:

• The application or data plane: It represents the nodes dedicated to running the applications pods.

These nodes are called worker nodes in K8s terminology.

• The control plane: It represents the core K8s management system. A set of control nodes are dedicated

to host the control plane pods which implement the K8s API and the orchestration logic.

The main components of the control plane are the controllers. They ensure that the cluster target state is

achieved. If the target state diverges from the current state, a remediation action is triggered. This is particularly

accomplished through a set of control loops. Nevertheless, an application has usually an associated state which

is important to stay consistent across time to remain reliable. The internal application state management falls

outside of the K8s control plane, being aware of this fact.

Hence, to extend the features offered by controllers, operators have been created inside K8s. As illustrated ([2]

- Figure 23), to achieve this extension, a custom resource or a blueprint is created as an endpoint in the K8s

API. The role then of the operator is to monitor and maintain the corresponding resource. The operator

implements an internal control loop to orchestrate and achieve the resource target state.

Figure 23. Operators are custom controllers watching a custom resource [2]

It is important to note that the Custom Resource is created from a Custom Resource Definition (CRD) which

defines the data schema of any associated resource instance. The development of an operator involves then two

main tasks [2]:

• The creation of a CRD: It provides the formal schema definition of all the resource type instances.

• The development of a watcher: a loop running application that watches the resource type instances and

responses to changes. The kind of resources remains specific to each type of target applications the

Operator is managing.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 40 of 60

Unfortunately, the internal development of the watcher program is quite complex. An operator should handle a

set of possible resource-related scenarios, named “maturities”. Different operators illustrate then distinct levels

of maturities. Fours levels of maturity are possible and the main development objective is then to achieve and

improve the maturity level [3] [4].

• Maturity Level 1 – Basic Install: The operator installs and configures the workload based on the

corresponding custom resource.

• Maturity Level 2 – Seamless Upgrades: The operator can be seamlessly upgraded to a new version. The

target workload can also be upgraded based on custom resource update.

• Maturity Level 3 – Full Lifecycle: The operator provides the full lifecycle management features. The

operator can then provide fail-over and backups at this level.

• Maturity Level 4 – Deep Insights: At this level, the operator exposes health and performance metrics

and emits custom k8s events.

• Maturity Level 5 – Auto Pilot: At this level, the operator provides auto scaling, auto-healing, auto-

tuning and abnormality detection.

From these observations, it is thus mandatory to start with a basic operator providing the initial building blocks

of a LLO and improve it to achieve the target maturity level, at each stage.

3.3.1.1.5. Encapsulation of the services to be orchestrated

Whenever envisioning the deployment of a LLO, it is always very relevant to understand how the workloads to

be deployed will be expressed. This is still an on-going discussion in aerOS, and more hints on the design and

decision will be provided in successive deliverables (i.e., D3.2 and D3.3). Relevant possibilities (that would

have extreme relevance for the development of the LLO for the case of underlying K8s) could be:

- Juju charms: Juju is a tool for topology-based applications. Based on a YAML DSL (Domain Specific

Language), it allows application deployment modelling. Different cloud offerings and services are

supported for the deployments [5]. At the core of Juju are charms. They define all the instructions and

artifacts required for the deployment and configuration of application components. For customization

purposes, configuration values can be set during the deployment step. Furthermore, charms can be

grouped in bundles and provide dependency mechanisms [5]. Actions can be also defined and

implemented as Unix shell scripts and triggered by runtime during the deployment. These scripts are

used to install, configure, and wire software components [5] [6]. Charms require a dedicated Juju

environment to run, which makes it less flexible compared to other alternatives, mainly Helm Charts.

In fact, Juju provides a complete orchestration system, beyond operators packaging.

- Helm charts: Helm charts are the other and more widespread alternatives to Juju charms for operators

packaging. Released by Cloud Native Computing Foundation (CNCF) in 2015, Helm is the defacto K8s

packaging manager to ease the burden of K8s configuration [7]. Helm allows K8s configuration files to

be assembled into packages. Local and remote repositories can then be used to share these reusable

packages, which are called charts. Dedicated commands through CLI can then be used to install, update

or uninstall them [7]. To achieve automatic package management, charts can also refer to other ones as

dependencies in their configuration files. Coming back to the illustrative example of a LLO for

underlying K8s environment, it is important to note that Helm charts can be used to package more than

operators, but remain one of the most interesting aspects of helm packaging. Operators helm packaging

are enabled by integrating the CRD into the charts configurations files as well as a pod definition of the

watcher program. It remains the simplest and the most flexible way of deploying operators into K8s.

- OSM VNF and NS packaging Approach: Network Function Virtualization (NFV) is a set of standards

proposed by ETSI to decouple network functions (e.g., firewall, NAT, and caching) from the dedicated

hardware by running them in a virtualized environment [8]. Under the umbrella of ETSI, an opensource

implementation of MANO is being developed called Open Source MANO (OSM). OSM provides a

NFV platform to align with the NFV information models while meeting the production requirements.

The opensource implementation incorporates both resource and service orchestrations [8].

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 41 of 60

OSM is here to be considered as an example for packaging VNFs (Virtualized Network Functions) and NS

(Network Services) before the deployment of the associated instances. Two possible execution environments

are possible for the deployments in this regard: K8s [9] or a virtualized infrastructure [10] such as OpenStack

or a Cloud IaaS. In what follows, the packaging process of VNFs and NS for the K8s cluster and a helm chart

KDU (Kubernetes Deployment Unit) are described. The implementation of primitives in a Helm-chart

environment is also discussed.

To deploy a Kubernetes-based Virtual Network Function (KNF) in OSM, a running K8s is required after being

associated to a VIM (Virtual Infrastructure Manager). Dedicated packages for the KNF need to be created and

saved inside OSM before deployment [11]. In Figure 24 ([12]), a yaml definition of a VNF package is deployed

inside a K8s cluster.

Figure 24. KNF VNFD Example [12]

In the illustrative example, besides the important network configurations, the package description contains the

helm-chart parameter in the KDU (Kubernetes Deployment Unit). This allows OSM to deploy the associated

operator for the VNF package. Moreover, a Network Service (NS) package is also needed, which is illustrated

in Figure 25 ([12]).

Figure 25. NSD Example [12]

The network service creates a virtual link (mgmtnet) that references the VNF connection point (mgmt.) in the

VNFD created in the first step. OSM primitives are managed operations to allow the automatic initialization of

the exposed services inside the VNF, right after instantiation [13]. Both juju charms-based and Helm Chart-

based are possible, but we focus here in the later without losing in generality. Helm Chart-based executions

environments can be also used to configure NF (Network Functions), starting from OSM version 8. This results

in deploying additional pods inside the OSM K8s cluster namespace if integrated [13]. The first step is to

implement the primitives’ actions required for the NF configuration. They are defined inside a python class.

The class file is created inside the helm chart folder. The implementation is illustrated in Figure 26 ([13]).

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 42 of 60

Figure 26. Primitive actions implementation in a Helm Charts-based execution environment [14]

In the illustrated example, the async methods config and touch are the primitives’ actions implementations. The

next step is to reference these primitives’ actions inside VNFD (Figure 27; [13]).

Figure 27. Helm-chart based primitives inside the VNFD [13]

In the illustrated example, both config and touch primitives are referenced in the initial configuration primitives

and a set of parameters are passed through.

3.3.1.1.6. Low-Level/High-Level Orchestration Integration

Figure 28 illustrates how the low-level and high-level orchestration are integrated. The high-level orchestrator

receives metrics from the low-level orchestration system (potentially using other elements of the aerOS Meta-

OS such as the Embedded Analytics tool – see deliverable D4.1- or via the self-functionalities of the IEs – see

Section 3.5). The data are either retrieved from the blueprint status section or from the aggregation of service

events data received through the events bus.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 43 of 60

Based on the different performance metrics, the high-level orchestrator harnesses an AI Model engine for both

prediction and decision-making purposes. The decision is then communicated to the low-level orchestration

through the generation of a new service blueprint. The low-level orchestrator (operator) detects the change in

the blueprint and propagates it to the running service.

Figure 28. High-Level/Low-Level Orchestration Integration

3.3.1.2. Resources orchestration

Objectives

Resource orchestration focuses on creating infrastructure provisions that could later join the continuum. It

coordinates the allocation and utilisation of various resources, such as computing power, storage, network

bandwidth, and other system components, to meet the needs of aerOS services. Given the nature and the

objectives of the aerOS project, this crucial step will be dealt with later (prioritising service orchestration)

towards balancing resources in order to ensure the continuum experience and leverage the capabilities of every

underlying hardware.

Functionalities provided

Resource orchestration for the aerOs services aims to allocate resources in an optimal manner, ensuring that the

right resources are assigned to the right tasks or workloads at the right time. By intelligently taking advantage

of “raw” resources based on demand, priority, and availability of the steady state of the continuum, resource

orchestration may help maximise resource utilization and efficiency and may alleviate the burden of system

administrators to do double work of installation and configuration. A higher level of optimization might be

achieved with an AI powered decision-making process. This will be discussed further in next iterations of this

document. Resource orchestration focuses on ensuring system reliability and fault-tolerance by implementing

redundancy, load balancing, and failover mechanisms to maintain system availability and handle failures

gracefully. Resource orchestration helps prevent single points of failure and ensures that resources are

distributed to mitigate risks.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 44 of 60

Specific characteristics of the solution

As per service orchestration, also resource orchestration is mediated by an AI based decision system. This

ensures less human work associated with the definition of specific workloads or with the management of all the

use cases. With AI powered resource orchestration, the resource deployment could be defined on a higher level

of abstraction, leaving all the complex calculations and decisions to specific algorithms and systems.

Figure 29 illustrates the different components building the aerOS resource orchestration system and its

communication channels. The system harnesses the existing service orchestration with resource-specific

orchestration components.

Figure 29. aerOS resource orchestration architecture

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 45 of 60

The following table contains each component details:

Table 6. aerOS resource orchestration components

Component Description Interactions

High-level Resource

Orchestration

The existing service orchestration is harnessed

for the deployment of a resource-centric high-

level orchestrator to overlook the decision-

making part of the resource orchestration.

The high-level orchestrator predicts the

resource usage, ensures resource availability

and good QoS from the aggregated metrics

communicated by the monitoring component.

It communicates with the low-

level orchestrator through its

associated service blueprint.

It gets information of resources

under/over utilization and of the

deployed workloads QoS

compliance from monitoring

metrics.

Monitoring The existing aerOS monitoring component is

harnessed with dedicated resource-centric

metrics. Two types of metrics are used as a

result. Resource usage (CPU, Memory usage

etc.) metrics and services performances

metrics.

The resource usage metrics and

services performances metrics

are communicated by the

monitoring component to the

high-level orchestrator.

Low-level Resource

Orchestration

The existing service orchestration is harnessed

for the deployment of a dedicated service for

the low-level resource orchestration.

The orchestration service keeps

in sync its blueprint with

infrastructure state through the

interaction with the components

in the infrastructure and

bootstrapping providers.

Infrastructure and

Bootstrapping

Providers

A set of providers are used to manage the

deployment of the machines hosting the

infrastructure elements inside the domain.

There is also a set of providers to ensure the

initial configuration (Bootstraping) of the

machines before their integration into the

domain as resources.

The providers interact directly

with underlying infrastructure

to deploy and bootstrap the

resources.

Virtualized and

Physical infrastructure

A set of aerOS infrastructure elements builds up

the domain resources of the virtualized and

physical infrastructure. Depending on the

current workload and the requested QoS of the

deployed workloads, the infrastructure

elements will be added or removed from the

domain resources.

N/A

3.3.2. Related requirements

• TR-7 Meta-operating system orchestration and AI enabler

• TR-10 Dynamic resources

• TR-18 Multi-domain services orchestration

• R-T43-4 User requirements for AI job

• R-T43-8 AI jobs orchestration

• R-T43-11 User requirements to resource matching

• R-T43-11 User requirements to resource matching

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 46 of 60

3.3.3. Candidate technologies and standards

Table 1. Candidate technologies and standards for Service Orchestration

Tech/Standard Description Justification

Deep

Reinforcement

Learning

We research the use of Deep

Reinforcement Learning as an

approach to receive a service-IE

placement based on input data.

A trained deep neural network has a smaller footprint

than Mixed Integer Programming to find a valid

placement.

DVC Git integrated tool for data

versioning

As over the time, change of the dataset may apply due

to changed feature engineering or new datapoints, it

is essential for the reproducibility of any machine

learning application to version the used data.

KubeFlow Potential open-source solution

for having reproducible and

visual configurable training

pipelines

As it is intended to use deep learning, it is necessary

to create training pipelines. Most training pipelines

share common components that can be reused if they

are realigned. For this KubeFLow could be an

existing software that could be integrated

MLFlow Potential open-source solution

for experiment tracking of

machine learning experiments

Addition to KubeFlow. As machine learning

application often have multiple iterations on

modelling including multiple experiments, it is

necessary to be able to track the results including

metrics, the model, and other artifacts

Alibi/Seldom Open-source python packages

for drift detection and model

monitoring

Once a model is trained, it will be deployed. To

ensure long term reliability of the models, it is

necessary to implement monitoring methods to alert

if the data streams are changing and thus, the model

performance may decay.

Kopf an open-source framework for

operator development in Python

It provides a complete set of tools to develop

operators while being based on a widespread

language, namely Python.

Kafka An opensource distributed event

streaming platform.

Kafka has been used by thousands of organizations.

It provides a robust and a scalable solution for the

Events Bus in aerOS.

Helm Open-source solution that

provides a packaging system for

K8s.

Helm is the defacto packaging manager for K8s-

based systems. It has been supported and released by

the Cloud Native Computing Foundation (CNCF).

The solution is also robust and provides access to a

significant number of third-party packages.

Table 7. Candidate technologies and standards for Resource Orchestration

Tech/Stand. Description Justification

ClusterAPI An open-source tool that provides

declarative APIs and tooling for K8s

clusters provisioning, upgrading and

operating. It is used in aerOS for the

deployment and bootstrapping of K8s

resources.

ClusterAPI is the only active of all projects

that try to simplify the management of K8s

clusters lifecycle. Its declarative approach is

compatible with our blueprint-based

orchestration approach.

Terraform An open-source tool to enable full- Terraform is a mature tool used by a

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 47 of 60

automation of infrastructure, provision,

resources management. Terraform is used

for the deployment and bootstrapping non-

K8s resources case in aerOS.

significant number of organizations. It

harnesses an infrastructure as code

declarative approach, which is compatible to

our blueprint-based orchestration approach.

3.4. Cybersecurity components
This sub-section covers the research and developments done so far in Task T3.4. The challenge lies on

establishing (an aerOS-compliant) set of cybersecurity appliances, privacy techniques and policy enforcement

across the continuum, aligned with the DevPrivSecOps methodology defined in the project.

Within this task, the efforts have been structured to advance in the following two lines of action:

• Identity and Access Management

• Secure API Gateway compliant with aerOS security

In conjunction, the software elements resulting from the two previous lines constitute the first two elements of

aerOS AAA (authentication, authorisation and accountability). The third one is covered by the results of Task

T4.5 of aerOS, that is initially described in the parallel deliverable D4.1. In the remainder of this subsection, the

advances and decisions so far in each of those two lines are described.

3.4.1. Research lines

In the context of Cybersecurity components in aerOS, the research lines of Identity and Access Management

are: (i) Identity management, (ii) Role-based access management and (iii) Secure API Gateway compliant to

aerOS security.

3.4.1.1. Identity and Access Management

Identity and Access Management (IAM) is responsible for implementing the process for identifying, authenti-

cating individuals, groups of people or software processes to have access to applications, systems or networks

by associating user rights and restrictions with established identities3. IAM systems are comprised by two main

components, the Identity Management (IDM) that is focused on authentication and Access Management (in

case of aerOS Role-based Access Management) that is aimed at authorization4. The aerOS IAM will be based

on Keyclock5 that is a popular and open-source IAM solution. Keycloak provides a single-sign-on (SSO) for

individual applications, thus application developers do not need to worry about user authentication. In addition,

Keycloak offers authorization services for providing secure access control for the authenticated users. The of-

ficial website includes extensive documentation with configuration details, deployment setups, tutorials, and

integration with external applications. Developed in Java and open sourced under Apache license. Some of its

key features are:

1) Authentication: Integrates with external identity stores like LDAP, Active Directory, or custom stores

based on relational databases. Additionally, Keycloak allows for authentication from social identity

providers like Google or Facebook,

2) Authorisation: Keycloak supports multiple authorisation policies with different granularity. For exam-

ple, access control policies can be defined based on roles (RBAC), users (UBAC) or can be context-

based (CBAC), and

3) Standard security protocols: Keycloak is based on standard protocols like OpenID Connect, OAuth2.0

and SAML.

3 https://searchsecurity.techtarget.com/definition/identity-management-ID-management
4 http://www.cpd.iit.edu/netsecure08/KEVIN_WANG.pdf
5 https://www.keycloak.org

https://searchsecurity.techtarget.com/definition/identity-management-ID-management
http://www.cpd.iit.edu/netsecure08/KEVIN_WANG.pdf
https://www.keycloak.org/

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 48 of 60

3.4.1.1.1. Identity management

The primary objective of identity management (IDM) is to guarantee that only authenticated users are granted

access to the specific applications, systems or computing environments for which they are authorised. It includes

the control of user provisioning and the on-boarding process for new users, such as administrators, internal and

external users, and other interested parties. IDM also involves controlling the process of authorising system or

network permissions for existing users and the removal of users who are no longer authorised to access the

organisation's systems. The authentication process that is the main part of IDM is based on the OpenID Connect

protocol6. OpenID Connect consists of an identity layer on top of the OAuth 2.0 framework7, which enables

clients to perform identity verification, based on the authentication performed by an authorization server.

OpenID Connect exploits a JSON/REST-based identity built-in functionality, alongside with JSON Web To-

kens (JWT)8. Moreover, some basic profile information is obtained about the identified person in an interoper-

able REST-like manner. The principal notion of OpenID Connect is to create a lightweight API, providing

seamless authentication and authorisation in applications. Finally, identity governance, i.e. the policies and pro-

cesses that guide the administration of user roles and access in an organisational environment, is also an im-

portant part of IDM.

3.4.1.1.2. Role based access management

Access management (AM) is the process of identifying, tracking, controlling and managing authorised or spec-

ified users' access to a system, application or any IT instance. It is a broad concept that encompasses all policies,

processes, methodologies and tools to maintain access privileges within an IT environment.

Role-based access control (RBAC) refers to the idea of assigning permissions to users based on their role within

an organisation9. Typically, AM is used in conjunction with identity management (IM). Identity manager cre-

ates, provisions and controls different users, roles, groups and polices, whereas AM ensures that these roles and

policies are followed. An example of RBAC is depicted in Figure 30.

Figure 30. RBAC representation10

Figure 31 shows how RBAC works. An already authenticated user (through the IM), has a role assigned to him.

This role, in turn, allows him/her to perform some limited operations and thus access some objects of the

continuum. The operations that this user can perform and the objects that this user can access are described in

the permissions of the role to which the user belongs.

6 https://openid.net/developers/how-connect-works/
7 https://datatracker.ietf.org/doc/html/rfc6749
8 https://tools.ietf.org/html/rfc7519
9 https://auth0.com/docs/authorization/concepts/rbac
10 https://dsonoda.medium.com/role-based-access-control-overview-257de64534c

https://openid.net/developers/how-connect-works/
https://datatracker.ietf.org/doc/html/rfc6749
https://tools.ietf.org/html/rfc7519
https://auth0.com/docs/authorization/concepts/rbac
https://dsonoda.medium.com/role-based-access-control-overview-257de64534c

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 49 of 60

Figure 31: RBAC elements11

3.4.1.2. Secure API Gateway compliant to aerOS security

An API Gateway is a critical component in any deployment that acts as an intermediary between the client

applications and the backend services. It works as an entry point for all external requests and provides an

invaluable service of both security and authentication, ensuring no unauthenticated user can access the backend

services or data. An API Gateway is a necessary component for aerOS. This is due to the framework it offers,

simplifying the process of exposing multiple APIs with a unified interface, while offering advanced features to

enhance API management and performance. Without it, the endpoints are left without a way to verify any user

access to any of the API’s or services. The API Gateway represents an essential part of the architecture.

In order for an API Gateway to be desirable, it must have the following features:

(i) API Aggregation: The API Gateway allows the aggregation and combining multiple backend services

into a single API endpoint. It acts as a gateway, consolidating the functionality of various services and

presenting them through a single-entry point. This simplifies client access and reduces the complexity

of managing multiple APIs.

(ii) Load Balancing and Service Discovery: The API Gateway helps distribute incoming requests across

multiple backend services, ensuring optimal performance and high availability.

(iii) Caching: With built-in caching capabilities, The API Gateway reduces the load on backend services

by storing frequently accessed API responses.

(iv) Security and Authentication: The API Gateway offers various security features to protect APIs. It

supports authentication mechanisms such as API keys, JWT, OAuth2, and OpenID Connect. With

these tools rate limiting, request throttling, and IP allowlist/blocklist can be enforced to prevent

unauthorized access and ensure API security.

(v) Middleware Support: The API Gateway provides a rich set of middleware options to modify and

process requests and responses. Custom middleware functions can be added to implement functionality

like request/response transformation, request validation, logging, metrics and error handling.

3.4.2. Related requirements

• TR-17: Cross-layer cybersecurity

• TR-64: Cybersecurity tools

• TR-65: Privacy-preserving functions

• TR-67: Cybersecurity policies

11 https://dsonoda.medium.com/role-based-access-control-overview-257de64534c

https://dsonoda.medium.com/role-based-access-control-overview-257de64534c

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 50 of 60

3.4.3. Structure diagram

Figure 32 illustrates the structure diagram of the Communication and Service APIs, including the relevant

components that will be considered.

Figure 32: API Gateway architecture

Such components are identified and further described in Table 8:

Table 8:. Identity and Access Management and Secure API Gateway components

Component Description Interactions

Identity and Access

Management

Responsible for implementing the

authentication and authorization

of aerOS users.

KrakenD API to send the authentication to-

kens

Authentication registry The place where the policies are

stored

Communicates with IAM to validate the

credentials

Access management

registry

The place where the access poli-

cies are stored

Communicates with IAM to identify the ap-

propriate access policy

Client Any deployed element within the

aerOS continuum that wants to

access a protected endpoint.

The element obtains a token from Keycloak,

then it makes the petition to the backend

API with said token.

API Gateway The proposed API Gateway. Receives petitions from the client, verifies

the token with the Identity Manager and if it

is valid, it redirects the petition to the

backend.

API The API endpoint where the peti-

tion is being sent.

Performs the functionality specified.

Backend The backend where the target re-

source is available in the contin-

uum.

3.4.4. Candidate technologies and standards

Table 9: Identity and Access Management and Secure API Gateway candidate technologies

Technology/Standard Description Justification

Keycloak Open-source IAM that support a

plethora of technologies and

protocols for authentication and

Keycloak is one of the well-known open-

source solutions for IAM that is user-friendly

and can be easily parameterized.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 51 of 60

authorization.

OpenID Connect Token-based authentication

protocol.

It is a state-of-the-art and secure

authentication protocol that is based on the

OAuth 2.0 standard.

KrakenD KrakenD is a stateless,

distributed, high-performance

API Gateway.

KrakenD fulfils all the requirements and is

the most likely option for the API Gateway.

3.5. Node’s self and monitoring tools
In the aerOS computing continuum, there is a variety of IE types depending, for example, on their hardware,

software, computing capabilities or location in the continuum. This means that one of the main characteristics

of aerOS is the heterogeneity of the nodes that compose it. One of the objectives of aerOS is to provide these

nodes with autonomy of use, so that their operations do not depend on human interactions. In this way, IEs are

becoming capable of executing operations autonomously and constantly monitoring their state of health and/or

other parameters individually.

This section describes the features that IEs, in aerOS, will have in order to be self-capable of performing certain

actions. As it has been explained, IEs are the granular entities in aerOS that are able to withhold workload

execution in the continuum. As such, each IE holds a set of capabilities and features (GPU, total resources,

current consumption, domain to which they belong, etc) as described in the scope of T4.1. In addition, IEs can

be considered single entities that can perform their own software functionalities to improve/modify/report their

state towards the continuum. Maximising the concept of decentralization, augmenting the capacities of self-

capabilities in IEs will make the continuum more reliable and resilient to overall network/services downfalls.

In this context, the sub-sections below expose the self-capabilities (or self-features) that have been designed to

be included in the IEs of aerOS. This involves monitoring (exposing such parameters to the whole continuum)

and inner actions to improve/modify the state of each IE. The content is organised in the same way as in the

other subsections of Section 3, directly mapping to the evolution and works performed in Task T3.5 of aerOS.

3.5.1. Research lines

As previously mentioned, one of the objectives of aerOS is to allow the IEs that connect to the continuum to be

autonomous. For this, it is necessary that they meet certain characteristics that make them independent. These

features are offered through the set of self-* capabilities that aerOS offers to every IE connected to the

continuum, regardless of the heterogeneity that characterises it.

In order to better structure those capabilities, it was decided to analyse narrow functionalities that could be

separated. The capabilities that IEs must meet can be listed as follows:

• Self-awareness: This self-capability, considered as the basis of any autonomous and independent

system, aims to observe, analyse and evaluate the environment that surrounds a node and itself,

permanently monitoring its own state of health. In addition, it must be able to see beyond its immediate

environment, in order to compose a broader spatial vision of the entire environment that surrounds it.

The purpose of these analyses is to modify the behaviour of the IE based on the results obtained from

the observations made. This self-capability is responsible for providing information to the self-diagnose,

self-orchestration, and self-optimization and adaptation components.

• Self-orchestration: self-capability of the intelligent nodes (IEs) to collaborate in the management and

coordination of their own workloads, in order to achieve common objectives to the rest of the IEs. This

self-capability allows each IE to align with the aerOS global orchestration directives and is able of

improving the scalability of applications, reducing the number of failures that occur during their

execution.

• Self-diagnose: capability of an IE to assess its own state of health through constant monitoring and

evaluation of data such as CPU and RAM usage, storage unit usage and status, network connection

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 52 of 60

metrics or data received through the self-awareness or self-security components. These data are

translated into a normalised composite indicator adjusted to a scale of pre-established values.

• Self-security: it enables malfunctions and vulnerabilities to be detected at the node level to ensure

correct operation or secure incorporation into the computing continuum. It does this by monitoring the

network traffic of the IE's network interfaces, checking against updated threat databases or applying

rules to detect attacks. The attack information is sent to the self-diagnose component.

• Self-API: global API installed in each of the IEs that exposes the operations allowed on the rest of the

self-* capabilities installed and controls the flow of data that enters and leaves the node within the

continuum.

• Self-healing: it crystalises the capability of autonomously recovering affected parts of the system both

at the hardware and software level caused by failures or abnormal states. It can also restart the system

to pre-established routines scheduling, if necessary.

• Self-scaling: self-capability of the IEs that can run K8s to horizontally increase or decrease the

hardware resources dedicated to the workloads depending on the needs of each one. This modification

runs in real-time and is based on time series inference and custom logic.

• Self-configuration: capacity of an intelligent node of the continuum to automatically (re)configure

itself at any time, under any situation and condition, maintaining the configurations established by the

users or administrators in the event of any type of failure or error at the hardware or software level. The

system administrator can apply high-level policies during the (re)configuration process.

• Self-optimisation and adaptation: it allows to constantly improve the efficiency and performance of

an IE, modifying its behaviour in real-time to adapt to changes in the environment that surrounds it.

The main objective of this self-capability is to reduce the power consumption of the nodes and the

volume of data generated through advanced AI techniques.

• Self-realtimeness: it allows to have knowledge of the time behaviour's of the containers in execution

in real-time. In this way, temporary isolation between real-time and non-real-time components can be

ensured. In case of performance decrease, it can send warnings to the self-orchestration component.

More details on how they relate among themselves, and the way that they are conceived to be materialised, are

depicted in the following sub-sections

3.5.2. Related requirements

The various self-features described in this section will play a role across the Meta-OS installation and validation.

In particular, they will be created to satisfy specific technical requirements that have been expressed as needed

for the overall functioning of aerOS. In addition, the software suite of features will be tested in various pilots of

the projects. The particular list of related technical requirements and pilot scenarios where the self-capabilities

and functionalities will be tested is as follows:

• TR-15 Self-* mechanisms

• TR-20 Resource availability

• TR-22 Context awareness

• TR-26 aerOS Infrastructure Monitoring

• TR-27 Infrastructure management automation

• TR-30 Optimized configuration on IoT Devices

• TR-32 aerOS network monitoring

• TR-54 Cybersecurity tools

3.5.3. Structure diagram

As described above, the software suite of self-capabilities in aerOS is organised in ten specific features that will,

in practice, result in different software to be run by the IEs. Particularly, it has been designed for each self-

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 53 of 60

feature (self-awareness, self-orchestration, etc.) to have its own responsibility and role and act as a single entity

within an IE. However, the overall suite must work together to deliver the expected behaviour, thus creating

intertwined relations among them. There, certain features might need the existence of others to fully provide

their functionality. Similarly, others would need to rely on each other to avoid overlaps and/or duplicities.

Therefore, a diagram has been created in order to represent how the self-features would interact to deliver the

functionalities of monitoring and self behaviours in the IEs of aerOS. Figure 33 represents the different

components of the global IE’s self and monitoring tools. Self-configuration and self-healing connect directly to

the peripheral IoT devices (when those are connected to an IE), keeping track of the connection status and the

health of such devices (battery, data transmission, desired configuration – e.g., bitrate, bauds…). These two

modules will contribute to “health status” reporting of the IE, whenever related to IoT devices. Health status,

reported as “health score,” is calculated and managed by another self-feature (self-diagnose), which will be a

centrepiece of the whole suite. The score (which is a composite index) will be constructed by the input of other

features, such as self-realtimeness, that will analyse whether those IEs holding real-time services are meeting

the expected performance behaviour. It will also gather information from the self-awareness feature that will

host the main monitoring engine inside an IE. By specifying metrics to be collected, it will be the basis for

feeding both other features and the global exposure of an IE to the outside. Such exposure is materialised via

self-API (gateway of APIs), that will include the required security according to the guidelines and tool decided

globally for aerOS (Task T3.4). In addition, self-security is extended in the inner side of the IE by establishing

traffic inspection mechanisms to detect potential vulnerabilities at IE level. Although IEs are conceived (in this

part of the Meta-OS) to be sort of independent elements, they live within a continuum and their real “action”

(in terms of workload execution) will depend on the orchestration decisions taken along the continuum.

Therefore, they should have a way of interacting back with such orchestration. In this sense, the self-

orchestration feature comes into play, being fed by various elements, as previously exposed, in order to

understand whether the IE should trigger alarms or requests for re-orchestration due to state of resources.

Current state of resources will come from self-awareness while future/predicted use of resources will come from

self-optimisation and self-adaptation feature. Lastly, the IEs should have the capacity to horizontally scale the

replicas of their resources (if they fall under the K8s category), and that is covered by the self-scaling feature.

Figure 33. Interaction diagram of self-features in IEs of aerOS

As observed in the figure, five out of the ten self-features stand out red-squared. The goal is to highlight the fact

that those are the only mandatory features in all IEs of a continuum. Self-realtimeness will only be present in

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 54 of 60

those cases managing real-time containers, self-healing and configuration will only live in those IEs with

peripheral IoT devices, self-scaling will only be used (on voluntary basis) if the IE is a K8s worker node and

self-optimisation and adaptation will be an optional plugin to the IEs. In Table 10, the specific functionalities,

details and interactions are further described.

Table 10. Self-capabilities components, description and interactions

Component Description Interactions

Self-awareness This is the feature that allows the monitoring of values of the state

of the IE. Per definition, it materialises the ability of computer

systems to observe and analyse the environment that surrounds

them, with the aim of making changes in their behaviour according

to the observations made. Specific relevant aspects of the self-

feature as it is designed in M12:

• Gather parameters such as CPU, RAM, network usage, etc.

• Custom parameters can be defined.

• Need to adapt to various IE flavours (e.g., using

Prometheus in K8s node).

• Can provide information about the services running in the

IE.

• Must be able to inform about energy consumption in “real

time”.

It gathers info of

the IE and

directly feeds the

self-diagnose,

self-

orchestration and

self-optimisation

and adaptation. It

also provides

context to the

associated

Context Broker

to that IE:

Self-diagnose The element that computes the health score, a value that represents

the health value of an IE at every specific instance. Per definition,

the feature assessing the device’s state of health. It collects and

analyses data from multiple sources of information such as memory

usage, CPU usage, or network connection metrics, providing a

health score. It will construct a composite indicator (normalised,

weighted and aggregated according to decisions in the task.

It will be a

crucial element,

feeding the self-

scaling and self-

orchestration

features. It will

be fed by self-

awareness, self-

security, self-

healing and self-

realtimeness, that

will contribute to

construct the

health of the IE.

Self-orchestration It is the feature that allows the interaction with the global

orchestration directives of aerOS. Per definition, the

implementation of potential ways to manage workloads within IEs.

As illustrated in Figure 34, some aspects of the self-feature, as

designed in M12, include:

• Rule engine that contains the parameters and their

thresholds upon which an orchestration request / issue must

be triggered “upwards”.

• Facts generator to translate from current state to real facts

that will match to the parameters in the engine.

• API to allow dynamic creation/modification of rules.

• Orchestration triggerer to properly format the required

messages to the global aerOS orchestration.

It is directly fed

by three

components: (1)

self-awareness

(metrics to

construct the

facts), (2) self

optimisation /

adaptation, to

understand

whether future

predictions of the

IE state should

trigger

orchestration

actions in

advance and (3)

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 55 of 60

Figure 34. Inner structure of self-orchestration feature in an IE

self-diagnose, to

embed health

score in the

decision process.

Self-security An additional security layer that deepens into the inner-IE aspects.

Per definition, module in charge of giving context of the node in

terms of security (not global), ensuring secure addition to the

continuum, analysis of traffic and check against updated threat

databases.

Specific relevant aspects of the self-feature as it is designed in M12:

• It inspects the IE network interface traffic monitoring.

• It will be able to apply (dynamically defined rules) to detect

attacks to the IE.

• It will handle the initial authentication of the IEs once they

enter in the continuum. This will be managed in

conjunction with the decisions of the architecture (in D2.6),

specifically with the incorporation of domains.

The information

of the attacks will

be reported to the

Self-Diagnose

component

Self-API A feature to expose the potential management of the different self-

capabilities. It will be able to retrieve certain management aspects

and will allow parameterisation of e.g., dynamic rules in the self-

orchestration software. It consists of the global API of a node (IE).

Specific relevant aspects of the self-feature as it is designed in M12:

• It may take the form of an API Gateway,

• It will align with OpenAPI.

• It will control the volumes of information that can flow

in/out of an IE.

It will interact

with all the rest

of self-features in

order to manage

their

configuration /

parameters / data.

Self-scaling The capacity of an IE to adapt to service demand and leverage

available techniques to horizontally scale (up or down) the

resources devoted to a specific workload (inside that IE) in a

dynamic fashion, based on time series inference and custom logic.

This is reserved to IEs with K8s flavour.

One of the inputs

that this feature

might use is the

health score,

deciding whether

or not to rely on

the IE state to

increase replicas.

Self-realtimeness Awareness of timing behaviour for real-time critical system to

assure temporal isolation between real-time and non-real-time

components.

Specific relevant aspects of the self-feature as it is designed in M12:

• It will handle aspects of real-time containers such as

deadline misses, number of interrupts, interrupt latency,

cache hits/misses…

Interaction with

self-

orchestration

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 56 of 60

• Dynamically issue re-orchestration requests in case of real-

time performance degradation

Self-configuration Ensuring that an IE keeps the desired configuration of the IoT

devices (parameters, connection…) expressed by the user in case

resources go down or something unexpected happens.

Specific relevant aspects of the self-feature as it is designed in M12:

• It works in a “steady-state” fashion.

• Enables a system to dynamically adapt to changing

environments using policies provided by the administrator

• Configuration declares resources needed by a certain

functionality

• Configuration specifies reactions for specific events

• The system communicates with the resources

• If a resource becomes limited, then the system decides

which functionalities to keep.

This component

will be one of the

few that will be

able to work in a

standalone

fashion, not

requiring

interaction with

other features.

Self-healing Related to IoT devices, capabilities of actively attempting to

recover themselves from abnormal states, based on a pre-

established routines scheduling.

Specific relevant aspects of the self-feature as it is designed in M12

include the following (Figure 35):

• It works in a “runtime” fashion.

• Definition and detection of abnormal states is expected

(relying, when possible on KubeEdge device mappers to

adjust to communication technologies with devices).

• If needed, a translator from communication technology to

MQTT protocol should be included.

Figure 35. Inner schema of abnormal state detection in self-healing

In the case of

detecting

abnormal states,

or healing

actions to be

taken, this will

feed the health

score of the IE

(interacting with

self-diagnose

feature).

Self-optimisation

/adaptation

Per definition, the self-capability to provide continuous

improvement of the performance and efficiency of the IE.

Specific relevant aspects of the self-feature as it is designed in M12

include the following:

• It bases on the concepts of approximative and adaptative

sampling techniques, to dynamically adjust the sampling,

in aerOS case, “workload orchestration”.

• The goal is to reduce the data volume and energy

consumption employing those AI techniques.

It will receive

information by

self-awareness

(monitoring of IE

state) and self-

realtimeness and

will send

valuable

information to

the self-

orchestration

feature.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 57 of 60

3.5.4. Candidate technologies and standards

As per M12, the current list of technologies that are planned to be used/developed/integrated/customized for

delivering the self-functionalities indicated above is as follows:

Table 11. Self-features and monitoring candidate technologies

Technology/Standard Description Justification

Prometheus

(self-awareness)

Open-source monitoring and

alerting toolkit.

It is a reliable system. It allows to diagnose

problems quickly, does not depend on network

storage or other remote services and its

configuration is simple and fast.

Monitorix

(self-awareness)

Open-source tool that monitors

operating system resources and

services of a node.

It consumes very low resources, allows to

obtain the energy consumption in Intel and

AMD processors (AMD64 architectures), can

customise the data collection interval and

allows to extract the data to a log file.

PowerTOP

(self-awareness)

Open-source diagnostic tool that

provides energy consumption by

host and by process (per PID).

Allows experiment with various GNU/Linux

power management configurations, run as a

repetitive task, and obtain power

consumptions from Intel, AMD, ARM and

UltraSPARC processors.

json-rules-engine

(self-orchestration)

Rules engine and alert-based system

to trigger orchestration requests to

upper layers in the domain.

The rules are generated through simple

schemas in JSON and is developed in node.js,

which is fast and lightweight.

KubeEdge

(self-healing)

Open-source system for extending

native containerised application

orchestration capabilities to hosts

at edge.

It is based on K8s, supports MQTT, allows to

create custom logic and communication

between IoT devices at the edge.

MQTT

(self-healing)

Standard for data transmission

between IoT devices.

It requires minimal resources for its operation

and is very efficient. Therefore, it is possible

to use it on IoT devices at the edge.

Technologies based on

RAINBOW EU project

(self-adaptation and self-

optimisation)

Adaptive sampling techniques and

adaptive filtering techniques.

It allows to reduce the volume of data used and

the energy consumption of the devices

compared to other implementations.

Self-configuration

enabler from ASSIST-IoT

EU project

(self-configuration)

Enabler to keep heterogeneous

devices and services in sync with

their configurations. The

configuration can be updated and

backup configurations can be

defined in case of error.

The component is capable of reacting to the

changing environment and automatically

updating the configuration as needed. It is also

capable of detecting if alternative

configurations should be used.

Resource provisioning

enabler from ASSIST-IoT

EU project

(self-scaling)

This tool can scale horizontally (up

or down) the resources of a specific

enabler (within an IE) in real-time

and depending on time series

inference and custom logic.

It is able to store time series with component

usage metrics for each active enabler and use

deep learning techniques to predict usage

metrics and scale out resources dedicated to

each enabler component automatically.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 58 of 60

Neural prophet

(self-scaling)

Framework for interpretable time

series forecasting.

Combine neural networks and time series data,

and is written in Python.

Predictive Horizontal Pod

Autoscaler

(self-scaling)

This tool is a Horizontal Pod

Autoscaler (HPA) with extra

predictive capabilities, allowing to

autoscale using statistical models

for ahead of time predictions. This

is a potential alternative to Resource

provisioning enabler from ASSIST-

IoT EU project.

It is able to improve scaling results by scaling

resources ahead of demand request through

early decision making.

Custom aerOS monitor

(self-realtimeness)

Tool that monitors the execution

behaviour of containers by

extending the Linux kernel monitor.

This custom tool is capable of monitoring

container metrics, calculating time-utility

functions, requesting re-orchestration, etc.

Suricata

(self-security)

Is a high performance, open-source

network analysis and threat

detection software.

It is capable of analysing all the network

interfaces of an IE, detecting attacks on the

network, reporting attacks to the self-diagnose

component and preventing intrusions.

Keycloak

(self-security)

Open-source program that allows

managing access and identities.

It allows easy configuration, user federation

and administration, detailed authorisations,

etc.

Express

(API)

A minimal and flexible Node.js web

application framework that provides

a robust set of features for web and

mobile applications.

It allows to create robust, secure and

lightweight APIs quickly and easily.

Swagger

(API)

Open-source toolset for designing,

building, documenting and using

RESTful web services.

It allows to generate documentation, code and

test cases in an automated way.

Custom development It is expected that many of the self-

features will incorporate custom

developments to achieve their

functionality.

Lightweight languages and code will be used.

Best practices coming from DevPrivSecOps

will be used.

4. Conclusions and future work

During the first twelve months of the project, aerOS has mostly focused on the research and design phase, which

involves the study of the available solutions in the literature, analysis of the requirements, definition of the use

cases, and selection of technologies. The successful completion of this phase has resulted in the definition of

the initial version of the aerOS architecture and the specification and initial proposal of the aerOS WP3/4

software components. Consequently, this influence is reflected in the work carried out in WP4 during this

period, as well as in the results presented in this document. Specifically, D3.1 is centered around the initial

distributed compute infrastructure specification and implementation. WP3 aims to provide a set of components

to enable a secure, scalable IoT-Edge-Cloud continuum, supporting resources and services orchestration to

boost operation of autonomous systems based on the aerOS architecture.

Deliverable D3.1 is part of an iteration of the set of outcomes of WP3. This document is the first version, which

is due to M12 of the project and presents work done so far. Each of these deliverables aims at releasing the

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 59 of 60

outcomes related to the software for delivering intelligence at the edge, which occurs during intermittent time

periods. The second iteration of the deliverable is planned to deliver the intermediate release in M18, and the

third iteration is planned to deliver the final release in M30. Since this deliverable will have two more sub-

sequent iterations, the specifications included here may be extended or updated as the project evolves. Solutions

presented were classified according to WP3 tasks division and described using a template to maintain a common

structure of information given. It covers description of the task, main research lines and the advances and

decisions already performed in each of them, including diagrams when pertinent and a clear list of candidate

technologies for their implementation. In the next iteration of the deliverable, the templates of each solution

will be updated to include additional information, such as usage stories. Next version of the deliverable will

include solution description template extended with additional information such as usage stories. In addition,

the next iteration (D3.2) will already include actual software as first outcomes of WP3 tasks.

Regarding the future work, the finalization of this deliverable will boost the already initiated development of

related software. Next tasks will be to:

• Fill in missing information in the design of specific components (e.g., communication interfaces),

• Conduct any necessary adjustments (e.g., slight modification in provided functionalities, change in

structure, refinement of selected technologies),

• Establish needs for interactions between WP4 and other WP3 components,

• Preparation of the backlog of tasks, distribution of work and kick-off of implementation activities,

• First software results (MVP) ready and available by M18 (however, the degree of development is

foreseen not be homogeneous for all the components).

Finally, during WP5 execution in the upcoming months, the main goal will be to deploy the use cases and

scenarios to validate the aerOS system as a whole, including the solutions proposed in WP3 and WP4.

D3.1 – Initial distributed compute infrastructure specification and implementation

Version 1.0 – 31-AUG-20223 - aerOS© - Page 60 of 60

References
[1] T. Z. Benmerar, T. Theodoropoulos, D. Fevereiro, L. Rosa, J. Rodrigues, T. Taleb, P. Barone, K. Tserpes

and L. Cordeiro, “Intelligent Multi-Domain Edge Orchestration for Highly Distributed Immersive

Services: An Immersive Virtual Touring Use Case,” in iEDGE 2023 - IEEE Symposium on Intelligent

Edge Computing and Communications, 2023.

[2] J. Dobies and J. Wood, Kubernetes operators: Automating the container orchestration platform, O'Reilly

Media, 2020.

[3] operatorframework.io, “Welcome to operator pattern framework,” 2023. [Online]. Available:

https://operatorframework.io/operator-capabilities/. [Accessed 11 07 2023].

[4] R. Duan, F. Zhang and S. U. Khan, “A Case Study on Five Maturity Levels of A Kubernetes Operator,”

in 2021 IEEE Cloud Summit (Cloud Summit), 2021.

[5] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann, K. Saatkamp and J. Soldani, “The

essential deployment metamodel: a systematic review of deployment automation technologies,” SICS

Software-Intensive Cyber-Physical Systems, vol. 35, pp. 63--75, 2020.

[6] J. Wettinger, U. Breitenbücher and F. Leymann, “Standards-based DevOps automation and integration

using TOSCA,” in 2014 IEEE/A0CM 7th International Conference on Utility and Cloud Computing, 2014.

[7] A. Zerouali, R. Opdebeeck and C. De Roover, “Helm Charts for Kubernetes Applications: Evolution,

Outdatedness and Security Risks,” in 2023 IEEE/ACM 20th International Conference on Mining Software

Repositories (MSR), 2023.

[8] L. Mamushiane, A. A. Lysko, T. Mukute, J. Mwangama and Z. Du Toit, “Overview of 9 open-source

resource orchestrating ETSI MANO compliant implementations: A brief survey,” in 2019 IEEE 2nd

Wireless Africa Conference (WAC), 2019.

[9] R. Botez, A.-G. Pasca and V. Dobrota, “Kubernetes-Based Network Functions Orchestration for 5G Core

Networks with Open Source MANO,” in 2022 International Symposium on Electronics and

Telecommunications (ISETC, 2022.

[10] C. Contu, A. Ciobanu, E. Borcoci, M.-C. Vochin, I. A. Balapuwaduge, S. Topoloi and R.-F. Trifan,

“Deploying Use Case Specific Network Slices Using An OSM Automation Platform,” in 2022 25th

International Symposium on Wireless Personal Multimedia Communications (WPMC), 2022.

[11] ETSI, “OSM Usage,” 2023. [Online]. Available: https://osm.etsi.org/docs/user-guide/latest/05-osm-

usage.html. [Accessed 20 07 2023].

[12] ETSI, “KNF Onboarding Walkthrough (Work in Progress),” 2023. [Online]. Available:

https://osm.etsi.org/docs/vnf-onboarding-guidelines/07-knfwalkthrough.html. [Accessed 20 07 2023].

[13] ETSI, “Day 1: VNF Services Initialization,” 2023. [Online]. Available: https://osm.etsi.org/gitlab/vnf-

onboarding/osm-packages/-/tree/master/simple_ee_vnf/. [Accessed 20 07 2023].

[14] ETSI, “simple_ee_vnf example,” 2023. [Online]. Available: https://osm.etsi.org/gitlab/vnf-

onboarding/osm-packages/-/tree/master/simple_ee_vnf/. [Accessed 20 07 2023].

